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Quantum chaos in many-body systems

Wigner 1955-57 => Random Matrix Theory
to describe "the properties of the wave functions of quantum mechanical
systems which are assumed to be so complicated that statistical
considerations can be applied to them”
Wigner surmise PW (s) = (πs/2) exp(−πs2/4)
vs. Poisson distribution PP(s) = exp(−s)

Onset of quantum chaos in systems with two-body interactions:
spacing between adjacent energy levels drops exponentially
with number of particles n: ∆n ∝ exp(−n) .
Interaction induced coupling, two-body matrix element Us.

Spacing between directly coupled states: ∆c ≫ ∆n.

Åberg criterion for onset of quantum chaos:
Us ≈ ∆c ≫ ∆n

Åberg (1990), (1992); DS, Sushkov (1997); Jacquod, DS (1997)
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Three interacting particles in a box
N one-particle levels with average spacing ∆ ∼ V/N
(e.g. 2d Anderson model of size L ≪ ℓ)

Interaction coupling matrix element U2 ∼ Us

Density of two-particle states
ρ2 ≈ 1/∆2 ∼ N2/V ∼ N/∆
Density of two-particle states
ρ3 ≈ 1/∆3 ∼ N3/V ∼ ∆/∆2

2

The matrix element between initial three-body state |123 > and final state
|1′2′3′ > is given by diagram presented in Fig. with intermediate state |1′2̄3 >

Us3 =
∑

2̄
<12|U12|1

′2̄><2̄3|U23|2
′3′>

(E1+E2+E3−E1′−E2̄−E3)
∼ Us

2

∆ ;

the summation is carried out only over single particle states 2̄ and hence the
minimal detuning in the dominator is about ∆. Mixing of 3-particle levels takes
place when Us3 ∼ Us

2/∆ ∼ ∆3 ∼ ∆2
2/∆. Hence the transition from Poisson

to Wigner-Dyson statistics for three interacting particles takes place at

Us ∼ ∆2 ≫ ∆3

DS, Sushkov (1997)
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Two-body random interaction model (TBRIM)
random two-body matrix elements ±U in a system of m one-particle orbitals
of spacing ∆, with n fermions (French, Wong, Phys. Lett. B 33, 447 (1970);
35, 5 (1971); Bohigas, Flores Phys. Lett. B 34, 261 (1971); 35, 383 (1971)
Flambaum, Gribakin, Izrailev, PRE 53, 5729 (1996))
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Transition from Poisson to Wigner-Dyson
statistics in the TBRIM for m = 12, n = 6 :
U/∆ = 0.01 and η = 0.93 (+); U/∆ = 0.055
and η = 0.3 (•); U/∆ = 0.13 and η = 0.063
(x). Full lines show the Poisson and the
Wigner-Dyson distributions. Insert shows
P(s) at fixed η = 0.3 for half-filling
ν = n/m = 0.5 and n = 4,5,6,7.

The total number of multiparticle states is N = m!/(n!(m − n)!), a multiparticle
state is coupled with K = 1 + n(m − n) + n(n − 1)(m − n)(m − n − 1)/4 states
in band B = (2m − 4)∆; [η =

∫ s0

0 (P(s) − PW (s))ds/
∫ s0

0 (PP(s) − PWD(s))ds,
intersection point s0 = 0.4729...; η = 1 for P(s) = PP(s), 0 for P(s) = PW (s)]
Jacquod, DS (1997)
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Quantum chaos in TBRIM
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1/40 ≤ n/m ≤ 1/2, C = 0.58

U > Uc = CB/K ≈ 2C/ρ2n2 => Quantum Chaos border

Jacquod, DS (1997)
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Dynamical thermalization in finite Fermi systems
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exitation energy above ground state
δE ≈ T δn with temperature T ; density
of effectively coupled TIP states
ρ2ef ∼ ǫ/∆2, number of excited
electrons δn ∼ Tn/ǫF ∼ T/∆ with
ρ2ef ∼ T/∆2

n = 6, U/∆ = 0.15;
inset: η = 0.3, line is theory at
C = 1.08

U > Uc ≈ C/ρ2n2 ≈ C/(ρ2ef δn)2 => Tc = C∆(∆/U)1/3

δE > δEch ≈ T δn ≈ C∆(δ/U)2/3 ≈ g2/3∆ => thermalization border
(in metals U ≈ ∆/g, g ≫ 1 conductance)

