Wigner crystal thermoelectricity, diode and quantum computing

Dima Shepelyansky www.guantware.ups-tlse.fr/dima

with D.Demidov (RAS Kazan), J.Lages (UTINAM Besancon), M.Zakharov (U Kazan), O.Zhirov (BINP Novosibirsk)

- Frenkel-Kontorova model and Wigner crystal in a periodic potential; Chirikov standard map; Aubry pinned phase
- Thermoelectricity with high figure of merit (ZT ≈ 8)
- Diode charge transport in asymmentric periodic potential
- Quantum computer with electrons on a liquid helium in the Aubry pinned phase?

Support: LABEX NEXT THETRACOM project (disruptive)

Thermoelectricity at nanoscale: theoretical models

Left: A.F.loffe book (1956) Center: figure of merit *ZT* with time (A.Majumdar Science **303**, 777 (2004)) Right panel: ZT diagram (Zhirov, DS EPL **103**, 68008 (2013))

Early works

from Y.Imry (Weizmann Inst) talk at Inst. H. Poincaré, Paris (2012)

Early works

Dil burning lamp powering a radio using the first commercial thermoelectric generator containing ZnSb built in USSR, circa 1948

from Y.Imry (Weizmann Inst) talk at Inst. H. Poincaré, Paris (2012)

Main characteristics

Seebeck coefficient:

 $S = \Delta V / \Delta T = \pi^2 k_B^2 T[(d \ln \sigma / dE)]|_{E_E} / e$ (Mott relation (1958))

For 2DEG with Wiedemann-Franz law: $S = 2\pi k_B^2 Tm/(3eh^2 n_e)$;

typical value $S \approx 10 \mu V/K$ at T = 0.3K, $n_e = 4 \cdot 10^{10} cm^{-2}$

Thermoelectric figure of merit $ZT = \sigma S^2 T / \kappa$, thermoefficiency $\eta_{max} = \eta_{Carnot}(\sqrt{ZT+1}-1)/(\sqrt{ZT+1}+1)$ thermal conductivity $\kappa = \kappa_{el} + \kappa_{phonon}$ (heat flux $Q = -\kappa \bigtriangledown T$) (Quantware group, CNRS, Toulouse)

Experiments on Seebeck coefficient for 2DEG

FIG. 5. (Color online) (a) S vs n_i for 0.28 K < T < 0.7 K. The broken green line shows S_d [Eq. (2)] at 0.28 K. Inset: ρ_{2DES} vs n_s at the same T values; there is little T dependence in this range. (b) Low-T linear variation of S. Inset: Descriptions based on variable-ranged hopping, where S is expected to decay to zero as $T^{1/3}$, do not adequately describe the observed data.

V.Narayan, S.Goswami, M.Pepper et al. PRB **85**, 125406 (2012) In dimensionless units $S = 10 mV/K \approx 100 \gg 1$ ($e = k_B = 1$)

ZT in SnSe

Figure 1 | SnSe crystal structure *Pnma* and *ZT* values. a, Crystal structure along the *a* axis: grey, Sn atoms; red, Se atoms. b, Highly distorted SnSe₇ coordination polyhedron with three short and four long Sn–Se bonds. c, Structure along the *b* axis. d, Structure along the *c* axis. e, Main panel, *ZT* values along different axial directions; the *ZT* measurement uncertainty is about 15% (error bars). Inset images: left, a typical crystal; right, a crystal cleaved along the (00) plane, and specimens cut along the three axes and corresponding measurement directions. Inset diagram, how crystals were cut for directional measurements; *ZT* values are shown on the blue, red and grey arrows; colours represent specimens oriented in different directions.

Li-Dong Zhao et al. (Illinois) Nature **508**, 373 (2014) maximal $ZT \approx 2.6$ in materials

Frenkel-Kontorova model (ZhETF 1938)

Chirikov standard map (1969-1979); Aubry transition $K > K_c = 0.9716$ (1983)

Fig. 1.1. Schematic presentation of the Frenkel-Kontorova model: A chain of particles interacting via harmonic springs with elastic coupling g is subjected to the action of an external periodic potential with period a_s .

Introducing the dimensionless variables, we re-write the Hamiltonian (1.1)–(1.5) in the conventional form $(H = 2\mathcal{H}/\varepsilon_s)$

$$H = \sum_{n} \left\{ \frac{1}{2} \left(\frac{dx_n}{dt} \right)^2 + (1 - \cos x_n) + \frac{g}{2} \left(x_{n+1} - x_n - a_0 \right)^2 \right\},$$
(1.8)

fixed particle density $\nu = 0.618... \rightarrow$ golden KAM curve O.M.Braun and Yu.S.Kivshar, *The Frenkel-Kontorova model*... Spriner (2004)

Wigner crystal in a periodic potential

The dimensionless Hamiltonian has the form:

$$H = \sum_{i=1}^{N} \left(\frac{P_i^2}{2} - K \cos x_i \right) + \sum_{i>j} \frac{1}{|x_i - x_j|}$$
(1)

where P_i , x_i are ion momentum and position, K gives the strength of optical lattice potential and all N ions are placed in a harmonic potential with frequency ω . To make a transfer from (1) to dimensional physical units one should note that the lattice constant d in $K \cos(x_i/d)$ is taken to be unity, the energy E = H is measured in units of ion charge energy e^2/d . In the quantum case $P_i = -i\hbar\partial/\partial x_i$ with dimensionless \hbar measured in units $\hbar \to \hbar/(e\sqrt{md})$, m is charge mass.

