Kolmogorov turbulence defeated by Anderson localization

with L.Ermann, E.Vergini (CNEA Buenos Aires)
 PRL 119, 054103 (2017) + ...

 532.507ЛОКАЛЬНАЯ СТРУКТУРА ТУРБУЛЕНТНОСТИ В НЕСЖИМАЕМОИ вЯЗКОЙ ЖИДкостИ ПРИ ОЧЕНЬ БОЛЬШИХ ЧИСЛАХ РЕИНОЛЬДСА *)

A. H. Fo.amozopos

§ 1. Будем обозначать через

$$
U_{\alpha}(P)=U_{\alpha}\left(x_{1}, x_{2}, x_{3}, t\right), \quad \alpha=1,2,3
$$

компоненты скорости в момент времени t в точке с прямоугольными декартовыми координатами x_{1}, x_{2}, x_{3}. При изучении турбулентности естественно считать компоненты скорости $U_{\alpha}(P)$ в каждой точке $P=\left(x_{1}, x_{2}, x_{3}, t\right)$
${ }^{*}$) $\quad . \quad$ ДАН СССР 30 (4), 299 (1941).
VE. Zakharov vs. Lvov
G. Falkowich
Kolmogorov Spectra
of Turbulence I
Wave Turbulence
with hemems

Kolmogorov (1941) - energy flow over space scales $E_{k} \propto 1 / k^{5 / 3}$; Zakharov-Filonenko (1967) capilary waves $E_{k} \propto 1 / k^{7 / 4} \rightarrow$ "In the theory of weak turbulence nonlinearity of waves is assumed to be small; this enables us, using the hypothesis of the random nature of the phase of individual waves, to obtain the kinetic equation for the mean square of the wave amplitudes"; extentions \rightarrow Zakharov, L’vov, Falkovich(1992); Nazarenko(2011)

Energy equipartition over degrees of freedom

Соответственно теплоемкость $c_{p}=c_{v}+1$ равна

$$
\begin{equation*}
c_{p}=\frac{l+2}{2} \tag{44,2}
\end{equation*}
$$

Таким образом, чисто классический идеальный газ должен обладать постоянной теплоемкостью. Формула $(44,1)$ позволяет при этом высказать следующее правило: на каждую переменную в энергии $\varepsilon(p, q)$ молекулы приходится по равной доле $1 / 2$ в теплоемкости c_{v} газа ($k / 2$ в обычных единицах), или, что то же, по равной доле $T / 2$ в его энергии. Это правило называют законом равнораспределения.

Имея в виду, что от поступательных и вращательных степеней свободы в энергию $\varepsilon(p, q)$ входят только соответствующие им импульсы, мы можем сказать, что каждая из этих степеней свободы вносит в теплоемкость вклад, равный $1 / 2$. От каждой же колебательной степени свободы в энергию $\varepsilon(p, q)$ входит по две переменных (координата и импульс), и ее вклад в теплоемкость равен 1.

Nauka Moscow (1976)
Dynamical thermalization in finite isolated systems?
Fermi-Pasta-Ulam (FPU) problem (1955)
Chirikov criterion for onset of chaos (1959)
Novosibirsk => FPU: Izrailev, Chirikov Dokl. Akad. Nauk SSSR 166: 57 (1966) Integrability of nonlinear Schrödinger equation
Zakharov, Shabat, Zh. Eksp. Teor. Fiz. 61: 118 (1971) + Toda lattice (1967)

Dynamical thermalization in finite systems

Planck's law (1900); Fermi-Pasta-Ulam problem (1955);
Bose-Einstein condensate (BEC) in Sinai-oscillator trap (2016) (left to right) Ketterle group PRL (1995) => BEC in Sinai oscillator (not understood; 3d)

Chaos in Sinai oscillator

$H_{s}=\left(p_{x}^{2}+p_{y}^{2}\right) / 2+x^{2} / 2+y^{2}$, disk $r_{d}=1$ at $x=y=-1 ; E=2,18$ (left, right)

BEC in Sinai oscillator

Gross-Pitaevskii equation (GPE or NSE)
The BEC evolution in the Sinai oscillator trap is described by the GPE, which reads as

$$
\begin{align*}
i \hbar \frac{\partial \psi(\vec{r}, t)}{\partial t}= & -\frac{\hbar^{2}}{2 m} \vec{\nabla}^{2} \psi(\vec{r}, t) \\
& +\left[\frac{m}{2}\left(\omega_{x}^{2} x^{2}+\omega_{y}^{2} y^{2}\right)+V_{d}(x, y)\right] \psi(\vec{r}, t) \\
& +\beta|\psi(\vec{r}, t)|^{2} \psi(\vec{r}, t) \tag{2}
\end{align*}
$$