Åberg (1990); Jacquod, DS (1997)
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Breit-Wigner width and participation ratio
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n = 3,4; 30 ≤ m ≤ 130

Breit-Wigner distribution
ρW (E − En) =

∑

λ |ψλ(n)|2δ(E − Eλ) = Γ/[2π((E − En)
2 + Γ2/4)]

Fermi golden rule: Γ = 2π < U2 > ρc = 2πU2ρc/3

number of populated states IPR: ξ ≈ Γρn ≈ 2U2ρcρn

Georgeot, DS (1997)
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Quantum compacton vacuum

Quantum compacton chain:
Ĥ =

∑N
l=1[p̂

2
l /2 + (x̂l − x̂l−1)

4/4] Classical system: Newton cradle => chaotic
at arbitrary small energy ( Ahnert, Pikovsky (2009))

Quantum system: phonon type exitations above ground state; sound velocity
ω = cq; c ∼ α2/3

~
2/3 (Zhirov, Pikovsky, DS (2011))
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Quantum chaos & quantum computers

Quantum computer hardware: static
properties, imperfections effects

Main quantum alorithms: fast Fourier
transform, Shor algorithm, Grover algorithm

Quantum algorithms of simple
classical/quantum maps: tent map, Arnold cat
map, sawtooth map, Chirikov standard map
(polynomial number of gates)

Effects of imperfections and errors, fidelity
decay: tent map, sawtooth map, Grover, Shor
algorithms

Experiment of Cory group at MIT: dynamical
localization in the quantum sawtooth map

Arnold cat map on QC with 20 qubits
(128 × 128), time inversion after 10 and 200
iterations =>

Steane (1998); Nielson, Chuang (2000)
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Quantum hardware melting
induced by quantum chaos

The quantum computer hardware is modeled as a (one)two-dimensional
lattice of qubits (spin halves) with static fluctuations/imperfections in the
individual qubit energies and residual short-range inter-qubit couplings. The
model is described by the many-body Hamiltonian

Hs =
∑

i(∆0 + δi)σ
z
i +

∑

i<j Jijσ
x
i σ

x
j ,

where the σi are the Pauli matrices for the qubit i , and ∆0 is the average level
spacing for one qubit. The second sum runs over nearest-neighbor qubit
pairs, and δi , Jij are randomly and uniformly distributed in the intervals
[−δ/2, δ/2] and [−J, J], respectively.

Quantum chaos border for quantum hardware:

J > Jc ≈ ∆c ≈ 3δ/nq ≫ ∆n ∼ δ2−nq

Emergency rate of quantum chaos:

Γ ∼ J2/∆c .

(B.Georgeot, DS (2000))
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Quantum hardware melting
induced by quantum chaos

Quantum computer melting induced by inter-
qubit couplings. Color represents the level of
quantum eigenstate entropy Sq (red for
maximum Sq ≈ 11, blue for minimum Sq = 0).
Horizontal axis is the energy of the computer
eigenstates counted from the ground state to
the maximal energy (≈ 2nq∆0). Vertical axis
gives the value of J/∆0 (from 0 to 0.5). Here
nq = 12, Jc/∆0 = 0.273, and one random
realization of couplings is chosen.

What are effects of quantum many-body chaos
on the accuracy of quantum computations?
Static imperfections vs. random errors
in quantum gates of a quantum algorithm.

