Google matrix analysis of world trade networks

* Quantware group: classical/quantum chaos, dynamical systems, large matrices
* How Google search works, PageRank, CheiRank
* Examples of directed networks: Wikipedia, University networks, DvvaDi search; Ulam networks, Linux Kernel network, fractal Weyl law
* World trade from UN COMTRADE 1962-2009: arxiv:1103.5027
=> democratic treatment of all UN countries; ecology analysis arxiv:1201.3584
* Towards ranking of bank financial flows: WWW ==> WBW
S.Brin and L.Page, Comp. Networks ISDN Systems 30, 107 (1998)

Monitoring of grids and networks

Any large network requires monitoring ...

NOAA satellite imagery one day before and the night of the blackout.
Example of Northeast blackout of electical power grid, Aug 14, 2003. Wikipedia article "Northeast blackout of 2003"
==> Analysis of network flows:
$==>$ World Wide Web with $\sim 10^{11}$ sites
==> project launched at CENR by Tim Berners-Lee, 1991
==> World Bank Web exists (SWIFT ...)

How Google works

Markov chains (1906) and Directed networks

 Weighted adjacency matrix

$$
\mathbf{S}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{3} & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{3} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\
\frac{1}{3} & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

For a directed network with N nodes the adjacency matrix \mathbf{A} is defined as $A_{i j}=1$ if there is a link from node j to node i and $A_{i j}=0$ otherwise. The weighted adjacency matrix is

$$
S_{i j}=A_{i j} / \sum_{k} A_{k j}
$$

In addition the elements of columns with only zeros elements are replaced by 1/N.

How Google works

Google Matrix and Computation of PageRank $\mathbf{P}=\mathbf{S P} \Rightarrow \mathbf{P}=$ stationary vector of \mathbf{S}; can be computed by iteration of \mathbf{S}.
To remove convergence problems:

- Replace columns of 0 (dangling nodes) by $\frac{1}{N}$:

$$
\mathbf{S}=\left(\begin{array}{ccccccc}
0 & 0 & \frac{1}{7} & 0 & 0 & 0 & 0 \\
\frac{1}{3} & 0 & \frac{1}{7} & 0 & 0 & 0 & 0 \\
\frac{1}{3} & 0 & \frac{1}{7} & \frac{1}{2} & 0 & 0 & 0 \\
\frac{1}{3} & 0 & \frac{1}{7} & 0 & 1 & 1 & 1 \\
0 & 0 & \frac{1}{7} & \frac{1}{2} & 0 & 0 & 0 \\
0 & 1 & \frac{1}{7} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{7} & 0 & 0 & 0 & 0
\end{array}\right) ; \mathbf{S}^{*}=\left(\begin{array}{ccccccc}
\frac{1}{7} & 1 & \frac{1}{2} & \frac{1}{4} & 0 & 0 & \frac{1}{7} \\
\frac{1}{7} & 0 & 0 & 0 & 0 & 1 & \frac{1}{7} \\
\frac{1}{7} & 0 & 0 & 0 & 0 & 0 & \frac{1}{7} \\
\frac{1}{7} & 0 & \frac{1}{2} & 0 & 1 & 0 & \frac{1}{7} \\
\frac{1}{7} & 0 & 0 & \frac{1}{4} & 0 & 0 & \frac{1}{7} \\
\frac{1}{7} & 0 & 0 & \frac{1}{4} & 0 & 0 & \frac{1}{7} \\
\frac{1}{7} & 0 & 0 & \frac{1}{4} & 0 & 0 & \frac{1}{7}
\end{array}\right) .
$$