Here in (2), we use the same oscillator and disk parameters as in (1) and take $\hbar=1$. The wave function is normalized to unity $W=\int|\psi(x, y)|^{2} d x d y=1$. Then, the parameter β describes the nonlinear interactions of atoms in BEC. All

Quantum chaos in Sinai oscillator

Wigner-Dyson level spacing statistics

Eigenstates at $\beta=0$; ground state $m=1$ and $m=24$
Bose-Einstein anzats: $\left.\rho_{m}=1 /\left[\exp \left(E_{m}-E_{g}-\mu\right) / T\right)-1\right]$;
$\rho_{m}=<\left|\psi_{m}\right|^{2}>, \sum_{m} E_{m} \rho_{m}=E, S=-\sum_{m} \rho_{m} \ln \rho_{m} \rightarrow S(E)$

Bose-Einstein anzats for dynamical thermalization

first 50 states; Sinai osc (dots), no disk (X); 500/1500 <t<1500/2500 (top/bottom); Bose-Einstein anzats (dashed) \rightarrow no energy equipartition

Bose-Einstein anzats

temperature and chemical potential dependence on energy $(\beta \equiv 4)$

BEC time evolution

$\beta=4$ various initial states

BEC in Sinai-oscilator trap with driving

FIG. 1. Classical time evolution of average energy $\langle E\rangle$ and its standard deviation σ for $f=0.4$. The data are obtained from 10^{4} trajectories with random initial conditions at $\langle E\rangle=1$ and $\sigma=0.5$. Top panel: $\langle E(t)\rangle$ and $\sigma(t)$ are shown by black and red (gray) curves, respectively. Bottom panels show probability distribution of trajectories $\rho(E, t)$ for (a) $t=10,50$ [blue (black),
$H=H_{S}\left(x, y, p_{x}, p_{y}\right)+f x \sin \omega t$ (classical dynamics)

Energy flow to high modes

FIG. 2. Time evolution of M (top panel) and energy E (bottom panel) for GPE (2) averaged over time intervals $\Delta t=1$. The initial state is the ground state of (2) at $\beta=0, f=0$ [see Fig. 5(a) in Ref. [28]]. Both panels show the cases of $f=0.4, \beta=0$ (black solid lines), $f=0.4, \beta=1.5$ [red (gray) dotted lines], $f=0.4$, $\beta=5$ [orange(gray) dashed lines], $f=2, \beta=0$ [blue (gray) dotdashed lines].
$\bar{M}=\sum_{k} k \rho_{k} ; \ell_{\phi} \approx 2 \pi \rho_{c}(D / \omega)^{2} \approx 2 f^{2} \omega_{x}^{2} E^{3 / 2} / \omega^{4}$ (ground state); Anderson photonic localization $\rho_{k} \propto \exp \left(-2 E / \omega \ell_{\phi}\right)$ for $\beta=0, t_{\underline{\underline{2}}}<f_{c} \approx 1.5$

Energy flow to high modes

FIG. 3. Top panel shows M as a function of driven force f for linear case $(\beta=0)$. Bottom panels show probability distribution ρ_{k}, averaged over time interval $\Delta t=5$, as a function of eigenenergies E_{k} with $t=10$ in black solid lines, $t=50$ in the red (gray) dashed lines, and $t=250$ in blue (gray) dotted lines. Left, center, and right bottom panels show the cases of $f=0.4,2$, and 3 , respectively [highlighted with orange (gray) circles in top panel].

FIG. 4. Same as in bottom panels of Fig. 3 for $f=0.3$, $\beta=1.5$ (left panel); $f=0.5, \beta=5$ (center panel); $f=1, \beta=5$ (right panel).
M and probability distributions ρ_{k}; left $\rightarrow \beta=0$;
right $f=0.3, \beta=1.5, f=0.5, \beta=5, f=1, \beta=5$

Turbulence phase diagram

$$
\begin{equation*}
f_{c} r_{d} / \hbar \omega_{x} \approx 1.5\left[1-\beta_{c} /\left(6 \hbar \omega_{x} r_{d}^{2}\right)\right] \tag{3}
\end{equation*}
$$

FIG. 5. Number of modes M shown by color (grayness) in the plane of parameters f and β (average is done in the time intervals $100 \leq t \leq 150$ and $250 \leq t \leq 300$ in left and right panels, respectively). The approximate separation of KAM or insulator phase (KAM) and delocalized turbulent or metallic phase (TB) is shown by the white line (3).

