Delocalization by nonlinearity and interactions in systems with disorder

with I.García-Mata (Toulouse), K.Ahnert, M.Mulansky, A.Pikovsky (Potsdam)

- Anderson localization 1958-2008: Introduction, 50 years after
- Discrete Anderson nonlinear Schrödinger equation (DANSE) $(d=1,2)$
- Dynamical thermalization of nonlinear disordered lattices: anti-FPU
- Two interacting particles effect
- Åberg criterion for dynamical thermalization in many-body quantum systems

Anderson localization: introduction \& perspectives

from the talk of P.W.Anderson at Newton Institute, July 21, 2008 see http://www.newton.ac.uk/programmes/MPA/seminars/072117001.html
"Well, In my country," said alice, still panting a little, "you would generally get to somehere else, if you ran very fast for a long time, as we've been doing". "A slow sort of country!", said the queen.
"Now here, it takes all the running you can do, to stay in the same place."

Perspectives: a)localization in new type of systems; b)effects of interactions

3d-Dynamical de-localization of atomic waves

quantum chaos in kicked rotator $=>$ Chirikov localization in momentum space

$$
H=p^{2} / 2+K \text { K } \cos x\left[1+\epsilon \cos \left(\omega_{2} t\right) \cos \left(\omega_{3} t\right)\right] \sum_{m} \delta(t-m), \quad \hbar_{\text {eff }}=2.89
$$

J.C.Garreau et al. PRL 101, 255702 (2008); theory prediction at PRL 62, 345 (1989)

Nonlinearity and Anderson localization: estimates

$$
i \hbar \frac{\partial \psi_{\boldsymbol{n}}}{\partial t}=E_{\boldsymbol{n}} \psi_{\boldsymbol{n}}+\beta\left|\psi_{\boldsymbol{n}}\right|^{2} \psi_{\boldsymbol{n}}+V\left(\psi_{\boldsymbol{n}+\boldsymbol{1}}+\psi_{\boldsymbol{n}-\mathbf{1}}\right) ;\left[-W / 2<E_{n}<W / 2\right]
$$

localization length $I \approx 96(V / W)^{2}(1 \mathrm{D}) ; \ln / \sim(V / W)^{2}(2 \mathrm{D})$ Amplitudes C in the linear eigenbasis are described by the equation

$$
i \frac{\partial C_{m}}{\partial t}=\epsilon_{\boldsymbol{m}} C_{\boldsymbol{m}}+\beta \sum_{m_{1} m_{2} m_{3}} U_{m m_{1} m_{2} m_{3}} C_{m_{1}} C_{m_{2}}^{*} C_{m_{3}}
$$

the transition matrix elements are $U_{m m_{1}} m_{2} m_{3}=\sum_{n} Q_{n m}^{-1} Q_{n m_{1}} Q_{n m_{2}}^{*} Q_{n m_{3}} \sim 1 / / 3 d / 2$. There are about $/ 3 d$ random terms in the sum with $U \sim 1^{-3 d / 2}$ so that we have $i d C / d t \sim \beta C^{3}$. We assume that the probability is distributed over $\Delta n>I^{d}$ states of the lattice basis. Then from the normalization condition we have $C_{m} \sim 1 /(\Delta n)^{1 / 2}$ and the transition rate to new non-populated states in the basis \boldsymbol{m} is $\Gamma \sim \beta^{2}|C|^{6} \sim \beta^{2} /(\Delta n)^{3}$. Due to localization these transitions take place on a size / and hence the diffusion rate in the distance $\Delta R \sim(\Delta n)^{1 / d}$ of d - dimensional $\boldsymbol{m}-$ space is $d(\Delta R)^{2} / d t \sim I^{2} \Gamma \sim \beta^{2} l^{2} /(\Delta n)^{3} \sim \beta^{2} l^{2} /(\Delta R)^{3 d}$. At large time scales $\Delta R \sim R$ and we obtain

$$
\Delta n \sim R^{d} \sim(\beta /)^{2 d /(3 d+2)} t^{d /(3 d+2)} ;(\Delta n)^{2} \propto t^{\alpha} ; \alpha=2 /(3 d+2)
$$