- To remove degeneracies of $\lambda=1$, replace \mathbf{S} by Google matrix $\mathbf{G}=\alpha \mathbf{S}+(1-\alpha) \frac{\mathbf{E}}{N} ; \quad G P=\lambda P \quad \Rightarrow$ Perron-Frobenius operator
- α models a random surfer with a random jump after approximately 6 clicks (usually $\alpha=0.85$); PageRank vector $=>P$ at $\lambda=1\left(\sum_{j} P_{j}=1\right)$.
- CheiRank vector $P^{*}: G^{*}=\alpha \mathbf{S}^{*}+(1-\alpha) \frac{E}{N}, G^{*} P^{*}=P^{*}$
(\mathbf{S}^{*} with inverted link directions)
Fogaras (2003) ... Chepelianskii arXiv:1003.5455 (2010)

Real directed networks

Real networks are characterized by:

- small world property: average distance between 2 nodes $\sim \log N$
- scale-free property: distribution of the number of ingoing or outgoing links $\rho(k) \sim k^{-\nu}$

PageRank vector for large WWW:

- $P(K) \sim 1 / K^{\beta}$, where K is the ordered rank index
- number of nodes N_{n} with PageRank P scales as $N_{n} \sim 1 / P^{\nu}$ with numerical values $\nu=1+1 / \beta \approx 2.1$ and $\beta \approx 0.9$.
- PageRank $P(K)$ on average is proportional to the number of ingoing links
- CheiRank $P^{*}\left(K^{*}\right) \sim 1 / K^{* \beta}$ on average is proportional to the number of outgoing links $(\nu \approx 2.7 ; \beta=1 /(\nu-1) \approx 0.6)$
- WWW at present: $\sim 10^{11}$ web pages

Donato et al. EPJB 38, 239 (2004)

From Encyclopédie (1751) to Wikipedia (2009)

ENCYCLOPEDIE,

DICTIONNAIRE RAISONNE
DES SCIENCES,
DeS arts et des métiers, par une societe de gens de lettres.

Mis en ordre \&publié par M. DIDEROT, de I'Académie Royale des Sciences \& des Belles. Letres de Pruffe; \& \& quant à h Partie Mathématique, par M. D'ALEMBERT, de l'Académie Royale des Sciences de Paris, de celle de Pruffe, \&c de la Societé Royale de Londres.

Taruimm feries juxauraţue poulet,
Tanuìn de nedio fumpuis accedit hanoris! Horat.
TOME PREMIER.

A P A R I S,

M. D C C. LI

AVEC APPROBATION ET PRIVILEGE DUROY.
 The Free Encyclopedia
"The library exists ab aeterno."
Jorge Luis Borges The Library of Babel, Ficciones

Wikipedia ranking of human knowledge

Wikipedia English articles $N=3282257$ dated Aug 18, 2009

Dependence of probability of PagRank P (red) and CheiRank P^{*} (blue) on corresponding rank indexes K, K^{*}; lines show slopes $\beta=1 /(\nu-1)$ with $\beta=0.92 ; 0.57$ respectively for $\nu=2.09 ; 2.76$.
[Zhirov, Zhirov, DS EPJB 77, 523 (2010)]

Two-dimensional ranking of Wikipedia articles

Density distribution in plane of PageRank and CheiRank indexes ($\ln K, \ln K^{*}$): (a) 100 top countries from 2DRank (red), 100 top from SJR (yellow), 30 Dow-Jones companies (cyan); (b)100 top universities from 2DRank (red) and Shanghai (yellow); (c)100 top personalities from PageRank (green), CheiRank (red) and Hart book (yellow); (d) 758 physicists (green) and 193 Nobel laureates (red).

Wikipedia ranking of universities, personalities

Universities:

