Synchronization theory of microwave induced zero-resistance states

Alexei Chepelianskii (Cambridge) and Dima Shepelyansky (CNRS, Toulouse) and Oleg Zhirov (BINP, Novosibirsk)

arxiv:0905.0593 (2009); arXiv:1302.2778 (2013) Support: ANR PNANO grant NANOTERRA

(LPT-LPS, CNRS Toulouse-Orsay)

MIRO, Montpellier 13-16/05/2013 1 / 26

Zero resistance states discovery in 2002

- R.G. Mani, J.H. Smet, K. von Klitzing, V. Narayanamurti, W.B. Johnson and V. Umansky, Nature 420, 646 (2002).
- M.A.Zudov, R.R.Du, L. N. Pfeiffer and K. W. West PRL 90, 046807 (2003)

Zero resistance states have a 1/B periodic structure

- Length scales at equilibrium

main control parameter is

$$j=rac{\omega}{\omega_{c}}=rac{\omega}{eB/m}$$

- R_{xx} has a peak if $j = n \delta$ n integer
- R_{xx} is zero if $j = n + \delta$ $\delta \simeq 1/4$
- high harmonics up to $n \simeq 10$
- Arrhenius law dependence on temperature with activation energy \simeq 20 K

Experimental features \rightarrow theory arguments

EXPERIMENT

- weak field: $\epsilon \propto \Delta v_{osc}/v_F \sim 0.01 0.05 ~(\sim 1 V/cm)$
- high Landau levels (high filling factors) $u \approx 60$
- high harmonics $j = \omega_c/\omega \ge 1$: no such transitions in oscillator
- high mobility, mean free path $I_{e} \approx 140 \mu m$, small angle scattering
 - ightarrow smooth potential, $\omega_c \gg \omega_{pot}$
 - \rightarrow due to adiabatic theorem transport is very weak in the bulk with smooth potential
 - \rightarrow effect of scattering on sharp disks in the bulk

CONJECTURE

- main contribution to transport comes from ballistic transmission along edges or scattering on sharp disks inside bulk
- ZRS = microwave stabilization of edge transport or trapping on disks

LINKS

 edge transport in quantum Hall effect
 B.I.Halperin PRB 25, 2185 (1982), M.Büttiker PRB 38, 9375 (1988) 930

Classical theory of edge transport under irradiation

Newton equations of motion (model 1, specular wall I_{wall} , small angle scattering I_{S}) $d\mathbf{v}/dt = \omega_{\mathbf{c}} \times \mathbf{v} + \epsilon \omega \cos \omega t - \gamma(\mathbf{v})\mathbf{v} + I_{wall} + I_{S}$ (1)

 $\epsilon = eE/(m\omega v_F)$ describes microwave driving field E,

velocity \mathbf{v} is measured in units of Fermi velocity v_F ,

y $\omega / \omega_c = 2, \ \varepsilon = 0$ $\omega / \omega_c = 2, \ \varepsilon = 0.1$ $\omega / \omega_c = 9/4, \ \varepsilon = 0.1$ x

 $\gamma(\mathbf{v}) = \gamma_0(|\mathbf{v}|^2 - 1)$ describes relaxation processes to the Fermi surface random angle scattering on microwave period with amplitude $\pm \alpha$

Direct real space analysis of trajectories is complicated, Construct Poincaré section !

Poincaré section (Newton equations)

Abscissa : phase of the microwave field $\omega t \pmod{2\pi}$ at the moment of collision with the wall

Ordinate : v_y velocity at the moment of collision (divided by Fermi velocity) (Electric field $\epsilon = (0, 0.02)$, no noise and no dissipation)

Appearance of a nonlinear resonance

Chirikov standard map

Newton equations

Approximate description of the nonlinear resonance

velocity change at wall collision: double wall velocity

small angles near wall: time between collisions $\Delta t = 2(\pi - v_y)/\omega_c$

this leads to the Chirikov standard map :

 $\begin{cases} v_y(n+1) = v_y(n) + 2\epsilon \sin \phi(n) + I_{cc} \\ \phi(n+1) = \phi(n) + 2(\pi - v_y(n+1))\omega_/\omega_c \end{cases}$

model 2, Icc describes noise and dissipation

 $\omega t (2\pi)$

π

0

 $-\pi$

Phase space portrait, with noise and dissipation

Left Column: Dynamics without dissipation

Right Column: Color scale show the density of propagating particles on the Poincaré section in presence of noise and dissipation (red \rightarrow maximum) Black points show trajectories without noise and dissipation.

 $\omega/\omega_c = 2$ microwave repels particles from the edge (d)

 $\omega/\omega_c = 9/4$ particles are trapped in the resonance (e,f)

Here $\gamma_0 = 10^{-3}$ (e), $\gamma_c = 10^{-2}$ (d,f) and $\alpha \simeq 5 \times 10^{-3}$.

