Quantum chaos applications:
from simple models to
quantum computers and
Google matrix

L1: Simple models of classical and quantum chaos

L2: Anderson localization in presence of nonlinearity and interaction
L3: Quantum chaos in many-body systems and quantum computers
L4: Google matrix and directed networks
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Anderson localization: introduction & perspectives

1958 => from the talk of PW.Anderson at Newton Institute, July 21, 2008
see http://www.newton.ac.uk/programmes/MPA/seminars/072117001.html

“Well, In my country,” said alice, still panting a little, “you would
generally get to somehere else, if you ran very fast for a long time,
as we've been doing”. “A slow sort of country!”, said the queen.
“Now here, it takes all the running you can do, to stay in the same
place.”

i

i

Perspectives: a)localization in new type of systems; b)effects of interactions
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Chirikov standard map for soliton dynamics
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FIG. I. Two phase-space trajectories with parameters =25, number of periods m. Here B=10, k =2.5, T=1 and classical
k=0.5, and 7T =2 (classical K is 2), obtained by numerical in- K =5; the initial soliton position and velocity are xo=0.2 and
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Benvenuto et al. (1991)
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Nonlinearity and A son localization: estimates

i529 = Engon + B ¥n [2n + V (@ns1 + Yn—1) ; [-W/2 < En < W/2] (DANSE)

localization length ¢ ~ 96(V /W )? (1D); In£ ~ (V /W)? (2D) Amplitudes C in the linear
eigenbasis are described by the equation

i95m = enCim + B mymq Ummamoms Cm;y Gy Cing

the transition matrix elements are Umnm,m,ms = > Qam Qnm; Qiim, Qnmg ~ 1/£3¢/2.
There are about /*° random terms in the sum with U ~ £~%4/2 so that we have
idC /dt ~ SC>. We assume that the probability is distributed over An > (¢ states of the
lattice basis. Then from the normalization condition we have C, ~ 1/(An)*? and the
transition rate to new non-populated states in the basis m is I ~ 3%|C|® ~ 3%/(An)3.
Due to localization these transitions take place on a size ¢ and hence the diffusion rate
in the distance AR ~ (An)'/¢ of d— dimensional m— space is
d(AR)?/dt ~ £2T ~ 322 /(An)® ~ B%¢%/(AR)™.
At large time scales AR ~ R and we obtain

An ~ RY ~ (B)20/(3d+2)td/(3d+2). (AR)? o t¥; a = 2/(3d + 2)
Chaos criterion: S = dw/Aw ~ 3 > G ~ 1 here dw ~ Blyn|? ~ 3/An is nonlinear
frequency shift and Aw ~ 1/An is spacing between exites eigenmodes
DS (1993); Pikovsky, DS (2008) (d = 1); Garcia-Mata, DS (2009) (d > 1)
Mulansky, Pikovsky (2009) different nonlinearities
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Nonlinearity and Anderson localization (1D)
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ih2%0 = Enthn + B] ¢n P90 +V (¥n+1 + Pn_1) ; [-W/2 < En < W /2]

Pikovsky, DS (2008)
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Kicked nonlinear rotator (1D)
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Yn(t +1) = e—iTﬁz/Z—iQIdJn\ze—ik COSéQ/)n(t) (k=3,T=2,3=0,1)

DS (1993); Garcia-Mata, DS (2009)
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Kicked nonlinear rotator (1D)
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Nonlinearity and Anderson localization (2D)
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v

ih%e =

%0 = Entn + Bl ¥n 290 + V (¥ns1 + Y1)
Garcia-Mata, DS (2009)
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Nonlinearity and Anderson localization (2D)

W = 10; 8 = 0(left), 1(right);
t = 10* (bottom), 10° (middle),
projecton on x —axis (top);
256 x 256 lattice

[also: kicked nonlinear rotator model (1d)]

Garcia-Mata, DS (2009)
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Delocalization on disordered Stark ladder
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Static field f along Stark ladder (W = 4): statistical entanglement

