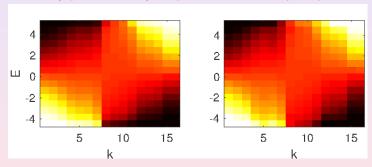
Dynamical thermalization in isolated quantum dots and black holes

Dima Shepelyansky (CNRS, Toulouse www.guantware.ups-tlse.fr/dima

with A.R.Kolovsky (RAS Krasnoyarsk) EPL **117**, 10003 (2017)



Duality relation between an isolated quantum dot with infinite-range strongly interacting fermions and a quantum Black Hole model in 1 + 1 dimensions: the Sachdev-Ye-Kitaev (SYK) model (1993-2015)

SYK model Refs

VOLUME 70, NUMBER 21

PHYSICAL REVIEW LETTERS

24 MAY 1993

Gapless Spin-Fluid Ground State in a Random Quantum Heisenberg Magnet

Subir Sachdev and Jinwu Ye

Departments of Physics and Applied Physics, P.O. Box 2157, Yale University, New Haven, Connecticut 06520

(Received 22 December 1992)

PHYSICAL REVIEW X 5, 041025 (2015)

Bekenstein-Hawking Entropy and Strange Metals

Subir Sachdev

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

Video talks: Schedule Apr 07, 2015; May 27, 2015 A simple model of quantum holography (part 1,2) Alexei Kitaev. Caltech & KITP

http://online.kitp.ucsb.edu/online/entangled15/kitaev/

Recent SYK + quantum chaos Refs

RSYK1) J.Maldacena and D.Stanford, *Comments on the Sachdev-Ye-Kitaev model*, IAS Princeton, arXiv:1604.07818 (2016)

RSYK2) J.Polchinski, *Chaos in the black hole S-matrix*, KITP, arXiv:1505.08108 (2015)

RSYK3) Y.Gu, X.-L.Xi and D.Stanford, *Local criticality, diffusion and chaos in generalized SYK model*, Stanford-Princeton, arXiv:1609.07832 (2016)

RSYK4) D.J.Gross and V.Rosenhaus, *A generalization of Sachdev-Ye-Kitaev*, KITP, arXiv:1610.01569 (2016)

RSYK5) I. Danshita, M.Hanada and M.Tezuka, *Creating and probing the Sachdev-Ye-Kitaev model with ultracold gases: Towards experimental studies of quantum gravity*, Yukawa-Stanford, arXiv:1606.02454 (2016)

RSYK6) J.Maldacena, S.H.Shenker and D.Stanford, *A bound on chaos*, Princeton-Stanford, arXiv:1503.01409 (2015)

RSYK7) A.M.Garcia-Garcia and J.J.M. Verbaarschot, *Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model*, Cambridge UK - Stony Brook, arXiv:1610.03381 (2016)

RSYK8) A.M.Garcia-Garcia and J.J.M. Verbaarschot, *Analytical spectral density of the Sachdev-Ye-Kitaev model at finite N*, Cambridge UK - Stony Brook, arXiv:1701/06593 (2017)

Duality in SYK model (in short)

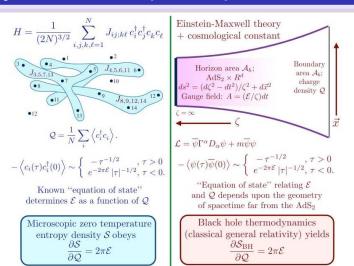


FIG. 2. Summary of the properties of the SY state (Sec. II) and planar charged black holes (Sec. III) at T = 0. The spatial coordinate \vec{x} has d dimensions. All results also apply to spherical black holes considered in Appendix B. The AdS₂ × R^d metric has unimportant

GOE for TBRIM (1971)

Volume 35B, number 5

PHYSICS LETTERS

21 June 1971

SPACING AND INDIVIDUAL EIGENVALUE DISTRIBUTIONS OF TWO-BODY RANDOM HAMILTONIANS

O. BOHIGAS and J. FLORES *

Institut de Physique Nucléaire, Division de Physique Théorique **, 91-Orsay, France

Received 10 April 1971

Comparison is made of the results of the Gaussian orthogonal ensemble with the ones produced with an ensemble in which the two-body character of the hamiltonian and the Pauli principle are taken into account. Significant differences arise between the two ensembles of random matrices,

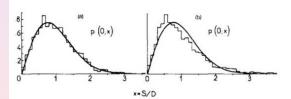


Fig.4. Nearest-neighbour spacing distributions in the ground state region (a) Gaussian orthogonal ensemble;
 (b) a two-body random hamiltonian ensemble. The curve is the same as in fig. 2 for k = 0.