Stabilization of edge transport (1/B dependence)

Top: R_{xx} and $-\Delta R_{xy} = \frac{H}{ne} - R_H$ as a function of ω/ω_c (experiment)

Bottom: Transmission along sample edge as a function of ω/ω_c

(model 1)

For $l_e \gg r_c$ the billiard model of a Hall bar gives $R_{xx} \propto -\Delta R_{xy} \propto 1 - T$ Microwave field is $\epsilon = 0.05$, relaxation $\gamma_0 = 10^{-3}$ and noise amplitude $\alpha = 3 \times 10^{-3}$. Transmission without microwaves is $T \simeq 0.95$, N = 5000 orbits.

Stabilization of edge transport (Dependence on microwave field)

Growth of ZRS peaks and dips (model 2) as a function of microwave field amplitude $\epsilon = 0.00375, 0.0075, 0.015, 0.03, 0.06.$

Insert shows transmission probability *T* at distance *x* along the edge for $\epsilon = 0.02$ ($0 < x < 10^3 v_F / \omega$).

Position and width of the resonance

$$v_y(n+1) = v_y(n) + 2\epsilon \sin \phi(n)$$

$$\phi(n+1) = \phi(n) + 2(\pi - v_y(n+1))\omega_{/}\omega_c$$

A phase shift by $\phi \rightarrow \phi + 2\pi$ does not change the behavior of map. Hence the phase space structure is periodic in $j = \omega/\omega_c$ with period unity which naturally yields high harmonics.

The resonance is centered at $v_y = \pi(1 - m\omega_c/\omega)$ where *m* is the integer part of ω/ω_c .

The chaos parameter of the map is $K = 4\epsilon\omega/\omega_c$ and the resonance separatrix width $\delta v_v = 4\sqrt{\epsilon\omega_c/\omega}$.

The energy barrier of the resonance: $E_r/E_F = (\delta v_v)^2 \neq 2E_F = 16\epsilon \omega_c/\omega$. (LPT-LPS, CNRS Toulouse-Orsay) MIRO, Montpellier 13-16/05/2013 11/26 Typical spread square width in velocity angle during the relaxation time $1/\gamma_c$ is $D_s = \alpha^2/\gamma_c$. The resonance square width is $(\delta v_y)^2 = 16\epsilon\omega_c/\omega$ and escape probability from the resonance is

 $W \sim \exp(-(\delta v_y)^2/D_s) \sim \exp(-A\epsilon\omega_c/(D_s\omega))$

with $R_{xx}/R_{xx}(0) \sim 1 - T \sim W$; $\epsilon_s = \omega D_s/\omega_c$; $A \approx 16$.

Arrhenius law with activation energy equal to the energy height of the nonlinear resonance $E_r = 16\epsilon\omega_c E_F/\omega$ where E_F is the Fermi energy. This dependence appears as an additional damping factor in ZRS amplitude:

 $R_{xx} \propto \exp(-A\epsilon\omega_c/(D_s\omega))\exp(-16\epsilon\omega_c E_F/\omega T_e)$

ZRS parameter dependence

Dependence of rescaled R_{xx} on rescaled microwave field ϵ for models (1) (left) and (2) (right). Left: parameters as in Fig. 2 and ϵ is varied. Right: $\gamma = 0.01$, $\alpha = 0.02$ (full), $\gamma = 0.01$, $\epsilon = 0.03$ (dashed), $\epsilon = 0.03$, $\alpha = 0.02$ (dotted), the straight line shows theory with A = 12.5; symbols are shifted for clarity and $\epsilon_s = \omega D_s / \omega_c$.

Experimental dependence of ZRM minima on *T* and $j = \omega/\omega_c$

Experiment \rightarrow Activation energy $E_r \propto \frac{\omega_c}{\omega}$ Theory predicts $E_r = 16\epsilon E_F \frac{\omega_c}{\omega}$ For $\epsilon = 0.01$ we obtain

 $E_r \simeq 20 \text{ K}$

FIG. 3. (a) $R_{xx}(B)/R_{xx}(0)$ under MW (f = 57 GHz) illumination, plotted vs 1/B at different T from 0.9 to 3.5 K. Upward

Microwave induced scattering on disk

Top left: $\epsilon = 0, j = 9/4$; top right: temporary captured path at $\epsilon = 0.04, j = 9/4$; bottom left: path captured forever at $\epsilon = 0.04, j = 9/4$; bottom right: no capture at $\epsilon = 0.04, j = 2$; dissipation at disk collisions $\gamma_d = 0.01$.