PageRank: 1. Harvard, 2. Oxford, 3. Cambridge, 4. Columbia, 5. Yale, 6. MIT, 7. Stanford, 8. Berkeley, 9. Princeton, 10. Cornell.
2DRank: 1. Columbia, 2. U. of Florida, 3. Florida State U., 4. Berkeley, 5.
Northwestern U., 6. Brown, 7. U. Southern CA, 8. Carnegie Mellon, 9. MIT, 10. U. Michigan.
CheiRank: 1. Columbia, 2. U. of Florida, 3. Florida State U., 4. Brooklyn College, 5. Amherst College, 6. U. of Western Ontario, 7. U. Sheffield, 8. Berkeley, 9.
Northwestern U., 10. Northeastern U.
Personalities:
PageRank: 1. Napoleon I of France, 2. George W. Bush, 3. Elizabeth II of the United Kingdom, 4. William Shakespeare, 5. Carl Linnaeus, 6. Adolf Hitler, 7. Aristotle, 8. Bill Clinton, 9. Franklin D. Roosevelt, 10. Ronald Reagan.
2DRank: 1. Michael Jackson, 2. Frank Lloyd Wright, 3. David Bowie, 4. Hillary
Rodham Clinton, 5. Charles Darwin, 6. Stephen King, 7. Richard Nixon, 8. Isaac Asimov, 9. Frank Sinatra, 10. Elvis Presley.
CheiRank: 1. Kasey S. Pipes, 2. Roger Calmel, 3. Yury G. Chernavsky, 4. Josh Billings (pitcher), 5. George Lyell, 6. Landon Donovan, 7. Marilyn C. Solvay, 8. Matt Kelley, 9. Johann Georg Hagen, 10. Chikage Oogi.

Correlator of PageRank and CheiRank

$$
\kappa=N \sum_{i} P(K(i)) P^{*}\left(K^{*}(i)\right)-1
$$

Spectrum of UK University networks

Arnoldi method: Spectrum of Google matrix for Univ. of Cambridge (left) and Oxford (right) in 2006 ($N \approx 200000, \alpha=1$). [Frahm, Georgeot, DS arxiv:1105.1062 (2011)]

World trade network (WTN) of United Nations COMTRADE 1962-2009

Number of countries (black), links (dashed/points) and mass volume in USD (red)
Leonardo Ermann, DS arxiv:1103.5027 (2011)

PageRank, CheiRank of World Trade

Year 2008: Probabilities of PageRank $P(K)$ (red), CheiRank $P^{*}\left(K^{*}\right)$ (blue) for all commodities (top) and crude petroleum (bottom), $\alpha=\mathbf{0 . 5 ;} 0.85$ (full/dotted); (dashed curves are for ImportRank, ExportRank); dashed line Zipf law $P \sim 1 / K$; 227 countries

Ranking of World Trade

2008: All commodities

Ranking of World Trade

2008: All commodities

Ranking of World Trade

2008: Crude petroleum

Ranking of World Trade

2008: Crude petroleum

Mass flow on World Trade Network (WTN)

RMT model $M_{i j}=\epsilon_{i} \epsilon_{j} / i j$ (all commod. 1962/2008 left/right top; petroleum left bottom; model right bottom)

Global distribution for WTN

All commodities 1962-2009

Global distribution for WTN

All commodities 1962-2009: left - zoom, right - RMT model

The poor stay poor and the rich stay rich

Velocity fluctuations for WTN

1962-2009: Rank velocity fluctuations $(\Delta v)^{2}=(\Delta K)^{2}+\left(\Delta K^{*}\right)^{2}$

Rank evolution in time

Rank evolution in time

Top: $1 \leq K+K^{*} \leq 40 ; 41 \leq K+K^{*} \leq 80 ; 81 \leq K+K^{*} \leq 120$;
Bottom: $1 \leq K+K^{*} \leq 20 ; 21 \leq K+K^{*} \leq 40 ; 41 \leq K+K^{*} \leq 60$

Rank table 2008 (74% of countries of G20)

Table 1. Top 20 ranking for all commodities - 2008.