Model description (TBRIM)

The model is described by the Hamiltonian for L spin-polarized fermions on M energy orbitals ϵ_k ($\epsilon_{k+1} \geq \epsilon_k$):

$$\widehat{H} = \widehat{H}_0 + \widehat{H}_{int} \;,\; \widehat{H}_0 = \frac{1}{\sqrt{M}} \sum_{k=1}^M v_k \hat{c}_k^\dagger \hat{c}_k \;, \\ \widehat{H}_{int} = \frac{1}{\sqrt{2M^3}} \sum_{ijkl} J_{ij,kl} \hat{c}_i^\dagger \hat{c}_j^\dagger \hat{c}_k \hat{c}_l \;,$$

 $\hat{c}_{i}^{\dagger}, \hat{c}_{i}$ are fermion operators; matrix elements $J_{ij,kl}$ are random complex variables (Sachdev2015) with a standard deviation J and zero average value (Kitaev2015 used Majorana fermions). In addition to the interaction Hamiltonian \widehat{H}_{int} , there is an unperturbed part \widehat{H}_0 describing one-particle orbitals $\epsilon_k = v_k/\sqrt{M}$ in a quantum dot of non-interacting fermions. The average of one-orbital energies is taken to be $\overline{v_k^2} = V^2$ with $\overline{v_k} = 0$. Thus the unperturbed one-particle energies ϵ_k are distributed in an energy band of size V and the average level spacing between them is $\Delta \approx V/M^{3/2}$ while the two-body coupling matrix element is $U \approx J/M^{3/2}$. Hence, in our model the effective dimensionless conductance is $g = \Delta/U \approx V/J$. The matrix size is N = M!/L!(M-L)! and each multi-particle state is coupled with K = 1 + L(M - L) + L(L - 1)(M - L)(M - L - 1)/4 states. We consider an approximate half filling $L \approx M/2$.

Emergence of quantum ergodicity

At $g \gg 1$ the RMT statistics appears only for relatively high excitation above the quantum dot Fermi energy E_F :

$$\delta E = E - E_F > \delta E_{ch} \approx g^{2/3} \Delta$$
; $g = \Delta/U \approx V/J \gg 1$.

This border is in a good agreement with the spectroscopy experiments of individual mesoscopic quantum dots (Sivan1994).

This is the Åberg criterion (PRL1990): coupling matrix elements are comparable with the energy spacing between directly coupled states

(also Sushkov, DS EPL1997, Jacquod, DS PRL1997).

Related Eigenstate Thermalization Hypothesis (ETH), Many-Body Localization (MBL).

At g = 0 TBRIN or SYK model => Wigner-Dyson level spacing statistics P(s): Bohigas, Flores PLB1970-71; French, Wong PLB1970-71

Dynamical thermalization ansatz

At $g \gg 1$ => Fermi-Dirac thermal distribution of M one-particle orbitals:

$$n_k = \frac{1}{e^{\beta(\epsilon_k - \mu)} + 1}$$
; $\beta = 1/T$,

with the chemical potential μ determined by the conservation of number of fermions $\sum_{k=1}^{M} n_k = L$.

At a given temperature T, the system energy E and von Neumann entropy S are

$$E(T) = \sum_{k=1}^{M} \epsilon_k n_k \; , \quad S(T) = -\sum_{k=1}^{M} n_k \ln n_k \; .$$

Fermi gas entropy is $S_F = -\sum_{k=1}^M (n_k \ln n_k + (1 - n_k) \ln(1 - n_k))$. S and E are obtained from eigenstates ψ_m and eigenenergies E_m of H via $n_k(m) = \langle \psi_m | \hat{c}_k^+ \hat{c}_k | \psi_m \rangle$.

S(T) and E(T) are extensive and self-averaging.

This gives the implicit dependence S(E).