(B.Georgeot, DS (2000))
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Quantum hardware melting in time
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Left: density of states J = 0, δ = 0.2δ,n = 16
Right: time explosion of quantum chaos in the quantum register: color
represents the value of the projection probability of an initial state on the
quantum register states ordered in energy (150 states in x-axis); time is in
y-axis from 0 ≤ tδ ≤ 2; the initial state is the superposition of two quantum
register states; n = 16, J/δ = 0.4 (J/δ > Jc/δ = 0.22): t > 1/Γ
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Dynamical thermalization of QC

Example: Quantum computer with nq = 16 qubits, central band. One quantum
eigenstate: Occupation numbers ni vs. rescaled exitation energies ǫi = δi .
Left: 5th state, J/Jc ≈ 0.15, TFD = 0.15δ, δE = 0.97δ, entropy S = 0.49.
Right: 100th state, J/Jc ≈ 1.5, TFD = 0.20δ, δE = 1.19δ, S = 8.41.
Full curves: Fermi-Dirac thermal distribution with given temperature T .

G.Benenti et al. (2001)
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Dynamical thermalization of QC

−0.4 −0.3 −0.2 −0.1 0.0
E/B

0

2

4

6

8

10

T
/δ

ψk register state; φm eigenstate;
Wkm = | < ψk |φm > |2, entropy
Sq = −∑

k Wkm log2 Wkm, central band,
occupation number
ni(m) =

∑NB
k=1 Wkm〈ψk |n̂i |ψk 〉, with

〈ψk |n̂i |ψk 〉 = 1; 0 for spin up/down in state i ;
∑n

i=1 ni(m) = [n/2],
∑n

i=1 ni(m)δi = E
′

m
(Left: n = 16, J = 0.3δ, B ≈ nδ/2 is band
width, 2 disorder realisations)

Fermi-Dirac distribution nFD
i = 1/[exp(β(δi + δ/2 − µ)) + 1], β = 1/TFD;

∑

i nFD
i = [n/2] and TFD is the only fitting parameter

E(Tcan) = [
∑

m Em exp(−Em/Tcan)]/
∑

m exp(−Em/Tcan),
1/Tth = dSth/dE = d ln ρ/dE , density of states ρ ≈ (1/

√
2πσ) exp(−E2/σ2),

Tth ∼ −σ2/E (previous right fig: TFD = 0.20δ, Tcan = 0.19δ)

G.Benenti et al. (2001)
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Elementary quantum gates

any unitary matrix of size N = 2n can be represented as a sequence of
one-qubit and two-qubit gates (universal quantum gates)

Examples: quantum Fourier transform QFT (Ng = n(n + 1)/2); Shor algorithm
for number factorization (Ng = O(n3) vs. classical Ng = O(exp(n1/3)); Grover

search algorithm (Ng = O(
√

N); quantum chaos evolution Ng = O(n2) with
measurement information extraction problem
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Elementary quantum gates
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Elementary quantum gates
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Quantum computing with imperfections
Accuracy measure of QC is fidelity: f (t) = | < ψ(t)|ψǫ(t) > |2

Quantum algorithm: |ψ(t) >= U t |ψ(0) >, elementary gates U = UNg · . . . · U1

Errors: Uj → Uj eiδH , δH ∼ ǫ

Decoherence due to residual couplings of quantum computer to external
bath: δH random and different at each j and t ,

e.g.: random phase fluctuations: δφ ∈ [−ǫ, ǫ] in phase-shift gates.

Static imperfections in the quantum computer itself:

δH (random but) constant at each j and t ,

e.g.: δH =
∑nq−1

j=0 δj σ
(z)
j + 2

∑nq−2
j=0 Jj σ

(x)
j σ

(x)
j+1 , Jj , δj ∈ [−ǫ, ǫ]

Non-unitary errors in quantum computation:

eiδH is non-unitary (δH 6= δH†),
density matrix and quantum trajectories approach

Georgeot, DS (2001), Benenti et al. (2001), ..., Frahm et al. (2004),
J.W.Lee, DS (2005)
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Quantum algorithms of quantum maps

Since the Floquet operator is a composition of operators which are diagonal in
the position and momentum space, it is easy implemented using the QFT F
moving from one representation to another:

U = F+ × e−iαp2 × Fe−iβxp

This allows to simulate one time step evolution of the system on a quantum
computer in a polynomial time. The potential can be expanded in powrs and
using repsentation x =

∑n−1
j=0 aj2j we have

e−i2πγxp
= Πj1...jpe

−i2πaj1 · · · ajp2
j1+...+jp
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Quantum algorithm for Arnold cat map

ȳ = y + x(mod1)
x̄ = x + ȳ(mod1) time inversion at t = tr
Discretization on a grid N × N with N = 2nq where nq is number of qubits for
register |xi > or |yj >: xi = i/N, yj = j/N,0 ≤ i , j ≤ N − 1 (i , j are integers)
Initial classical distribution in the phase space (x , y) is coded in the initial
wave function:
ψ(t = 0) =

∑

i,j aij |xi > |yj > |0 >
with ai,j = 0 or 1/

√
Nd where Nd = O(N2) is

the number of classical orbits; workspace register |0 > has nq − 1 qubits
Quantum algorithm is based on modular additions
(see e.g. V.Vegral, A.Barenco, A.E.Ekert Phys. Rev. A 54, 147 (1996)),
it uses 8nq − 10 C-NOT gates and 8nq − 12 C-C-NOT (Toffoli) gates.
In total one map iteration requires: O(nq) quantum gates versus O(22nq )
classical operations. The Hilbert space has NH = 23nq−1 states.
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Time reversal of Arnold cat map on QC

Dynamics of cat simulated on a classical (left) and
quantum computer (right), on a 128 × 128 lattice.
1st row: t = 0; 2d row: time inversion at tr = 10; 3d
row: t2r = 20; 4th row: t2r = 400, with inversion at
tr = 200. Left: classical error of one cell size
(ǫ = 1/128) at t = tr only; right: quantum errors
ǫ = 0.01; color from blue to red is proportional to
probability |aij |2; nq = 7. In total 20 qubits.
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Time reversal of Arnold cat map on QC
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Left: Quantum fidelity f of Arnold-Schrödinger cat as a function of time t for
quantum errors ǫ = 0.003,0.01,0.03 (top to bottom). Initial state: cat and line
x = 1/2. Full curve shows fidelity drop for minimal classical error done at
t = 200. Fidelity time scale tf ≈ 0.6/(ǫ2nq).
Rigth: Classical fidelity fc(2te) vs. time te for minimal classical error
(ǫ = 1/128) is made (full); dashed curve shows fc obtained on a quantum
computer with amplitude imperfections ǫ = 0.01. Here tf ≈ 1.4 ln(1/ǫ).
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Time reversal of Arnold cat map on QC

0 20 40 60
0

1

2

3

<y >

t

2

Map: ȳ = y + x(modL); x̄ = x + ȳ(mod1).
Diffusive growth of < y2 > for the map at
L = 8, simulated on a classical (Pentium III)
and quantum (“Quantium I”) computers. At
t = tr = 35 one inverts all velocities. For
Pentium III inversion is done with precision
ǫ = 10−4 and ǫ = 10−8; 106 orbits are
simulated, initially distributed inside the
demon image. For Quantium I, the
computation is done with (nq = 26
qubits)(blue line); each quantum gate
operates with random noise rotation of
amplitude ǫ = 0.01. The black straight line
shows the theoretical macroscopic diffusion
with D = 1/12.

A quantum computer with 125 qubits can perform Boltzmann’s demand for
Avogadro’s number of classical chaotic orbits.
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Quantum sawtooth map on QC

Map: n = n + k(θ − π), θ = θ + T n,mod(2π); K = kT = −0.1, T = 2π/2nq ,
number of gates ng = 3n2

q + nq , with swaps ng = O(n5/2
q ) local gates;

t ≈ 1000, J = 0; color shows Husimi function density
Top row: ǫ = 0; bottom row: ǫ ≈ 0.5/n3

q ; from left to right nq = 6; 9; 16, right
panels: classical map exact (top) and with round-off error 10−3.
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Hypersensitivity of QC eigenstates