Ran	K	K^{*}	K_{2}	\tilde{K}	\tilde{K}^{*}
1	USA	China	USA	USA	China
2	Germany	USA	China	Germany	Germany
3	China	Germany	Germany	China	USA
4	France	Japan	Japan	France	Japan
5	Japan	France	France	Japan	France
6	UK	Italy	Italy	UK	Netherlands
7	Italy	Russian Fed.	UK	Netherlands	Italy
8	Netherlands	\bullet Rep. of Korea	Netherlands	Italy	Russian Fed.
9	India	UK	India	Belgium	UK
10	Spain	Netherlands	Rep. of Korea	Canada	Belgium
11	Belgium	\bullet Singapore	Belgium	Spain	Canada
12	Canada	\bullet India	Russian Fed.	Rep. of Korea	Rep. of Korea
13	Rep. of Korea	Belgium	Canada	Russian Fed.	Mexico
14	Russian Fed.	Australia	Spain	Mexico	Saudi Arabia
15	Nigeria	Brazil	Singapore	Singapore	• Singapore
16	Thailand	Canada	Thailand	India	Spain
17	Mexico	Spain	Australia	Poland	Malaysia
18	Singapore	South Africa	Brazil	Switzerland	Brazil
19	Switzerland	Thailand	Mexico	Turkey	• India
20	Australia	U. Arab Emir.	U. Arab Emir.	Brazil	Switzerland

Rank table 2008

Table 2. Top 20 ranking for crude petroleum - 2008.

Ran	K	K^{*}	K_{2}	\tilde{K}	\tilde{K}^{*}
1	USA	Russian Fed.	USA	USA	\bullet Saudi Arabia
2	Canada	\bullet Kazakhstan	India	Japan	\bullet Russian Fed.
3	Netherlands	U. Arab Emir.	Singapore	China	U. Arab Emir.
4	Belgium	USA	UK	Italy	\bullet Nigeria
5	India	Ecuador	South Africa	Rep. of Korea	Iran
6	China	•Saudi Arabia	Canada	India	Venezuela
7	Germany	India	Australia	Germany	Norway
8	Japan	South Africa	U. Arab Emir.	Netherlands	\bullet Canada
9	Rep. of Korea	\bullet Nigeria	Colombia	France	Angola
10	UK	Sudan	Azerbaijan	UK	Iraq
11	Singapore	Azerbaijan	Malaysia	Spain	Libya
12	Italy	Venezuela	Brazil	Singapore	• Kazakhstan
13	Australia	Norway	Belgium	Canada	Kuwait
14	Malaysia	Iran	Trinidad and Tobago	Thailand	Azerbaijan
15	Spain	Algeria	France	Belgium	Algeria
16	France	Singapore	Netherlands	Brazil	Mexico
17	Brazil	Kuwait	Kenya	Turkey	UK
18	Sweden	UK	Angola	South Africa	Qatar
19	South Africa	Angola	China	Poland	Oman
20	Thailand	Canada	Thailand	Australia	Netherlands

Google matrix of multiproduct trade 2008

CheiRank vs. PageRank for multiproduct trade at $N_{p}=182$ for $N_{c}=227$ UN COMTRADE countries in 2008; 3 models of product coupling (full, dotted, dashed curves)
L.Ermann, DS (in progress)

Petroleum price effect on ranking of trade 2008

CheiRank K^{*}, PageRank K variation with petroleum price in respect to price of 2008
L.Ermann, DS (in progress)

Ecological analysis of world trade

Normalized monetary trade volume: import (left), export (right), 1968 (bottom) and 2008 (top); arxiv:1201.3584; countries/products $N_{c}=164,227 / N_{p}=182$; import/export $M_{p, c}^{(i)}=\sum_{c^{\prime}=1}^{N_{c}} M_{c, c^{\prime}}^{p} / M_{p, c}^{(e)}=\sum_{c^{\prime}=1}^{N_{c}} M_{c^{\prime}, c}^{p} ; M_{p, c}>/ \leq \mu=>1 / 0$

Plants-animals => Countries-products

Mutualistic nestedness matrix:
Top: two ecological systems
from J.Bascompte et al.
"The architecture of mutualistic networks minimizes competition and increases biodiversity"
Nature 458, 1018 (2009);
Middle-bottom: WTN data
Nestedness ordering algorithm

Ecological ranking of world trade (countries)

Left: import; Right: export

Trade volume ranking of world trade (countries)

Left: import; Right: export

Ecological ranking of world trade (products)