Left: f = 0,0.25,0.5, « = 0.30,0.26,0.24, 8 = 1; 0 top to bottom; inset IPR at f = 0.5;
Right: probabability distribution at f = 0.5, t = 10, 10*, 10°, 108, 8 = 0; 1 (top/bottom)
Garcia-Mata, DS (EPJB 2009)
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Dynamical thermalization in DANSE (1D)

starting from Fermi-Pasta-Ulam problem (1955):
regular lattice, delocalized linear modes — disorder localized modes
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Energy E Lyapunov exponent
N=32,W=4,3=1,t= 107 + 105, initial state: linear eigenmode

Gibbs distribution with temperature T for localized linear modes, pm = |Cm|%:

entropy S = — > pm N pm, pm = Z 2 exp(—em/T), Z =3, exp(—em/T),
E=T20InZ/dT, S=E/T+InZ. (InZ) ~InN +Insinh(A/T) —In(A/T), A ~ 3

Mulansky, Ahnert, Pikovsky, DS (2009)
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Dynamical thermalization in DANSE (1D)

N =32, W =4,8=1,t= 105, initial state: linear eigenmode m’, averaged over 8 disoder realisations

Gibbs distribution: time, disorder averaged pm in mode m (y - axis) for initial
eigenmode m’ (x -axis); left: numerics, right: Gibbs theory
Mulansky et al. (2009)
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Dynamical thermalization in DANSE (1D)
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Fraction of thermalized states: N = 16 (circles), 32 (curve), 64(+) ; W = 4,t = 10°,
(diamonds N = 32,t = 107)

Mulansky et al. (2009)
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Possible experimental tests & applications

@ BEC in disordered potential (Aspect, Inguscio)
@ kicked rotator with BEC (Phillips)
@ nonlinear wave propagation in disordered media (Segev, Silberberg)

@ lasing in random media (Cao)

@ energy propagation in complex molecular chains
(proteins, Fermi-Pasta-Ulam problem)

@ NONLINEAR SPIN-GLASS ? Links to Frenkel-Kontorova model?

@ OTHER GROUPS:
S.Aubry et al. PRL 100, 084103 (2008)
A.Dhar et al. PRL 100, 134301 (2008)
S.Fishman et al. J. Stat. Phys. 131, 843 (2008) ...
S.Flach et al. PRL 102, 024101 (2009) ...
T.Kottos and B.Shapiro, PRE 83, 062103 (2011)
W.-M.Wang et al. arXiv:0805.4632[math.DS] (2008)
see also the participant list of the NLSE Workshop
at the Lewiner Institute, Technion, June 2008 (http://physics.technion.ac.il/ nlse/)
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Experiments on 2D disordered photonic lattices

Figure 1| Transverse localization scheme. a, A probe beam entering a
disordered lattice, which is periodic in the two transverse dimensions (x and
y) but invariant in the propagation direction (z). In the experiment described
here, we use a triangular (hexagonal) photonic lattice with a periodicity of
11.2 um and a refractive-index contrast of ~5.3 X 10~ %, The lattice is induced
optically, by transforming the interference pattern among three plane waves
into a local change in the refractive index, inside a photorefractive SBN:60
(Sty.6Bag 4Nb,Og) crystal. The input probe beam is of 514 nm wavelength and
10.5 um full-width at half-maximum (FWHM), and it is always launched at
the same location, while the disorder is varied in each realization of the
multiple experiments. b, Experimentally observed diffraction pattern after
L =10 mm propagation in the fully periodic hexagonal lattice. ¢, Typical
experimentally observed intensity distribution after L =10 mm propagation
in one particular realization of the 15% disorder in the lattice.

Segev et al. Nature 446, 52 (2007) (right: disorder growing,from.top to bottom)
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Experiments on 1D disordered photonic lattices
t.x 1‘ y /2D core

(o) ————————
(d)

FIG. 1 (color online). (a) Schematic view of the sample used in
the experiments. The red arrow indicates the input beam. (b)—
(d) Images of output light distribution, when the input beam
covers a few lattice sites: (b) in a periodic lattice, (c) in a
disordered lattice, when the input beam is coupled to a location
which exhibits a high degree of expansion, and (d) in the same

disordered lattice when the beam is coupled to a location in
which localization is clearly observed.