0.000 0.001 0.002ε
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E

Variation of quasienergy (red curve)
and corresponding eigenstate (shown
by Husimi function) of unitary evolution
operator of quantum sawtooth map
with static imperfections strength ǫ.
Here ǫ = 0, 4 × 10−4, 10−3 (right top,
left/right bottom); and
K = kT =

√
2,T = 2π/N, N =

2nq , J = 0,nq = 9. Mixing of levels
takes place at critical interaction
strength: ǫχ ∼ 1/

√
N ∼ 2−nq/2

Quantum sawtooth map: ψ = e−iT n̂2/4eik(θ̂−π)2/2e−iT n̂2/4ψ = e−iEψ
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Quantum tent map

H(t) = Tp2/2 + V (θ)
∑
δ(t − n)

2π2π

θ θ

V (θ)V
′(θ) Classical map:

pn+1 = pn − V ′(θn)
θn+1 = θn + T pn+1

Quantum map: p = −i∂/∂θ
|ψ(t + 1) >= U|ψ(t) >
U = e−Tp2/2 e−iV (θ)

T = 1,K = k = 0.53; 4/3; 1.7
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Quantum algorithm for quantum tent map
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Quantum algorithm for quantum tent map

Husimi function: t = 5,15,5625(ǫ = 0)
and t = 5625(ǫ = 7 · 10−7); K = 1.7,
~eff = T = 2π/N, N = 2nq , nq = 16.

Poincaré section

Fidelity decay with errors
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(static x = t/tc (a,b,c); random
x = t/tr (d))
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Random matrix theory for fidelity decay

Fidelity with average initial state: f (t) =
∣
∣
∣

1
N Tr

(

U−t
(
U eiδHeff

)t
)∣
∣
∣

2

Regime (1 − f ) ≪ 1 : f (t) ≈ 1 − t
tc
− 2

tc

∑t−1
τ=1(t − τ) C(τ)

with: 1/tc = Tr
(

δHeff
2
)

/N, C(τ) = tc
N Tr

(

U−τ δHeff Uτ

︸ ︷︷ ︸

δHeff (τ)

δHeff

)

U ∈ COE (CUE) ⇒ Scaling law:
−〈ln f (t)〉U ≈ N

tc
χ

(
t
N

)
, χ(s) = s + 2

β s2 − 2
∫ s

0 d τ̃ (s − τ̃) b2(τ̃) .

with the “two-level form factor”: b2(τ̃).
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Scaling analysis of fidelity decay
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Cory group NMR QC of quantum sawtooth map
<

(∆
 J

)2 >

0

1

2

3

4

5

6

no
 e

rro
rs

co
he

re
nt

 e
rro

rs
de

co
h 

+ 
co

h
in

co
h 

+ 
co

h
de

c 
+ 

in
c 

+ 
co

h
ex

pe
rim

en
t

iteration
number

0
1
2
3

4

The second moment of the probability
distribution determined from numerical
simulations of the experiment
including the error models discussed
in the paper, compared to the ideal
data and the experimental data. This
plot demonstrates the relative
importance of the individual noise
mechanisms as they contribute to the
experimentally observed
delocalization process. As more errors
are included in numerical simulations,
the system shows stronger
delocalization and more closely
emulates the experimental data.

* 3 qubit QIP based on liquid state NMR: Cory et al. PRA 74, 062317 (2006)
* Map parameters are k = 0.27,K = kT = 1.5, (T = 5.55),
diffusion rate D = π2k2/3 = 0.24: regime of perturbative localization.
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Synchronization of superconducting qubits

(1963) Jaynes-Cummings model
(Proc. IEEE)

Hamiltonian:
qubit coupled to resonator
Ĥ = ~ω0n̂ − ~Ωσx/2
+g~ω0(â + â†)σz + f cosωt

(
â + â†

)

Master equation for the density matrix:
˙̂ρ = −i[Ĥ, ρ̂]/~
+λ(âρ̂â† − â†âρ̂/2 − ρ̂â†â/2)