Chaos criterion:

$$
S=\delta \omega / \Delta \omega \sim \beta>\beta_{c} \sim 1
$$

there $\delta \omega \sim \beta\left|\psi_{n}\right|^{2} \sim \beta / \Delta n$ is nonlinear frequency shift and $\Delta \omega \sim 1 / \Delta n$ is spacing between exites eigenmodes
DLS PRL 70, 1787 (1993) $(d=1)$; I.García-Mata, DLS arXiv:0805.0539 $(2008)(\underline{\underline{\underline{d}}} \geq 1)$

Nonlinearity and Anderson localization (1D)

$W / V=2,4, \beta=0,1 ; \sigma=(\Delta n)^{2} \propto t^{\alpha}$;

$$
W / V=4, \beta=1, t=10^{8}, \beta=0
$$

$$
i \hbar \frac{\partial \psi_{\boldsymbol{n}}}{\partial t}=E_{\boldsymbol{n}} \psi_{\boldsymbol{n}}+\beta\left|\psi_{\boldsymbol{n}}\right|^{2} \psi_{\boldsymbol{n}}+V\left(\psi_{\boldsymbol{n}+\boldsymbol{1}}+\psi_{\boldsymbol{n}-\mathbf{1}}\right) ;\left[-W / 2<E_{n}<W / 2\right]
$$

A.S.Pikovsky, DLS PRL 100, 094101 (2008)

Nonlinearity and Anderson localization (2D)

$$
i \hbar \frac{\partial \psi_{\boldsymbol{n}}}{\partial t}=E_{\boldsymbol{n}} \psi_{\boldsymbol{n}}+\beta\left|\psi_{\boldsymbol{n}}\right|^{2} \psi_{\boldsymbol{n}}+V\left(\psi_{\boldsymbol{n}+\mathbf{1}}+\psi_{\boldsymbol{n}-\mathbf{1}}\right)
$$

I.García-Mata, DLS arXiv:0805.0539 (2008)

Nonlinearity and Anderson localization (2D)

$$
\begin{gathered}
W=10 ; \beta=0(\text { left }), 1 \text { (right); } \\
t=10^{4} \text { (bottom), } 10^{6} \text { (middle), } \\
\text { projecton on } x \text {-axis (top); } \\
256 \times 256 \text { lattice }
\end{gathered}
$$

[also: kicked nonlinear rotator model (1d)]
I.García-Mata, DLS arXiv:0805.0539 (2008)

Dynamical thermalization in DANSE (1D)

starting from Fermi-Pasta-Ulam problem (1955): regular lattice, delocalized linear modes \rightarrow disorder localized modes

$N=32, W=4, \beta=1, t=10^{7}+10^{6}$, initial state: one linear eigenmode
Gibbs distribution with temperature T for localized linear modes, $\rho_{m}=\left|C_{m}\right|^{2}$:
entropy $S=-\sum_{m} \rho_{m} \ln \rho_{m}, \rho_{m}=Z^{-1} \exp \left(-\epsilon_{m} / T\right), Z=\sum_{m} \exp \left(-\epsilon_{m} / T\right)$, $E=T^{2} \partial \ln Z / \partial T, S=E / T+\ln Z .\langle\ln Z\rangle \approx \ln N+\ln \sinh (\Delta / T)-\ln (\Delta / T), \Delta \approx 3$
M.Mulansky, K.Ahnert, A.Pikovsky, DLS arxiv:0903.2191 (2009)

Dynamical thermalization in DANSE (1D)

weaker and stronger nonlinearity β

$N=64, W=4, \beta=0.5$ (left), 2 (right), $t=10^{6}$, initial state: one linear eigenmode