Dynamical thermalization in quantum computer

 $H = \sum_i \Gamma_i \sigma_i^z + \sum_{i < j} J_{ij} \sigma_i^x \sigma_j^x$, nearest-neighbor qubit pairs on 2D lattice (central band); $\Gamma_i = \Delta_0 + \delta_i$, $|J_{ij}| \le J$; $J_c \approx 4\delta/n$ - chaos border

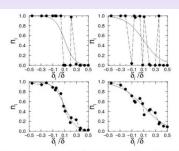


Fig. 5. Same as in Figure 4 but for a given random realization and a single eigenstate for n=16 qubits (left: m=5; right: m=100). Top left: $J=0.03\delta$, $T_{\rm FD}=0.08\delta$, $\delta E=0.25\delta$, $\delta_{\rm a}=0.23$; top right: $J=0.03\delta$, $T_{\rm FD}=0.15\delta$, $\delta E=0.97\delta$, $\delta_{\rm a}=0.23$; top tight: $J=0.03\delta$, $T_{\rm FD}=0.09\delta$, $\delta E=0.97\delta$, $\delta_{\rm a}=0.85$; bottom left: $J=0.3\delta$, $T_{\rm FD}=0.09\delta$, $\delta E=0.97\delta$, $\delta_{\rm a}=0.98\delta$,

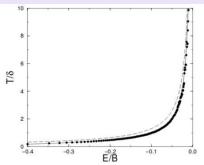
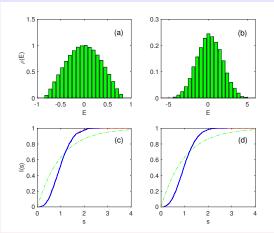


Fig. 8. Dependence of different definitions of temperature T on the scaled energy E/B, for n=16, $J=0.3\delta$, $N_{\rm D}=2$: $T_{\rm FD}$ (circles), $T_{\rm can}$ (full curve), and $T_{\rm th}$ (dashed curve).

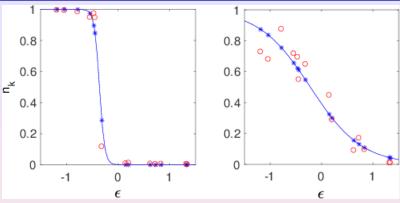
Benenti et al. EPJD 17, 265 (2001) [now 10 years later ETH]

Wigner-Dyson (RMT) level spacing statistics



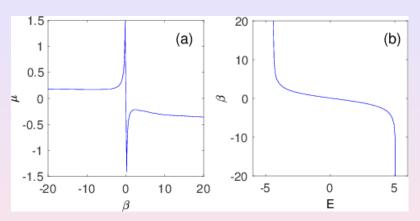
Top row: density of states $\rho(E)=dN(E)/dE$. Bottom row (c,d): integrated statistics $I(s)=\int_0^s ds' P(s')$; Poisson case $P_P(s)$ (green), Wigner surmise $P_W(s)=32s^2\exp(-4s^2/\pi)/\pi^2$ (red) and numerics P(s) for central energy region with 80% of states (blue); M=14, L=6, N=3003, and J=1, V=0, g=0 (a,c) and $J=1, V=\sqrt{14}, g=\sqrt{14}$ (b;d).

Quantum dot regime ($g \gg 1$)



Dependence of filling factors n_k on energy ϵ for individual eigenstates obtained from exact diagonatization of (red circles) and from Fermi-Dirac ansatz with one-particle energy ϵ (blue curve); blue stars are shown at one-particle energy positions $\epsilon = \epsilon_k$). Here $M = 14, L = 6, N = 3003, J = 1, V = \sqrt{14}$ and eigenenergies are E = -4.4160 (left), -3.0744 (right); the theory (blue) is drown for the temperatures corresponding to these energies $\beta = 1/T = 20$ (left), 2 (right).

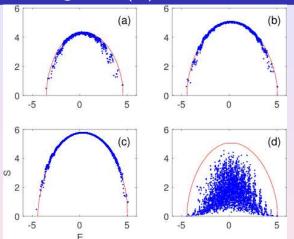
Quantum dot regime $\mu(T)$, E(T)



Dependence of inverse temperature $\beta = 1/T$ on energy E (right) and chemical potential μ on β (left) given by the Fermi-Dirac ansatz for the set of one-particle energies ϵ_k as in above Fig.

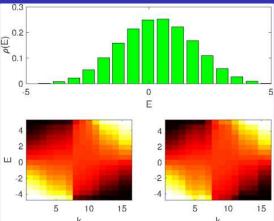
Negative temperatures T < 0.