Silberberg et al. PRL 100, 013906 (2008)
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BEC Experiments in 1D incommensurate lattice
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FIG. 1 (color online). Time evolution of the width o for differ-
ent initial interaction energies: E;, = 0 (squares), E;, = 1.8
(triangles), and Ej, = 2.3J (circles). The continuous lines are
the fit with Eq. (1). The dashed lines show the fitted asymptotic
behavior, while the dash-dotted line shows the expected behavior
for normal diffusion. The lattice parameters are J/h = 180 Hz,
A/ = 4.9,
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FIG. 2 (color online). Diffusion exponent « vs the initial
interaction energy E;, in the experiment (triangles and squares)
and simulations (circles). The experimental data are for A/J =
5.3(4) and two different values of the tunneling: J/h = 180 Hz
(triangles) and J/h = 300 Hz (squares). The vertical bars are the
fitting error of Eq. (1) to the data, while the horizontal bars
indicate the statistical error.

39K BEC, 5 x 10* atoms, optical lattice V (x) = V; cos?(kix) + V2 cos?(kzx),

Ai = 27 /ki = 1064nm, 859nm

André-Aubry model (or related Harper model) => hopping J in 1st lattice and
potential/"disorder” A ~ V, of 2d lattice, metalic phase at J/A > 2

G.Modugno et al. PRL 106, 230403 (2011)
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Nonlinearity and localization: open problems

@ exponent a ~ 1/3 < 2/5, indications on its small decrease at very large
times
Flach et al., Mulansky et al. (2009-2011)

@ different (higher/lower) nonlinearity exponents | |* still give anomalous
spreading
Mulansky, Pikovsky (2009)

@ main part of measure is non-chaotic at small local 3
(zero Lyapunov exponent)
Pikovsky, Fishman (2011)

@ => Arnold diffusion scenario:
Arnold diffusion in systems with many degrees of freedom
Chirikov (1979); Chirikov, Vecheslavov (1997)
spreading over Arnold web of narrow chaotic separatrix layers
Mulansky et al. (2011)
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Fast Arnold diffusion and

spreading in nonlinear disorderd lattices

@ for the Chirikov standard map the width of separatrix layer drops
exponentially with perturbation: ws A exp(—7\/2), A ~ 1/vVK
Arnold diffusion along web of chaotic separatrix layers
Diffusion rate InD oc Inw2 o —\

(Chirikov (1979))

@ Chirikov-Vecheslavov (1997): ws ~ K25, D ~ K3/2w2 ~ K", 1 ~ 6.6!
multi-particle standard map: H = |p|?/2 — K ZiN;{l COS(Xi+1 — Xi)d1(t)
many degrees of freedom: 2 <L =N +1 <15

@ independent computations of weak chaos measure . oc ws oc K16
(10-% <K <0.01)

(Mulansky et al. (2011))

@ slow anomalous spreading:

H = i 1[P2/2 + mcdi /4 + 7 (Gir1 — A)®/6]; (0.5 < < 1.5, 7 ~ 1)
Results: o =< (Ak)? >~ t%, a ~ 0.55;

a=8/(9+2vp); vp=6.6=>a=0.36

(Mulansky et al. (2011))
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Fast Arnold diffusion
and spreading in nonlinear disorderd lattices

FIG. 1. Summary of numerical data for the model (2.1). Broken solid lines 101
connecting various symbols show computed values of w, as a function of

the adiabaticity parameter A= 1/\;‘? and the resonance dimension L=N in- > - 3 : 4 5 5 7 8
dicated by the numbers. Dotted lines represent the theory: (a) small-X limit, 10 10 10 10 10 10 10
one fitting parameter, Eq. (3.5); (by) large-\ limit for L=2, two fitting
parameters, Eq. (4.9); (c) intermediate asymptotics, three fitting parameters,
Eq. (5.8).