Gibbs distribution with temperature T for localized linear modes, $\rho_{m}=\left|C_{m}\right|^{2}$:
entropy $S=-\sum_{m} \rho_{m} \ln \rho_{m}, \rho_{m}=Z^{-1} \exp \left(-\epsilon_{m} / T\right), Z=\sum_{m} \exp \left(-\epsilon_{m} / T\right)$, $E=T^{2} \partial \ln Z / \partial T, \quad S=E / T+\ln Z .\langle\ln Z\rangle \approx \ln N+\ln \sinh (\Delta / T)-\ln (\Delta / T), \Delta \approx 3$
M.Mulansky, K.Ahnert, A.Pikovsky, DLS arxiv:0903.2191 (2009)

Dynamical thermalization in DANSE (1D)

Fraction of thermalized states: $N=16$ (circles), 32 (curve), $64(+) ; W=4, t=10^{6}$, (diamonds $N=32, t=10^{7}$)
M.Mulansky, K.Ahnert, A.Pikovsky, DLS arxiv:0903.2191 (2009)

Possible experimental tests \& applications

- BEC in disordered potential (Aspect, Inguscio)
- kicked rotator with BEC (Phillips)
- nonlinear wave propagation in disordered media (Segev, Silberberg)
- lasing in random media (Cao)
- energy propagation in complex molecular chains (proteins, Fermi-Pasta-Ulam problem)
- NONLINEAR SPIN-GLASS ?
- OTHER GROUPS:
S.Aubry et al. PRL 100, 084103 (2008)
A.Dhar et al. PRL 100, 134301 (2008)
S.Fishman et al. J. Stat. Phys. bf 131, 843 (2008)
S.Flach et al. arXiv:0805.4693[cond-mat] (2008)
W.-M.Wang et al. arXiv:0805.4632[math.DS] (2008) see also the participant list of the NLSE Workshop at the Lewiner Institute, Technion, June 2008

Quntum systems:
 Two Interacting Particles (TIP) effect

Anderson model in d-space + onsite Hubbard interaction $U, V \sim E_{F}$ is one-particle hopping; exited states $\psi_{n} \sim \exp (-|n-m| / I) / \sqrt{I} ; I \gg 1$.
Equation in the basis of noninteracting eigenstates $\chi_{m_{1} m_{2}}$:

$$
i \partial \chi_{m_{1} m_{2}} / \partial t=\epsilon_{m_{1} m_{2}} \chi_{m_{1} m_{2}}+\sum_{m^{\prime}{ }_{1} m^{\prime} 2} U_{m_{1} m_{2} m_{1}^{\prime} m_{2}^{\prime}} \chi_{m_{1}^{\prime} m_{2}^{\prime}}
$$

Sum runs over $M \sim I^{d}$ coupled states; interaction induced matrix elements $U_{s} \sim U_{m_{1} m_{2} m_{1}^{\prime} m_{2}^{\prime}} \sim\left(U /\left(I^{2 d}\right) \times \sqrt{M}\right.$, density of coupled states is $\rho_{2} \sim I^{2 d} / V$, TIP transition rate $\Gamma_{s} \sim U_{s}{ }^{2} \rho_{2} \sim U^{2} /\left(I^{d} V\right)$. Enhancement factor

$$
\kappa=\Gamma_{s} \rho_{2} \sim(U / V)^{2} I^{d}>1
$$

TIP localization:
$I_{2} / I \sim(U / V)^{2} I(1 d)$;
$\ln \left(I_{2} / I\right) \sim(U / V)^{2} I^{2}(2 d)$;
delocalization for $\kappa \sim(U / V)^{2} \beta^{3}>1$ (3d)

DLS PRL 73, 2607 (1994); Y.Imry EPL 30, 405 (1995)

Slow Metal (2D)

FIG. 2 (color online). Resistivity as a function of inverse temperature $1 / T$ at $B=0 \mathrm{~T}$ (symbols). At all densities, the strongly insulating T dependence at higher temperatures is followed by a decrease in resistance at low T. Device dimensions are $W \times L=8 \mu \mathrm{~m} \times 0.5 \mu \mathrm{~m}$, spacer $\delta=40 \mathrm{~nm}$. Electron densities are indicated by arrows in the inset to (a). Solid lines represent a fit of Eq. (1) to the data. Inset to (a): Resistivity as a function of electron density at $T=60 \mathrm{mK}, 500 \mathrm{mK}, 4 \mathrm{~K}$. Inset to (d): ρ as function of $1 / T$ at the same density as (d) but at $B_{\perp}=1.5 \mathrm{~T}$.