Quantum dot regime S(E)



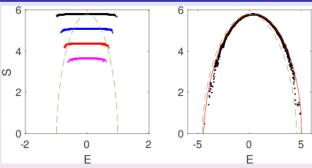
(a) M = 12, L = 5, N = 792, J = 1; (b) M = 16, L = 7, N = 3003, J = 1; (c) M = 14, L = 6, N = 11440, J = 1; (d) M = 16, L = 7, N = 3003, J = 0.1. Blue points show the numerical data E_m , S_m for all eigenstates, red curves show the Fermi-Dirac thermal distribution; $V = \sqrt{14}$. $S(E = 0) = -L \ln(L/M)$ (equipartition).

Fermi-Dirac distribution for quantum dot



Top: $\rho(E)$ vs. $E(\int \rho(E)dE = 1)$. Bottom: occupations $n_k(E)$ of one-particle orbitals ϵ_k given by the Fermi-Dirac distribution (left), and by their numerical values obtained by exact diagonalization (right); n_k are averaged over all eigenstates in a given cell. Colors: from black for $n_k = 0$ via red, yellow to white for $n_k = 1$; orbital number k and eigenenergy E are shown on E and E axes respectively; E and E are shown on E and E axes respectively; E and E axes E and E axes E axe

SYK black hole regime S(E)



S(E) for SYK black hole at V=0 (left) and quantum dot regime $V=\sqrt{14}$ (right); M=16, L=7, N=11440 (black), M=14, L=6, N=3003 (blue), M=12, L=5, N=792 (red), M=10, L=4, N=210 (magenta); here J=1. Points show numerical data E_m , S_m for all eigenstates, the full red curve shows FD-distribution (right). Dashed gray curves in both panels show FD-distribution for a semi-empirical model of non-interacting quasi-particles for black points case. Here $S(E=0)\approx L \ln 2$; $L\approx M/2$. Semi-empirical model: non-interacting particles on orbital energies ϵ_k reproducing many-body density of states

Low energy excitations: quantum dot vs. SYK

Quantum dot: $\Delta E \propto 1/L^{3/2}$; SYK black hole: $\Delta E \propto \exp(-cL)$

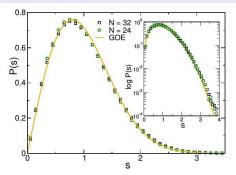


FIG. 5. Level spacing distribution P(s) resulting from exact diagonalization of the SYK Hamiltonian Eq. \blacksquare for N=32 and 400 realizations (squares) and N=24 and 10000 realizations (circles). We only consider the infrared part of the spectrum, about 1.5%, which is related to the gravity-dual of the model. As in the bulk of the spectrum \blacksquare 0 \blacksquare 1, we observe excellent agreement with the Wigner surmise for the Gaussian Orthogonal Ensemble (GOE). This strongly suggests that full ergodicity, typical of quantum systems described by random matrix theory, is also a universal feature of quantum black holes.

Models with low energy chaos

Classical color dynamics of homogeneous Yang-Mills fields:

$$H = (p_x^2 + p_y^2 + p_z^2 + x^2y^2 + x^2z^2 + y^2z^2)/2$$

Lyapunov exponent $\Lambda \approx 0.4 H^{1/4}$ - Chirikov, DS JETP Lett. 34, 183 (1981) (also Matinyan, Savvidi ZhETF 80, 830 (1981))

Quantum compacton vacuum (quantum Newton's cradle):

$$H = \sum_{l} p_{l}^{2}/2 + \alpha (x_{l} - x_{l-1})^{n}/n$$

for n > 2 classical dynamics is chaotic at $H \to 0$;

classical Newton's cradle n = 2.5;

quantum case $n = 4 \rightarrow$ phonon-like excitations above quantum vacuum Zhirov, Pikovsky, DS PRE 83, 016202 (2011);

cold atoms experiment Kinoshita, Wenger, Weiss Nature 440, 900 (2006)

(Quantware group, CNRS, Toulouse)

Discussion

SYK black hole:

interesting model without evident quasi-particles, strongly interacting many-body system

Possible experiments:

quantum dots at $g \ll 1$ (Kvon et al. IFP RAS 1998); ions in optical lattices (Vuletic MIT 2016)

Possible extentions to higher dimensions...

Isolated black holes:

no heat bath, only dynamical thermalization is possible