Related map:

$$p_{i+1} = p_i + Kg(x_i), \quad x_{i+1} = x_i + 1/\sqrt{p_{i+1}},$$
 (2)

where the effective momentum conjugated to x_i is $p_i = 1/(x_i - x_{i-1})^2$ and the kick function is $Kg(x) = -K \sin x$.

For the Frenkel-Kontorova model the equilibrium positions are described by the Chirikov standard map (1969-1979): $p_{i+1} = p_i + K \sin x_i$, $x_{i+1} = x_i + p_{i+1}$ with $K_c = 0.971635...$ for the golden mean density $\nu = (\sqrt{5} + 1)/2$. I.Garcia-Mata, O.V.Zhirov, D.S. EPJD **41**, 325 (2007) $\rightarrow K_c = 0.046$ vs. $0.034_{\odot,\odot}$

Classical Wigner crystal: map, spectrum

N = 150 ions in oscillator potential (central part) at K = 0.03 (left/red), K = 0.2 (right/blue); $\nu \approx 1.618$

Density dependence of Aubry transition

Linearized approximation by the Chirikov standard map gives $K_c = 0.034 (\nu/1.618)^3$

Numerical data for number of wells L = 55, 89, 144 and varied number of electrons/ions *N* with $\nu = N/L$; red curve is from the Chirikov standard map approximation Zhirov, Lages, DS (EPJD 2019 in print)

Dynamical spin-glass in Aubry pinned phase

Quantum Monte Carlo computations

Number of equilibrium configurations N_s as a function of their relative excitation energy $\Delta U/U$ above the ground state for 50 (blue) and 150 (magenta) ions at K = 0.2 (logarithms are decimal).

Quantum melting of Wigner crystal

Formfactor of charge density $F(k) = < |\sum_{j} \exp(ikx_{j}(\tau))|^{2} >$

(a) The classical incommensurate phase at K = 0.03, $\hbar = 0$, arrows mark the peaks at integer multiples of golden mean density ν_g . (b) The pinned phase case at K = 0.2 for $\hbar = 0$ (bottom black curve), $\hbar = 0.1$ (red curve shifted 10 units upward), $\hbar = 2$ (green curve shifted 20 units upward, for clarity F(k) is multiplied by factor 5); temperature is $T = \hbar/400 \ll K$. The quantum phase transition takes place at $\hbar_c \approx 1$.

 \rightarrow SLIDING at $\nu_{\rm c1} < \nu_{\rm r}$ PINNING at $\nu < \nu_{\rm c1}$

Thermoelectricity of Wigner crystal in a periodic potential

Hamiltonian $H = \sum_{i} \left(\frac{p_{i}^{2}}{2} + K \cos x_{i} + \frac{1}{2} \sum_{j \neq i} \frac{1}{|x_{i} - x_{j}|} \right)$ Dynamic equations $\dot{p}_{i} = -\partial H / \partial x_{i} + E_{dc} - \eta p_{i} + g\xi_{i}(t)$, $\dot{x}_{i} = p_{i}$ Here the Langevin force is given by $g = \sqrt{2\eta T}$, $\langle \xi_{i}(t)\xi_{j}(t')\rangle = \delta_{ij}\delta(t - t')$; $n_{e} = \nu/2\pi$, $\nu = \nu_{g} = 1.618...$ Fibonacci rational approximates. Aubry transition at $K = K_{c} = 0.0462 =>$ KAM theory + chaos I.Garcia-Mata, O.Zhirov, DLS EPJD **41**, 325 (2007)

Seebeck coefficient

Left panel: Dependence of the Seebeck coefficient *S* on rescaled potential amplitude K/K_c at temperatures $T/K_c = 0.065, 0.11, 0.22$ and 0.65 shown by black, blue, green and red colors, respectively from top to bottom. The full and open symbols correspond respectively to chains with N = 34, M = 21and N = 55, M = 34. *Right panel*: Dependence of *S* on T/K_c at different $K/K_c = 0, 0.75, 1.5, 2.2, 3$ shown respectively by black, violet, blue, green and red points; N = 34, M = 21; the dashed gray line shows the case K = 0 for noninteracting particles. The stars show corresponding results from left plane at same *N*, *M*. Dotted curves are drown to adapt an eye. Here and in other Figs. the statistical error bars are shown when they are larger than the symbol size. Here $\eta = 0.02$.

