Kolmogorov turbulence facing Anderson localization and KAM integrability

Images: Hokusai, kicked NSE rotator, quantum Gibbs theory

"Through mechanisms still only partially understood, wind transfers energy and momentum to surface water waves."
A.C.Newell and V.E.Zakharov (PRL 1992)
following arXiv:1203.1130v1 [nlin.CD]; L.Ermann, DS (in preparation)

Kolmogorov and weak wave turbulence

```
Kolmogorov DAN SSSR 30, 299; 32, 19 (1941);
Obukhov Izv. AN SSSR Ser. Geogr. Geofiz., 5(4-5), 453 (1941)
```

V.E. Zakharov V.S. L'vov G. Falkovich

Kolmogorov Spectra of Turbulence I
Wave Turbulence

With 34 Figures

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest
12.28 Bibliotheek FOM-Instituet
aIJNHUIZEN

Kolmogorov turbulence: energy flow (current) from large to small spacial scales $E_{k} \sim k^{-5 / 3}$

Concept of weak turbulence:
Zakharov-Filonenko spectrum (1967) $E_{k} \sim k^{-7 / 4}$ surface waves on deep water
Random-phase conjecture: "In the theory of weak turbulence nonlinearity of waves is assumed to be small; this enables us, using the hypothesis of the random nature of the phase of individual waves, to obtain the kinetic equation for the mean square of the wave amplitudes"
V.L'vov lectures NGU 1976
==> Finite size systems: discrete spectrum of waves Nazarenko (2011)

Anderson localization (metal-insulator transition), chaos border,
Kolmogorov-Arnold-Moser (KAM) theory, Fermi-Pasta-Ulam (FPU) prōblem

Anderson localization: introduction \& perspectives

1958 => from the talk of P.W.Anderson at Newton Institute, July 21, 2008 see http://www.newton.ac.uk/programmes/MPA/seminars/072117001.html
"Well, In my country," said alice, still panting a little, "you would generally get to somehere else, if you ran very fast for a long time, as we've been doing". "A slow sort of country!", said the queen. "Now here, it takes all the running you can do, to stay in the same place."

Perspectives: a)localization in new type of systems; b)effects of interactions $==>$ nonlinear perturbation of pure point spectrum of Anderson localization

Chirikov standard map for soliton dynamics

Nonlinear Schrödinger equation => integrable (Zakharov, Shabat Zh. Eksp. Teor. Fiz. 61, 118 (1971))

FIG. I. Two phase-space trajectories with parameters $\beta=25$, $k=0.5$, and $T=2$ (classical K is 2), obtained by numerical in-

FIG. 4. Plot of the wave packet width in Fourier space Δn^{2} vs number of periods m. Here $\beta-10, k-2.5, T=1$ and classical $K=5$; the initial soliton position and velocity are $x_{0}=0.2$ and

$$
\begin{gathered}
i \hbar \frac{\partial}{\partial t} \psi=\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}-\beta|\psi|^{2}+k \cos x \delta_{T}(t)\right) \psi \\
\bar{p}=p+K \sin x, \quad \bar{x}=x+\bar{p} \quad(K=k T / m, \beta \sim 25 \gg 1)
\end{gathered}
$$

Benvenuto, Casati, Pikovsky, DS (1991)

Delocalization of quantum chaos by weak nonlinearity

kicked nonlinear rotator (KNR)

$$
\psi_{n}(t+1)=e^{-i T \hat{n}^{2} / 2-i \beta\left|\psi_{n}\right|^{2}} e^{-i k \cos \hat{\theta}} \psi_{n}(t)
$$

Left: $k=5, T=1, K=5, \beta=1$, dots from kicked NSE (previous page); slope $\alpha=2 / 5$ Right: $k=5, T=1, K=5, \beta=0.03$, DS (1993) (also García-Mata, DS (2009), Lapteva et al (2010))

Nonlinearity and Anderson localization: estimates

$$
i \hbar \frac{\partial \psi_{\boldsymbol{n}}}{\partial t}=E_{\boldsymbol{n}} \psi_{\boldsymbol{n}}+\beta\left|\psi_{\boldsymbol{n}}\right|^{2} \psi_{\boldsymbol{n}}+V\left(\psi_{\boldsymbol{n}+\boldsymbol{1}}+\psi_{\boldsymbol{n}-1}\right) ;\left[-W / 2<E_{n}<W / 2\right] \text { (DANSE) }
$$

localization length $\ell \approx 96(V / W)^{2}(1 \mathrm{D})$; $\ln \ell \sim(V / W)^{2}$ (2D) Amplitudes C in the linear eigenbasis are described by the equation

$$
i \frac{\partial C_{m}}{\partial t}=\epsilon_{m} C_{m}+\beta \sum_{m_{1} m_{2} m_{3}} U_{m m_{1} m_{2} m_{3}} C_{m_{1}} C_{m_{2}}^{*} C_{m_{3}}
$$