PR s
10 10° 10° 10° 10° 10°% 109

time ¢

@ Left: Chirikov-Vecheslavov (1997); Right: Mulansky et al. (2011)

@ DANSE: Hg is linear that makes situation more complicated, but most
probably there is the same scenario as above
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Two Interacting Particles (TIP) effect

Anderson model in d-space + onsite Hubbard interaction U, V ~ Eg is one-particle
hopping; exited states ¢m(n) ~ exp(—|n —m|/£)/¢%/2; ¢ > 1.
Equation in the basis of noninteracting eigenstates xm;m,:

iaXmlmz/at = €mymy Xmym, A melmlz Umlmzm1m§Xm1m§
Umlmzmﬁmé =U Zn l/)ml(n)wmz(n)l/):q(”)w;é(”) ~ Us ~ U\/M/‘g2d ~ U/Zad/2

Sum runs over M ~ ¢ coupled states; interaction induced matrix elements Us, density
of coupled states is p; ~ ¢4 /V, TIP transition rate I's ~ Us?pz ~ U2/(V£%).

Diffusion rate: Ds ~ 2[5 ~ U?/(V(4~2)
An(t*) ~ 4(Dst*)42 ~ 1/Aw ~ Vt*
AN(t*) /02 ~ L)€ ~U%0/V? > 1 (d =1)
Enhancement factor: x = [sp; ~ £4(U/V)? > 1

TIP localization: £/¢ ~ (U/V)?¢ (1d); In(€2/4) ~ (U/V)%¢? (2d);
delocalization for x ~ (U/V)?¢3 > 1 (3d)

DS (1994),(1996); Y.Imry (1995)
two attractive particles Dorokhov (1990)
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TIP effect: numerical results 1d
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Left: TIP 1d U/V = 1(top), O(bottom); W /V = 1.4

Right: two kicked rotator with Hubbard coupling U = 2(top); O(bottom)
k =5.7,K =5.

DS (1994)
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TIP effect: numerical results 1d
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Left: bag model (DS (1994)); Right: TIP 1d by Frahm (1999)
Other confirmations: Pichard et al. (1995); von Oppen et al. (1996)
Continued Confusion: R.Romer, M.Schreiber PRL (1997);

S.Flach et al. Pis'ma ZhETF (2011)
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TIP effect: numerical results 3d,4d
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Left: second moment o (t) as a function on number of kicks in 2-frequency

modulated kicked rotators, k = 0.9, ¢ = 0.75, 2-frequencies (3d), U = 2 (top)
and U = 0 (bottom); Right: probability distributions in n. = (n; £ ny)/v/2 at

U=2,0, ¢;/¢ ~ 25. Similar data for 3-frequencies (4d)

aYa
(Quantware group, CNRS, Toulouse)
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TIP effect: numerical results 2d

Fig. 1. Probability distributions f and fq for TIP in 2d disor-
dered lattice of size L = 40, and interaction of radius R = 12
and width AR = 1. Left column, one-particle probability f for
W = 8V: (a) ground state at U = 0; (b) ground state with
binding energy AE = —1.05V at U = —2V; (c) coupled state
with AE = —0.19V at U = —2V. Right column: (d) f for
coupled state, compare to case (¢), at W = 12V and U = —2V
with AE ~ —0.19V; (e) inter-particle distance probability fa
related to case (b); (f) fa related to case (c).

probability f(n;) = ZF(nl,ng) and the probability
n2

of inter-particle distance fq(r) = ZF(I‘ +1n2,n2) with

nz
r = n; — np. The binding energy of an eigenstate in (2) is
AFE = E — 2Ep ~ FE since Ep = 0. For the ground state
with energy F, the coupling energy is A = 2Ep — E,,. The

TIP in 2d with interation U inside a ring of radius R = 12 and width AR =1
(see also middle/left figs of page 1 corresponding to bottom panels here)
effective 3d Anderson model (Lages, DS (2000))

Coulomb interactions case has 3d Anderson transition for-TIP (DS (2000))

(Quantware group, CNRS, Toulouse)
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r the Fermi level
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FIG. 1. Energy dependence of the rescaled Breit-Wigner
width I'/Ty in 2D. Direct diagonalization (DD) data at
W/V =2: U/V = 0.6 with L = 8(0), L = 15 (A), L = 20
(O); U/V =15and L =20 (). Fermi golden mle (FGR)
data; W/V =2 with L =20 (+), L =25 (X): W/V = 1
with L = 15 (+). The straight line I'(e)/Ty = Ce/V with
C = 0.52 shows the Imry estimate. Upper inset: the same on
a log-log scale with FGR data at higher disorders [W/V = 6
(A) and W/V = 10 (W) (L = 30)]. Lower inset: py vs E for
L =20W/2=V =1,U=06,€ =04 fitted by pgy with
I" = 0181y (solid curve).