Top: trade volume; Left bottom: EcoloRank imp; Right bottom: EcoloRank exp

WBW: Towards bank financial network ranking

Fig. 1. Fedwire interbank payment network. First day of Sample. 6600 nodes and over 70,000 undirected links [39].
K.Soramäki et al., The topology of interbank payment flows, Physica A 379, 317 (2007); R.Garratt et al. WP 2008-42, Bank of Canada, WP 413 Bank of England (2011); B.Craig, G. von Peter N 12/2010 Deutsche Bundesbank

Google Matrix Applications

practically to everything
http://www.quantware.ups-tlse.fr/ecoledeluchon/

more data at Refs. below and
http://www.quantware.ups-tlse.fr/QWLIB/2drankwikipedia/ .../tradecheirank/ ../topwikipeople/
http://www.quantware.ups-tlse.fr/dima/subjgoogle.html

References:

1. S.Brin and L.Page, The anatomy of a large-scale hypertextual Web search engine, Comp. Networks ISDN Systems 30, 107 (1998)
2. A.A. Markov, Rasprostranenie zakona bol'shih chisel na velichiny, zavisyaschie drug ot druga, Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom universitete, 2-ya seriya, 15 (1906) 135 (in Russian) [English trans.: Extension of the limit theorems of probability theory to a sum of variables connected in a chain reprinted in Appendix B of: R.A. Howard Dynamic Probabilistic Systems, volume 1: Markov models, Dover Publ. (2007)].
3. D.Austin, How Google Finds Your Needle in the Web's Haystack. AMS Feature Columns, http://www.ams.org/samplings/feature-column/fcarc-pagerank (2008) 4. Wikipedia articles PageRank, CheiRank, Google matrix (2008-2011)
4. D.Fogaras, Where to start browsing the web?, Lect. Notes Computer Sci. 2877, 65 (2003)
5. V.Hrisitidis, H.Hwang and Y.Papakonstantinou, Authority-based keyword search in databases, ACM Trans. Database Syst. 33, 1 (2008)
6. A.D.Chepelianksii, Towards physical laws for software architecture arXiv:1003.5455[cs.SE] (2010)
7. A.O.Zhirov, O.V.Zhirov and D.L.Shepelyansky, Two-dimensional ranking of Wikipedia articles, Eur. Phys. J. B 77, 523 (2010)
8. S.M. Ulam, A Collection of mathematical problems, Vol. 8 of Interscience tracs in pure and applied mathematics, Interscience, New York, p. 73 (1960).

References (continued):

10. K.M.Frahm and D.L.Shepelyansky, Ulam method for the Chirikov standard map, Eur. Phys. J. B 76, 57 (2010)
11. L.Ermann and D.L.Shepelyansky, Ulam method and fractal Weyl law for

Perron-Frobenius operators, Eur. Phys. J. B 75, 299 (2010)
12. L.Ermann, A.D.Chepelianskii and D.L.Shepelyansky, Fractal Weyl law for Linux Kernel Architecture, Eur. Phys. J. B 79, 115 (2011)
13. L.Ermann and D.L.Shepelyansky, Google matrix of the world trade network, arxiv:1103.5027 (2011)
14. L.Ermann, A.D.Chepelianskii and D.L.Shepelyansky, Towards two-dimensional search engines, arxiv:1106.6215[cs.IR] (2011)
15. K.M.Frahm, B.Georgeot and D.L.Shepelyansky, Universal emergence of PageRank, arxiv:1105.1062[cs.IR] (2011)
16. L.Ermann and D.L.Shepelyansky, Ecological analysis of world trade, arXiv:1201.3584[q-fin.GN] (2012)

Books, reviews:

B1. A. M. Langville and C. D. Meyer, Google's PageRank and beyond: the science of search engine rankings, Princeton University Press, Princeton (2006)
B2. M. Brin and G. Stuck, Introduction to dynamical systems, Cambridge Univ. Press, Cambridge, UK (2002).