The transition matrix elements are $U_{m m_{1} m_{2} m_{3}}=\sum_{n} Q_{n m}^{-1} Q_{n m_{1}} Q_{n m_{2}}^{*} Q_{n m_{3}} \sim 1 / \ell^{3 d / 2}$. We have idC/dt $\sim \beta C^{3}$. The transition rate is $\Gamma \sim \beta^{2}|C|^{6} \sim \beta^{2} /(\Delta n)^{3}$. Diffusive spreading: $\Delta R \sim(\Delta n)^{1 / d}$ of d-dimensional \boldsymbol{m} - space is $d(\Delta R)^{2} / d t \sim \ell^{2} \Gamma \sim \beta^{2} \ell^{2} /(\Delta n)^{3} \sim \beta^{2} \ell^{2} /(\Delta R)^{3 d}$.
At large time scales $\Delta R \sim R$ and we obtain

$$
\Delta n \sim R^{d} \sim(\beta \ell)^{2 d /(3 d+2)} t^{d /(3 d+2)} ;(\Delta n)^{2} \propto t^{\alpha} ; \alpha=2 /(3 d+2)
$$

Chaos criterion: $S=\delta \omega / \Delta \omega \sim \beta>\beta_{c} \sim 1$ here $\delta \omega \sim \beta\left|\psi_{n}\right|^{2} \sim \beta / \Delta n$ is nonlinear frequency shift and $\Delta \omega \sim 1 / \Delta n$ is spacing between exites eigenmodes DS (1993); Pikovsky, DS (2008) ($d=1$); García-Mata, DS (2009) ($d \geq 1$) Mulansky, Pikovsky (2009) different nonlinearities

Nonlinearity and Anderson localization (1D)

$$
i \hbar \frac{\partial \psi_{\boldsymbol{n}}}{\partial t}=E_{\boldsymbol{n}} \psi_{\boldsymbol{n}}+\beta\left|\psi_{\boldsymbol{n}}\right|^{2} \psi_{\boldsymbol{n}}+V\left(\psi_{\boldsymbol{n}+\boldsymbol{1}}+\psi_{\boldsymbol{n}-\mathbf{1}}\right) ;\left[-W / 2<E_{n}<W / 2\right]
$$

Pikovsky, DS (2008)

Possible experimental tests \& applications

- BEC in disordered potential (Aspect, Inguscio)
- kicked rotator with BEC (Phillips, Hoogerland)
- nonlinear wave propagation in disordered media (Segev, Silberberg)
- lasing in random media (Cao)
- energy propagation in complex molecular chains (proteins, Fermi-Pasta-Ulam problem)
- Quantum Gibbs distribution instead of classical Boltzmann one ?
- OTHER GROUPS:
S.Aubry et al. PRL 100, 084103 (2008)
A.Dhar et al. PRL 100, 134301 (2008)
S.Fishman et al. J. Stat. Phys. 131, 843 (2008) ...
S.Flach et al. PRL 102, 024101 (2009) ...
T.Kottos and B.Shapiro, PRE 83, 062103 (2011)
W.-M.Wang et al. arXiv:0805.4632[math.DS] (2008)
see also the participant list of the NLSE Workshop
at the Lewiner Institute, Technion, June 2008 (http://physics.technion.ac.il/ nlse/)

Nonlinearity and localization: open problems

- exponent $\alpha \approx 1 / 3<2 / 5$
indications on its small decrease at very large times in certain models but not in DANSE
Flach et al., Mulansky et al. (2009-2011)
- different (higher/lower) nonlinearity exponents $|\psi|^{\mu}$ still give anomalous spreading Mulansky, Pikovsky (2009)
- main part of measure is non-chaotic at small local β
(zero Lyapunov exponent)
Pikovsky, Fishman (2011)
- => Arnold diffusion scenario:

Arnold diffusion in systems with many degrees of freedom
Chirikov (1979); Chirikov, Vecheslavov (1997)
spreading over Arnold web of narrow chaotic separatrix layers
Mulansky et al. (2011)