Small e energy excitations above the
Fermi level:

a)box size L < ¢

P2 ~ LZdE/V, I'=Crloe/V,

Mo = U?/(VLY), C = const

b)box size L ~ ¢

U2 ~ A2(U/V)2(1 4+ €/Ec)8/272/g?,
with g = Ec/A > 1 and for
e>E.~V/L2>A~V/LY

k= Tpz ~ (U/V)2(e/ D)3/
forL ~ ¢, d =2 we have k
independent of ¢ for e ~ A.
Problems:

there is no enhancement at Er,
k~1

Jacquod, DS PRL (1997)

Here Thouless energy is Ec = h/tqif ~ Lz/hD;

A ~ V /LY, conductance g = E¢/A

(Quantware group, CNRS, Toulouse)
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Metal-insulator transition in 2d ?

o Demonstrating scaling with
e temperature in the temperature
) interval 0.3 to 1K, the linear
., resistivity is shown as a function of
N’}_* |6n| /TP for b = 1/zv = 0.83; electron
00} «,\ 1 densities are in the range
7.81 —10.78 x 10%%m~?;
on = (Ns — N¢)/Nc.

£V
‘v

p (hie))

10" 0" 10
18,/

Kravchenko et al. (1996)
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Slow Metal (2D)

8 1z
UKy
FIG. 2 (color online). Resistivity as a function of inverse
temperature 1/7 at B=0T (symbols). At all densities, the
strongly insulating T dependence at higher temperatures is
lollowed by a decrease in resistance at low T. Device dimensions
are WXL =8 um X 05 gm, spacer § =40 nm. Electron
densities are indicated by arrows in the inset to (a). Solid lines
represent a fit of Eq. (1) to the data. Inset to (a): Resistivity as a
function of electron density at 7 = 60 mK. 500 mK. 4 K. Inset
to (d): p as function of 1 /7 at the same density as (d) but at
B, =15T

TIP diffusion

D ~Tsl2~U?/Vat(Ul/V)?>1
vs. usual diffusion Dg ~ Vg ¢ ~ V
Thus it is possible to have diffusion
with conductance g and resistivity
per square po (in natural units):

g ~1/po~D/Do ~ (U/V)? < 1
With up to (Ul/V)? ~ 1 and
g~1/P<1

Problems: finite particle density,
small density of states near the
ground state

Experiment suggestion: to measure
a charge of quasi-particles from
noise fluctuations

M.Baenninger, A.Ghosh, M.Pepper, H.E.Beere, |.Farrer, D.A.Ritchie ’
PRL 100, 016805 (2008) vs. S.Kravchenko et al. RMP 73,251 (2001)
(Quantware group, CNRS, Toulouse) XXVII Heidelberg GPDays, Oct 5, 2011 28140



Many electrons near the Fermi level

(Coulomb interactions, no spin)

0.0 . T
P
=
S
& .
&0 LN
< RS
10 | . i
.
e
.
e
.
—20 ! TP
0.0 05 1.0 15
log N,

FIG. 4. Dependence of €, /B on the number of particles N,,
obtained from Fig. 2: W/V=10 with 1;[57]] =0.4 (full diamond)
and W/V=T7 with »(E,)=02 (@), where e,=F, /N,. The
straight line shows the slope when E,=const. The inset gives the

dependence of maximal 5 on r, for W/V=T7 and N,=6: U/V

=2, 8=L1=28 (full diamond), and L=14, 0.25<=U/V=2 (Q).

Level-spacing statistics P(s):

n = 1 Poisson distribution,

n = 0 Wigner-Dyson distribution

€, - exitation energy per particle

at a given n = const (B = 4V)

rs = U/(2V/7v), v = Np/L2 ~ 1/32
usually U = 2V, rg = 3.2,
2<Np<20,8<L<25

Result: chaotic, ergodic states at
temperature going to zero

Problems: transport properties ?