Quality factor: Q = ω0/λ ∼ 100
Zhirov, DS, PRL 100, 014101 (2008)

Single artificial-atom lasing
O. Astafiev et al. Nature 449, 588
(2007)
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Synchronization and bistability of qubit

Fig.1: Bistability of qubit coupled to a driven
oscillator with jumps between two
metastable states. Top panel shows average
oscillator level number 〈n〉 as a function of
time t at stroboscopic integer values ωt/2π;
middle panel shows the qubit polarization
vector components ξx (blue) and ξz (green)
at the same moments of time; the bottom
panel shows the degree of qubit polarization
ξ. Here the system parameters are
λ/ω0 = 0.02, ω/ω0 = 1.01, Ω/ω0 = 1.2,
f = ~λ

√
np, np = 20 and g = 0.04.
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Dynamics and bistability of qubit

Fig.2: Top panels: the Poincaré section
taken at integer values of ωt/2π for oscillator
with x = 〈(â + â†)/

√
2〉, p = 〈(â − â†)/

√
2i〉

(left) and for qubit polarization with
polarization angles (θ, φ) defined in text
(right). Middle panels: same quantities
shown at irrational moments of ωt/2π.
Bottom panels: qubit phase φ vs. oscillator
phase ϕ (p/x = − tan ϕ) at time moments as
in middle panels for g = 0.04 (left) and
g = 0.004 (right). Other parameters and the
time interval are as in Fig.1. The color of
points is blue for ξx > 0 and red for ξx < 0.
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Macroscopic detector of qubit state

Fig.3: Top panel: dependence of average
qubit polarization components ξx and ξz (full
and dashed curves) on g, averaging is done
over stroboscopic times (see Fig.1) in the
interval 100 ≤ ωt/2π ≤ 2 × 104; color is
fixed as in Fig.2. Bottom panel: dependence
of average level of oscillator in two
metastable states on coupling g, color is
fixed by ξx sign on right panel (red for large
n+ and blue for small n−); average is done
over the quantum state and stroboscopic
times as in the top panel; dashed curves
show theory dependence (see text). Two QT
are used with initial value ξx = ±1. All
parameters are as in Fig.1 except g.
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Macroscopic detector of qubit state

Fig.4: Dependence of average level n± of
oscillator in two metastable states on the
driving frequency ω (average and color
choice are the same as in right panel of
Fig.3); coupling is g = 0.04 and g = 0.08
(dashed and full curves). Inset shows the
variation of position of maximum at ω = ω±

with coupling strength g, ∆ω± = ω± − ω0.
Other parameters are as in Fig.1.

Theoretical estimates: the shift ∆ω± explains two states n± of driven oscillator well
described by n± = npλ

2/(4(ω − ω0 − ∆ω±)2 + λ2)] (see dashed curves in Fig.3
bottom traced with numerical values of ∆ω± from Fig.4 inset). To estimate ∆ω± we
note that the frequency of effective Rabi oscillations between quasi-degenerate levels
is ΩR ≈ gω0

p

n± + 1 (JC-model) that gives ∆ω± ≈ dΩR/dn ≈ ±gω0/2
p

n± + 1 in a
good agreement with data.
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Macroscopic quantum tunneling
between qubit states

Fig.5: Dependence of number
of transitions Nf between
metastable states on rescaled
qubit frequency Ω/ω0 for
parameters of Fig.1; Nf are
computed along 2 QT of
length 105 driving periods.
Inset shows life time
dependence on Ω/ω0 for two
metastable states (τ+ for red,
τ− for blue, τ± are given in
number of driving periods;
color choice is as in Figs.2,3)
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Radiation spectrum of qubit
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Fig.6: Spectral density S(ν) of qubit radiation ξz(t) as function of driving power np in
presence of phase noise in φ with diffusion rate η = 0.004ω0. Left: Ω/ω0 = 1.2; right:
Ω/ω0 = 1. Other parameters are as in Fig.1. Color shows S(ν) in logarithmic scale
(white/black for maximal/zero), ν is given in units of ω0.
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