Low energy chaos in the FPU problem

α-FPU model:
$H=\sum_{n=0}^{N}\left[p_{n}{ }^{2}+\left(x_{n+1}-x_{n}\right)^{2}\right] / 2$
$+\alpha \sum_{n=0}^{N}\left(x_{n+1}-x_{n}\right)^{3} / 3$
$q_{k}=\pi k /(N+1) ;$
$\omega_{k}=2 \sin \left(q_{k} / 2\right) \approx q_{k}-q_{k}^{3} / 24$ initial energy E_{0}
Chaos border $\alpha \sqrt{E_{0}}>k^{2} / N^{3 / 2}$
Toda lattice
resonant Hamiltonian for long waves
$\bar{H}=\sum_{k} \omega_{k} I_{k}+\frac{\alpha}{2 \sqrt{N+1}} \sum_{k_{1}, k_{2}, k_{3}}\left(\omega_{k_{1}} \omega_{k_{2}} \omega_{k_{3}} I_{k_{1}} I_{k_{2}} I_{k_{3}}\right)^{1 / 2} \cos \left(\theta_{k_{3}}-\theta_{k_{2}}-\theta_{k_{1}}\right) \delta_{k_{3}, k_{1}+k_{2}}$
chaos at small k waves but no ergodicity and chaos at high k waves, no energy flow from small to large spacial scales

Kicked nonlinear Schrödinger equation (KINSE)

momentum states n => spacial coordinate for Anderson localization (Fishman, Grempel, Prange (1982)

Left: second moment $\sigma=\left\langle n^{2}\right\rangle$. Right: probability distribution over linear modes n at $t=10^{3}-10^{6} ; \beta=1, k=0.3, T=2, K=k T=0.6$.
$i \hbar \partial \psi / \partial \tau=-\partial^{2} \psi / 2 \partial^{2} x+\beta|\psi|^{2} \psi-k \cos x \psi \sum_{m=-\infty}^{\infty} \delta(\tau-m T)$
KAM+Anderson: a small wind does not generate turbulence, thus, no energy flow from large to small spacial scales

Energy flow in KINSE

Left: second moment $\sigma=<n^{2}>, k=3, T=2, K=k T=6, \beta=1$ (red), 0.5 (blue), 0.05 (green), 0 (black dashed); slope $\alpha=0.4$
Right: probability distribution over linear modes n at $t=10^{7} ; \beta=1$ (red), 0.5 (magenta), 0.05 (blue), 0 (black dashed)
numerical fits give $\alpha=0.346 \pm 0.014(\beta=0.5), 0.438 \pm 0.007(\beta=1)$ Thus, the behaviour is similar to the models of DANSE and KNR Energy flow to high modes above a certain chaos border: $\beta>\beta_{c} \sim 1 / 10$ (a similarity with Anderson transition)

Photonic localization in Sinai billiard

Left: probability localization over billiard eigenstates n at two microwave amplitude driving ϵ (theory is shown by dashed line)
Right: dependence of rescaled localization length $\ell_{\phi} / \epsilon^{2}$ on microwave frequency ω; classical spectral denssity of perturbation $S\left(\omega / \omega_{C}\right) \propto x_{\omega}^{2}$ is shown by curves for two chaotic billiards
waves in a chaotic billiard with ac-driving $V(t)=\epsilon x \sin (\omega t)$ localization length in energy: $\ell_{\phi}=\pi \epsilon^{2} R^{2} S\left(\omega / \omega_{c}\right) / \hbar \omega_{c} \Delta$ (measured in a number of photons)
(Prosen, DS (2005))

Kolmogorov turbulence in Sinai billiard

Left: DANSE plus static Stark field $\delta E_{n}=f|n|: W=4, V=1, \beta=1, f=0$ (red), $f=0.5$ (blue)
Right: probability distribution at $t=10^{8}$
NSE in Sinai billiard
$i \partial \psi / \partial \tau=-\Delta \psi / 2+V(x, y) \psi+\beta|\psi|^{2} \psi+F \sin (\omega \tau) x \psi$
Conjecture: no energy flow to high modes
(DS (2012))