TIP diffusion

$D \sim \Gamma_{s} I^{2} \sim U^{2} / V$ at $(U I / V)^{2}>1$ vs. usual diffusion $D_{0} \sim v_{F} \ell \sim V$
Thus it is possible to have diffusion with conductance g and resistivity per square ρ_{0} (in natural units): $g \sim 1 / \rho_{0} \sim D / D_{0} \sim(U / V)^{2} \ll 1$ With up to $(U I / V)^{2} \sim 1$ and $g \sim 1 / I^{2} \ll 1$
Problems: finite particle density, small density of states near the ground state

Experiment suggestion: to measure

 a charge of quasi-particles from noise fluctuationsM.Baenninger, A.Ghosh, M.Pepper, H.E.Beere, I.Farrer, D.A.Ritchie PRL 100, 016805 (2008) vs. S.Kravchenko et al. RMP 73,251 (2001)

Dyn-thermalization in many-body Q-systems

Åberg criterion $J>J_{c} \approx \Delta_{c} \gg \Delta_{n} \propto \exp (-n)$: two-body matrix element J should be larger than energy spacing between directly coupled states Δ_{c} EXAMPLES

- Weakly interacting fermions: one-particle level spacing Δ, two-body interaction matrix element $J=U \sim \Delta / g$ with $g \gg 1$ (two-body random interaction model - TBRIM).
Quantum chaos border for dynamical thermalization:
$\delta E \sim T n_{\text {eff }} \sim T^{2} / \Delta>g^{2 / 3} \Delta \gg \Delta \gg \Delta_{n} \sim \Delta / \exp \left(n_{\text {eff }}\right)$
- Quantum computer with static imperfections:

QC Hamiltonian:
$H=\sum_{i} \Gamma_{i} \sigma_{i}^{z}+\sum_{i<j} J_{i j} \sigma_{i}^{x} \sigma_{j}^{x}$;
$\Gamma_{i}=\Delta_{0}+\delta_{i},-\delta<2 \delta_{i}<\delta$, middle band with $S_{z}=\sum_{n_{q}} \sigma_{z}=0-J<J_{i j}<J$;
Quantum chaos border for dynamical thermalization:
$\rightarrow J_{c} \approx 4 \delta / n_{q} \gg \Delta_{n} \sim \delta / 2^{n_{q}}$

- Above the border: Gibbs description of quantum ergodicity;

Wigner-Dyson level spacing statistics
S.Åberg PRL 64, 3119 (1990); DLS, O.Sushkov EPL 37, 121 (1997);
P.Jacquod, DLS PRL 79, 1837 (1997); B.Georgeot, DLS PRE 62, 3504 (2000)

Dyn-thermalization in many-body Q-systems

Example of dynamically thermalized eigenstate of quantum computer

Example: Quantum computer with $n_{q}=24$ qubits. One quantum eigenstate: Occupation numbers n_{i} vs. rescaled exitation energies $\epsilon_{i}=\delta_{i}$. Left: $J / J_{C} \approx 0.3, T=0.12 \delta, \delta E=0.64 \delta, S=1.84$. Right: $J / J_{C} \approx 2.4, T=0.19 \delta, \delta E=1.16 \delta, S=12.5$. Full curves: Fermi-Dirac thermal distribution with given temperature T. G.Benenti et al. EPJD 17, 265 (2001)

> QC Hamiltonian: $H=\sum_{i} \Gamma_{i} \sigma_{i}^{2}+\sum_{i<j} J_{j i} \sigma_{\sigma}^{x} \sigma_{j}^{x} ;$ $\Gamma_{i}=\Delta_{0}+\delta_{i},-\delta<2 \delta_{i}<\delta,-J<J_{i j}<J ; \rightarrow J_{c} \approx 4 \delta / n_{q}$
B.Georgeot, DLS PRE 62, 3504 (2000), DLS Physica Scripta T90, 112 (2001)