Conductivity and thermal conductivity

Left panel: Rescaled electron conductivity σ/σ_0 as a function of K/K_c shown at rescaled temperatures $T/K_c = 0.065$, 0.22, 0.65 by black, green and red points respectively. *Right panel*: Rescaled thermal conductivity κ/κ_0 as a function of K/K_c shown at same temperatures and colors as in left panel. Here we have N = 34, M = 21, $\eta = 0.02$, $\sigma_0 = \nu_g/(2\pi\eta)$, $\kappa_0 = \sigma_0 K_c$.

ZT dependence on parameters $\nu \approx 1.618$

Dependence of ZT on K/K_c and T/K_c shown by color changing from ZT = 0 (black) to maximal ZT = 4.5 (light rose); contour curves show values ZT = 1, 2, 3, 4. Here $\eta = 0.02$, N = 34, M = 21.

ZT dependence on parameters $\nu \approx 0.618$

Dependence of ZT on K/K_c at different temperatures $T/K_c = 0.25$ (black), 0.5 (blue), 1 (green), 1.5 (brown), 2 (red). Here there are N = 21 ions in L = 34 periods with $N/L \approx \nu \approx 0.618$.. in the center; $K_c = 0.002$.

Wigner crystal diode in 2D

Left: 1D potential profile in 2D $V = K(\sin x + 0.4 \sin 2x - \cos y)$; Right: Wigner crystal velocity v_W in *dc*-field E_{dc} $\nu = N/L = 34/55$ (5 stripes in *y*)

Wigner crystal diode in 2D

Color: rescaled Wigner crystal velocity v_W/v_0 at different *dc*-field E_{dc} and rescaled temperature T/K_c ; $K_c = 0.0462$, $\eta = 0.1$, $v_0 = E_{dc}/\eta$; $\nu = N/L = 34/21$ (5 stripes in *y*) Zakharov, Demidov, DS PRB (2019)

Ion quantum computers

Cirac-Zoller 1995 proposal; experiments Wineland, Blatt et al 1995-2008; Haroche-Wineland Nobel prize 2012 for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems: oscillator global trap, a few micron ion distance, individual ion access by laser; two-qubit gate by laser pulses and recoil transfer between ions

2018: 100 ions routinely kept for hours (Monroe U Maryland arXiv2018)

Figure 5. Linear chain of 121 171 Yb⁺ ions. In this case $\omega_y/2\pi = 1.5$ MHz and $\omega_x/2\pi = 35$ kHz. The axial confinement has been relaxed to resolve all the center ions

From 2019: 5 arXiv-Nature-Science preprint/articles (IonQ-Maryland-Innsbruck) on quantum computing with up to 11 qubits; best gate fidelity is 99.9999% (1-qubit), 99.9% (2-qubit)

Problem of Large scale quantum computers: Cirac-Zoller 1995 scheme is NOT scalable

Gap dependence on number of ions

Minimal phonon excitation frequency $\omega_0(K)$ as a function of potential stength K for the golden mean density $\nu = \nu_g = 1.618...$ and number of ions N = 50 (blue squares, $\omega_{tr} = 0.014$); N = 150 (magenta circles, $\omega_{tr} = 0.00528$); N = 300 (red triangles, $\omega_{tr} = 0.00281$); the critical point of Aubry transition at $K \approx 0.05$ is marked by arrow; inset shows data near K_c . DS arXiv (2019), DS et al. EPJD (2007)

Experiments for Aubry transition, quantum gates, phonon modes

* Experiments:

Vuletic group (MIT) (Nature Mat. (2016) 5 ions) Mehlstaubler group (PTB DE, Nature Comm. (2017)) Drewsen group (Aarhuss U DK PRA (2019) Paul trap 8 ions)

* Quantum gates are performed by laser pulses assuming harmonic motion of ions; in reality we have a quantum many-body interacting systems and numerical modeling of gates should take into account properties of quantum low energy excitations \rightarrow advanced methods of quantum chemistry

* Towards analysis of low energy phonon modes and modeling the accuracy of quantum gates with numerical simulations (Aubry-Andre localization; Anderson localization)

* Experimental progress with microtrap arrays (about 30 micron spacing)

Physical picture in oil ...

* - Experimental observation of Aubry transition with cold ions in a periodic optical lattice by Vuletic group (MIT) Nat. Mat. **11**, 717 (2016)

* - A lot of numerical computations for different materials
(e.g. Kozinsky et al. (Bosch-Harvard) Jour. Appl. Phys. 119 205102 (2016))
BUT ELECTRON-ELECTRON INTERACTIONS
ARE NOT TREATED CORRECTLY
=> NEW CHALLENGE FOR MATERIAL-COMPUTER SCIENCE

- * Interacting electrons in presence of incommensurate density ?
- * Aubry pinned phase with electrons on liquid helium (Rees, Yeh, Lee, Kono, Lin PRB **96**, 205438 (2017); Lin, Smorodin, Badrutdinov, Konstantinov J.Low.Temp.Phys. (2018))
- * Quantum computer with electrons on liquid helium in the Aubry phase (extending proposal of Platzman, Dykman Science (1999))
- * TWO POSSIBLY USEFUL POINTS OF AUBRY PHASE: THERMOELECTRICITY AND QUANTUM COMPUTING