Quantum Gibbs in nonlinear classical lattices

2d DANSE + NSE term; $W=2, f=1, N=8 \times 8, t=10^{6}$
$i \partial \psi_{n_{x} n_{y}} / \partial t=E_{n_{x} n_{y}} \psi_{n_{x} n_{y}}+\left(\psi_{n_{x}+1 n_{y}}+\psi_{n_{x}-1 n_{y}}+\psi_{n_{x} n_{y}+1}+\psi_{n_{x} n_{y}-1}\right)+\beta\left|\psi_{n_{x} n_{y}}\right|^{2} \psi_{n_{x} n_{y}}$
M1: $E_{n_{x} n_{y}}=\delta E_{n_{x} n_{y}}+f\left(n_{x}^{2}+n_{y}^{2}\right),-W / 2 \leq \delta E_{n_{x} n_{y}} \leq W / 2$
$\mathrm{M} 2: \beta \rightarrow \beta\left(n_{x}^{2}+n_{y}^{2}\right) \quad$ (3 disorder realisations are shown)
Quantum Gibbs anzats: $\rho_{m}=Z^{-1} \exp \left(-\epsilon_{m} / T\right) ; Z=\sum_{m} \exp \left(-\epsilon_{m} / T\right)$
$S=-\sum_{m} \rho_{m} \ln \rho_{m} ; E=T^{2} \partial \ln Z / \partial T ; \partial S / \partial E=1 / T$

Quantum Gibbs in nonlinear classical lattices

Quantum Gibbs probability (color): $W=2, t=1, N=8 \times 8, t=10^{6}$; $\beta=1$ (left), 4 (center), theory (right)

Quantum Gibbs in Klein-Gordon lattice

1d Klein-Gordon lattice: $W=2, \beta=1, t=10^{8}$
$H=\sum_{l}\left[\left(p_{l}^{2}+\tilde{\epsilon}_{l} u_{l}^{2}\right) / 2+\beta u_{l}^{2} / 4+\left(u_{l+1}-u_{l}\right)^{2} /(2 W)\right]$
Disorder: $1 / 2 \leq \tilde{\epsilon}_{I} \leq 3 / 2$ (7 realisations are shown)

Discussion

The conditions for emergence of Kolmogorov turbulence, and related weak wave turbulence, in finite size systems are analyzed by analytical methods and numerical simulations of simple models. The analogy between Kolmogorov energy flow from large to small spacial scales and conductivity in disordered solid state systems is proposed. It is argued that the Anderson localization can stop such an energy flow. The effects of nonlinear wave interactions on such a localization are analyzed. The results obtained for finite size system models show the existence of an effective chaos border between the Kolmogorov-Arnold-Moser (KAM) integrability at weak nonlinearity, when energy does not flow to small scales, and developed chaos regime emerging above this border with the Kolmogorov turbulent energy flow from large to small scales.

Energy flow from large to small spacial scales only above a certain chaos border

Emergence of quantum Gibbs distribution from dynamical thermalization in nonlinear classical lattices

References:

R1. A.N. Kolmogorov, The local structure of turbulence in an incompressible liquid for very large Reynolds numbers, Dokl. Akad. Nauk SSSR 30, 299 (1941); Dissipation of energy in the locally isotropic turbulence, 32, 19 (1941) [in Russian] (English trans.
Proc. R. Soc. Ser. A 434, 19 (1991); 434, 15 (1991))
R2. P.W.Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109, 1492 (1958)
R3. V.E. Zakharov and N.N. Filonenko, Weak turbulence of capillary waves, J. Appl.
Mech. Tech. Phys. 8 (5), 37 (1967)
R4. S.Fishman, D.R. Grempel and R.E. Prange, Chaos, quantum recurrences, and Anderson localization, Phys. Rev. Lett. 49, 509 (1982)
R5. F.Benvenuto, G.Casati, A.S.Pikovsky, D.L.Shepelyansky, Manifestations of classical and quantum chaos in nonlinear wave propagation, Phys. Rev. A, 44, R3423 (1991)

R6. D.L.Shepelyansky, Delocalization of Quantum Chaos by Weak Nonlinearity, Phys. Rev. Lett. 70, 1787 (1993)
R7. A.S.Pikovsky and D.L.Shepelyansky, Destruction of Anderson localization by a weak nonlinearity, Phys. Rev. Lett. 100, 094101 (2008)
R8. S. Tietsche and A. Pikovsky, Chaotic destruction of Anderson localization in a nonlinear lattice, Europhys. Lett. 84, 10006 (2008)
R9. J. Bourgain and W.-M. Wang, Quasi-periodic solutions of nonlinear random Schrödinger equations, J. Eur. Math. Soc. 10, 1 (2008)

References (continued):