Thus there is a stability domain where the Kolmogorov flow from large to small scales is defeated by the Anderson localization and KAM-integrability

Quantware Localization Kaleidoscope

$$
\begin{equation*}
\mathrm{i} \frac{\partial \psi_{n_{x} n_{y}}}{\partial t}=E_{n_{x} n_{y}} \psi_{n_{x} n_{y}}+\beta\left|\psi_{n_{x} n_{y}}\right|^{2} \psi_{n_{x} n_{y}}+\left(\psi_{n_{x}+1 n_{y}}+\psi_{n_{x}-1 n_{y}}+\psi_{n_{x} n_{y}+1}+\psi_{n_{x} n_{y}-1}\right) \tag{6}
\end{equation*}
$$

Periodic boundary conditions are used for the $N \times N$ square lattice with $-N / 2 \leqslant n_{x}, n_{y} \leqslant N / 2$. However, here we use the extended version of this model assuming that

$$
\begin{equation*}
E_{n_{x} n_{y}}=\delta E_{n_{x} n_{y}}+f\left(n_{x}^{2}+n_{y}^{2}\right), \quad-W / 2 \leqslant \delta E_{n_{x} n_{y}} \leqslant W / 2(M 3) . \tag{7}
\end{equation*}
$$

This is the $M 3$ model with random values of energies $\delta E_{n_{x} n_{y}}$ in a given interval.

Nonlinear chains with disorder: 8×8 sites, $f=1, W=2, \beta=1,4$ (left, center); quantum Gibbs anzats (right); $t=2 \times 10^{6}$ (Ermann, DS NJP (2013))

Quantware Localization Kaleidoscope

Two interaction particles (TIP) in 1d Anderson model: K.Frahm EPJB (2016)

Eur. Phys. J. B (2016) 89: 115

Fig. 15. Dependence of $L_{2}(U) / L_{2}(0)$ on U for $E=0$ (left panels) and $E=1$ (right panels) and the disorder values W used in Figure 11 with $W=0.5$ for the top red curves and increasing values of W corresponding to decreasing curves. Here $L_{2}(U)$ represents the infinite size localization length obtained by finite size scaling for the interaction strength U. Top panels

Quantware Localization Kaleidoscope

TIP in 1d (fig), 2d Harper model: Frahm, DS EPJB (2015), (2016)

Total lattice size $N=10946$, Harper amplitude $\lambda=2.5>2$ (localized phase); TIP eigenstates at Hubbard interaction $U=4.5$ (left), $U=7.8$ (right); zoom 100×100 at $x=0 ; x=5000$.

Quantware Localization Kaleidoscope

Anderson transition for Google matrix eigenstates (Zhirov, DS Ann. der Phys. (2015))

Google matrix with complex spectrum λ and IPR values of eigenstates ($N=19600$), mobily edge in a complex plane?

Quantware Localization Kaleidoscope

Quantum chaos of dark matter in the Solar System (DS arXiv (2017))

FIG. 2: (Color online) Dependence of DMP escape (ionization) time ${ }_{I}$ from the SS as a function of mass ration m_{d} / m_{e} for initial DMP energy $E_{d}=-m_{d} v_{J}^{2} / 2$. The blue/black horizontal line shows regime of classical escape due to chaos, red/gray curve shows $t_{I} \sqrt{9}$ in the regime of Anderson localization of quantum photonic transitions, violet line shows t_{i} 10] in the regime of 1,2 and 3 photon escape; horizontal dashed line marks the life time of Universe t_{U}.

Anderson photonic localization for $m_{d} / m_{e}<2 \times 10^{-15}$; localization length in number of Jupiter photons is $\ell_{\phi} \approx 2 \times 10^{34}\left(m_{d} / m_{e}\right)^{2}$.

Discussion

Interplay of Anderson localization and interactions?
Interplay of Anderson localization and nonlinearity?
Conditions of dynamical thermalization?
not too weak and not too strong interactions
Åberg criterion: two-body matrix element should be larger than the spacing between directly coupled states
S.Åberg PRL 64, 3119 (1990); later Jacquod, DS PRL (1997)
(now called Many-Body Localization (MBL) and Eigenstate Thermalization Hypothesis (ETH))

New twist: Dynamical localization for quantum dots and SYK black holes (Kolovsky, DS EPL (2016))
quantum dot $\rightarrow \delta E \approx g^{2 / 3} \Delta$
SYK black hole \rightarrow ?