DS(2000); Song, DS (2000)

(Quantware group, CNRS, Toulouse)
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Cooper problem in the vicinity
of the Anderson transition

10

Log(a/V)
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Top (left): 3d, W /W, = 0.5, W¢/V = 16.5,

U/V = —4 (left/middle); U/V = 0 (right);
left/right: particle density projected on (x,y)
plane; middle: interparticle distance probability
Top (right): large coupling gap A, not reproduced
by mean field (dashed curve L = 12); U/V = —4,
L = 10,12, 14 (symbols)

Left: Diagram of bi-particle localized (BLS) phase
Result: localized pairs inside noninteracting
metallic phase with g > 1; mean field does not
give this BLS phase

[3ges, DS PRE62, 8665 (2000)
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3d Hubbard model of spin-1/2 fermions
(projector quantum Monte Carlo)

pair, 8p,, ., projected on the (x,y) plane fora 6X6X6 lattice for the
same single disorder re: on, with W/t=2 (left) and W/t=T
(right), N'=108. Top: exact computation for £=T0:55 (left

right). Middle: PQMC calculation for U/t=—14
right). Bottom: BdG mean-field calculation for U/t=—14, &
=132:25 (left; right). All quantities presented in all figures are in
dimensionless units (see text).

0 10 20 30
Wit

FIG. 2. Inverse participation ratio (&) averaged over disorder
realizations, as a function of disorder strength I for a 6 X6 X6
lattice, at U=0 (open circles) and U/t=—4 (solid circles). Dotted
lines show linear fits to the data, the dashed line represents ¢=1
(see text), and error bars indicate statistical errors.

Srinivasan, Benenti, DS (2002) (up to N = 110 fermions; t = V)
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XXVII Heidelberg GPDays, Oct 5, 2011 31/40



Superconductor-Insulator Transition: experiment
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Fig.1. Magnetoresistance of the
film in state 1 (a) and in state
2 (b). The critical Re and Be
values at T = 0 are indicated.
Also shown is the position of metal-
insulator transition, Bj_ as, deter-
mined from Fig.2. The tempera-
ture depend of the i

are analyzed at fields marked by
vertical bars

Fig.4. Schematic phase diagram
of the observed transitions in the
(n,B) and (B,ng) planes. The
evolution of states a, 8, v with
magnetic field is shown by dashed
lines. In shaded area the value ng
is not defined

n B
V.FE.Gantmakher et al. Pis’ma ZhETF 68, 337 (1998)
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Superinsulator in a static electric field
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FIG. 4 (color). Two-dimensional map of the dI/dV values in
the B — V. plane. For the sample of Fig. 2 (Ja5), we have
measured dI/dV traces as a function of V. at B intervals of
02 Tand at T = 0.01 K. The color scale legend on the right- Voltage (V)
hand side shows the various colors used to represent the values of Figure 3| ic-field-tuned ition to i ing state. a, The

d[/dV The horizontal dashed line denotes B, ( = 0.4 T) of this two-dimensional colour map of the current values in the B-V plane. The
ple‘ = e ) colour scale on the right-hand side represents current. The black domain in
sam| 3

the map corresponds to the superinsulating state. The border between the
Left: Shahar et al. PRL 94, 017003 (2005).
Right: Baturina et al. Nature 452, 613 (2008).
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Superinsulator as BLS phase

Delocalization of two interacting
particles with attractive Hubbard
interaction U = —2V by a static
electric force F. The generalized
Cooper problem is considered on 2D
lattice of size L x L =40 x 40 at
disorder strength W = 5V, a static
field F is directed along y —axis.
Probability is shown for a lowest
energy eigenstate with a maximum
probability f(y) = >, f(x,y) at

y = L/2. Left panels show
one-particle probability f(x,y) and
right panels show interparticle
distance probability fq(X,y). The static
electric force, directed along y —axis,
is F =0(a,b), F =0.003V(c,d),

F =0.016V (e,f), F = 0.052V (g, h).
(Lages, DS (2011))
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Superinsulator as BLS phase
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field breaking of BLS pairs: Fc ~ A/¢, V. = FcL atL > ¢ (Lages, DS (2011))
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Superinsulator as BLS phase
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Left: Fc vsLatL > ¢ ~ 0.5um (Kowal, Ovadyahu Physica C 468, 322 (2011))
Right: phase diagram BLS-TIP-SIT (Lages, DS (2011)
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