R10. I.Garcia-Mata and D.L.Shepelyansky, Delocalization induced by nonlinearity in systems with disorder, Phys. Rev. E 79, 026205 (2009)
R11. I.Garcia-Mata and D.L.Shepelyansky, Nonlinear delocalization on disordered Stark ladder, Eur. Phys. J. B 71, 121 (2009)
R12. M.Mulansky, K.Ahnert, A.Pikovsky and D.L.Shepelyansky, Dynamical thermalization of disordered nonlinear lattices, Phys. Rev. E 80, 056212 (2009)
R13. M. Mulansky and A. Pikovsky, Spreading in disordered lattices with different nonlinearities, Europhys. Lett. 90, 10015 (2009) R14. S. Flach, D.O. Krimer, C. Skokos, Universal spreading of wave packets in disordered nonlinear systems, Phys. Rev. Lett. 102, 024101 (2009)
R15. T.V. Laptyeva, J.D. Bodyfelt, D.O. Krimer, Ch.Skokos, S. Flach, The crossover from strong to weak chaos for nonlinear waves in disordered systems, Europhys. Lett.
91, 30001 (2010)
R16. M. Johansson, G. Kopidakis, S. Aubry, Transmission thresholds in time-periodically driven nonlinear disordered systems, Europhys. Lett. 91, 50001 (2010)

R17. M. Mulansky, A. Pikovsky, Spreading in disordered lattices with different nonlinearities, Europhys. Lett. 90, 10015 (2010)
R18. A. Pikovsky and S. Fishman, Scaling Properties of Weak Chaos in Nonlinear Disordered Lattices, Phys. Rev. E 83, 025201(R) (2011)

References (continued):

R19. S. Fishman, Y. Krivolapov and A. Soffer, The nonlinear Schrödinger equation with a random potential: results and puzzles, arXiv:1108.2956 (2011) (to appear in Nonlinearity)
R20. B.V.Chirikov and V.V.Vecheslavov, Arnold diffusion in large systems, Zh. Eksp.
Teor. Fiz. 112, 1132 (1997) [JETP 85(3), 616 (1997)]
R21. D.L.Shepelyansky, Low-energy chaos in the Fermi-Pasta-Ulam problem, Nonlinearity 10, 1331 (1997)
R22. T.Prosen and D.L.Shepelyansky, Microwave control of transport through a chaotic mesoscopic dot, Eur. Phys. J. B 46, 515 (2005)
R23. E. Kartashova, Exact and quasiresonances in discrete water turbulence, Phys.
Rev. Lett. 98, 214502 (2007)
R24. M.Mulansky, K.Ahnert, A.Pikovsky, D.L.Shepelyansky,
Strong and weak chaos in weakly nonintegrable many-body Hamiltonian systems, arXiv:1103.2634v2 [nlin.CD] (2011)
R25. D.L.Shepelyansky, Kolmogorov turbulence, Anderson localization and KAM integrability, Eur. Phys. J. B 85, 199 (2012) (arXv:1203.1130v1 [nlin.CD])

References (continued):

Books, reviews:

RB1. E. Fermi, J. Pasta, S. Ulam, and M. Tsingou, Studies of nonlinear problems. I, Los Alamos Report No. LA-1940, 1955 (unpublished); E. Fermi, Collected Papers, University of Chicago Press, Chicago, 2, 978 (1965); G. Gallavotti (ed.), The Fermi-Pasta-Ulam problem, Springer Lecture Notes in Physics 728 (2008) RB2. B.V. Chirikov, A universal instability of many-dimensional oscillator systems, Phys. Rep. 52, 263 (1979)
RB3. B.V. Chirikov, F.M. Izrailev and D.L. Shepelyansky, Dynamical stochasticity in classical and quantum mechanics, Sov. Scient. Rev. 2C, 209 (1981) [Sec. Math. Phys.
Rev.] Harwood Acad. Publ., Chur, Switzerland; Quantum chaos: localization vs.
ergodicity, Physica D 33, 77 (1988)
RB4. P.A.Lee and T.V.Ramakrishnan, Disordered electronic systems, Rev. Mod. Phys.
57, 287 (1985)
RB5. V.E. Zhakharov, V. S. L'vov and G. Falkovich, Kolmogorov spectra of turbulence,
Springer-Verlag, Berlin (1992)
RB6. A.J.Lichtenberg, M.A.Lieberman, Regular and chaotic dynamics, Springer, Berlin (1992)

RB7. Y.Imry, Introduction to mesoscopic physics, Oxford Univ. Press (2002)
RB8. E.Akkermans and G.Montambaux, Mesoscopic Physics of Electrons and
Photons, Cambridge Univ. Press (2007)
RB9. S. Nazarenko, Wave turbulence, Springer-Verlag, Berlin (2011)