Poincaré sections for scattering on disk

Left: wall model W1,W2; right: disk model DR1 with radial field; $\epsilon = 0.01$, j = 2.1 (top, middle) and j = 3.1 (bottom). Top panels are obtained with the Chirikov standard map, middle and bottom panels are obtained from Newton equations; no dissipation.

Poincaré sections for scattering on disk

Linearly polarized field. Top: j = 2.1 (left), 2.25 (right), $\epsilon = 0.01$. Middle: j = 2.75 (left), 2.25 (right), $\epsilon = 0.02$. Bottom: j = 2.75 (left), 2.25 (right), $\epsilon = 0.04$. No dissipation.

Phase synchronization at disk collisons

Angle θ and radial velocity v_r vs. microwave phase $\phi = \omega t$ at the moments of disk collision (left), v_r vs phase $\phi' = \phi - \theta$ (phase in rotating frame) (right) Here j = 2.25, $\epsilon = 0.04$, static filed $\epsilon_s = 0.001$, dissipation rate at disk collision $\gamma_d = 0.01$, no noise.

(LPT-LPS, CNRS Toulouse-Orsay)

Capture time on disk

Trapping times at disk as a function of *j*; t_c with microwave, $t_c(0)$ without microwave. Dissipation rate at disk collision $\gamma_d = 0.01$, no noise.

Scattering on many disks

Dependence of R_{xx} and R_{xy} on magnetic field B = 1/j in a.u.. Blue/gray curves show R_{xx}/R_{xy} in a dark. Black curve with points show R_{xx} vs. B at microwave field $\epsilon = 0.04$. Here $\epsilon_s = 0.001$, $\gamma_d = 0.01$, noise amplitude $\alpha_i = 0.005, \tau_i = 1/\omega$; averaging over 200 orbits on time $t = 10^6/\omega$.

Rescaled R_{xx} and R_{xy} vs. *j* at noise $\alpha_i = 0.005$ (black), 0.01 (blue), 0.02 (red). Here $\epsilon = 0.04$, $\epsilon_s = 0.001$.

Rescaled R_{xx} and R_{xy} vs. *j* at $\epsilon = 0.01$ (red), 0.02 (blue), 0.04 (black); noise $\alpha_i = 0.005$.

Scattering on many disks

Phase space (v_r , ϕ') at disk collisions at $\epsilon = 0.04$: j = 2.1 (top left), j = 2.25 (top right), j = 2.75 (bottom left), j = 3.25 (bottom right); $\phi' = \phi - \theta$ (other parameters as in Fig. above).

Characteristics of nonlinear resonance:

$$\begin{array}{lll} E_r &=& 8\epsilon\rho E_F/(\rho+j-1); \ \rho=1+r_c/r_d \ ; \\ v_{res} &=& \pi\rho\delta j/(j+\rho-1); \ \delta v=4\sqrt{\epsilon\rho/(2(j+\rho-1))}; \\ \delta j_\epsilon &=& \delta v(\rho+j-1)/(2\pi\rho); \ j=\omega/\omega_c \ , \end{array}$$

where δj_{ϵ} is a shift of resonance produced by a finite separatrix half width $\delta v/2$. For our numerical simulations we have $\rho = 1 + r_c/r_d = 1 + j$ with $v_{res} = \pi (j+1)\delta j/(2j)$, $\delta v = 2\sqrt{\epsilon(j+1)/j}$ and $\delta j_{\epsilon} = (2/\pi)\sqrt{\epsilon j/(j+1)}$.

Quantum regime: magnetic length $r_c/\sqrt{n_L}$ gives effective disk radius r_d ?

Rings of Saturn analogy

Images of Cassini-Huygens mission: Rings of Saturn and Mimas (left), mountains at the edge of size of Mont Blanc (right). The edge of B ring is of 10*m* width on a distance of 117580*km*, ring width of 30*m*, Cassini Divison of 4620*km*, ice clumps of 10*m* size. Synchronization mechanism of edge formation DS, Pikovsky, Schmidt, Spahn MNRAS 395, 1934 (2009).

Conclusions

- Microwaves can stabilize edge trajectories against small angle disorder scattering
- Microwaves creats trapping around impurities and gives practically zero displacement along static field with $R_{xx} \rightarrow 0$
- Nonlinear resonance described by the Chirikov standard map \rightarrow at *j* resonances
- Importance of relaxation processes to the Fermi surface
- Nonlinear resonance width → activation energy
- Microscopic theory for relaxation to the Fermi surface ?
- Extension to describe other low magnetic field resistance oscillations (ZDRS, PIRO, ...) ?
- Experiments with electrons on helium surface
 → laboratory modelling of rings of Saturn ?
- Towards Quantum synchronization theory for scattering on impurities, edges in presence of microwave field

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))