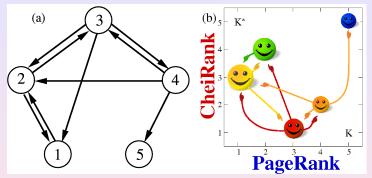
Influence of petroleum and gas trade of Russia on EU economies from the Google matrix analysis of UN COMTRADE data

Dima Shepelyansky (Quantware group, LPT CNRS, Toulouse) www.quantware.ups-tlse.fr/dima


with S.Coquide, J.Lages (U Besancon), L.Ermann (CNEA TANDAR)

* Markov (1906) \rightarrow Brin and Page (1998) \rightarrow Google matrix and search engines * Applications: multiproduct world trade networks (UN COMTRADE), Wikipedia Ranking of World Universitis (WRWU) ... Support: EC FET Open NADINE (2012-2015), APLIGOOGLE-CNRS (2016-2017), LABEX NEXT (2017-2020) + thanks to UN COMTRADE

Google matrix construction rules

Markov chains (1906) and Directed networks

For a directed network with *N* nodes the adjacency matrix **A** is defined as $A_{ij} = 1$ if there is a link from node *j* to node *i* and $A_{ij} = 0$ otherwise. The weighted adjacency matrix is

$$S_{ij} = A_{ij} / \sum_k A_{kj}$$

In addition the elements of columns with only zeros elements are replaced by 1/N.

Google matrix construction rules

Google Matrix and Computation of PageRank $P = SP \Rightarrow P$ = stationary vector of S; can be computed by iteration of S.To remove convergence problems:

• Replace columns of 0 (dangling nodes) by $\frac{1}{N}$:

	(0	1/2	1/3	0	1/5	$t \sim 1$	(0	1/3	0	0	0 \
	1	0	1/3	1/3	$\left. \frac{1/5}{1/5} \right)$		1/2	0	1/2	0	0
S =	0	1/2	0	1/3	1/5	$S^* =$	1/2	1/3	0	1	0
	0	0	1/3	0	1/5		0	1/3	1/2	0	1
	0 /	0	0	1/3	1/5 /	$S^* =$	0 /	0	0	0	0/

• To remove degeneracies of $\lambda = 1$, replace **S** by **Google matrix**

 $\mathbf{G} = \alpha \mathbf{S} + (\mathbf{1} - \alpha) \frac{\mathbf{E}}{N}$; $GP = \lambda P$ => Perron-Frobenius operator

- α models a random surfer with a random jump after approximately 6 clicks (usually α = 0.85); PageRank vector => P at λ = 1 (Σ_i P_j = 1).
- CheiRank vector P*: G* = αS* + (1 − α)^E/_N, G*P* = P*
 (S* with inverted link directions) → K − K* PageRank-CheiRank index Chepelianskii arXiv:1003.5455 (2010) ...

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・

Computation algorithms

* PageRank vector by power iteration:

multiplication of initial random vector by *G* matrix; convergence to $\lambda = 1$ eigenvector as α^t , about t = 200 iterations are enough for double precision convergence (all eigenvalues have $|\lambda| \le \alpha < 1$ except $\lambda = 1$); on average there are only about 10-20 nonzero links for each node (about 20 multiplications of vector by a line of matrix)

- \rightarrow small-world structure of real networks or six degrees of separation (Milgram Psychology Today (1967));
- * Arnoldi algorithm: eigenvalues with largest $|\lambda|$ and related selected eigenvectors corresponding to quasi-isolated communities.
- * REGOMAX Reduced Google matrix: description of interactions of subset of selected nodes in a huge network

* GPU codes for reduced Google matrix: 100 times acceleration compared to one-processor computer; collaboration with

Denis Demidov (Russian Academy of Sciences, Kazan; see

https://github.com/ddemidov for GPU oriented codes)

What is the central bank of Wikipedia ?

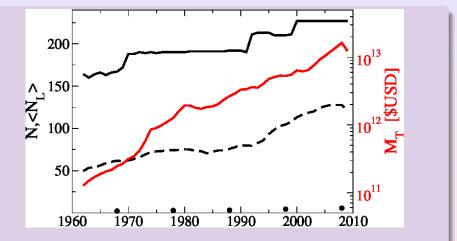
by D.Demidov, K.M.Frahm, DS Physica A v.542, p.123199 (2020)

Directed networks analyzed

* Wikipedia editions: EN (2009) N = 3282257;

24 editions Wiki2013: *N* = 4212493 EN, *N* = 1532978 DE, *N* = 1352825 FR 24 editions Wiki2017: *N* = 5416537 EN, *N* = 2057898 DE, *N* = 1866546 FR

- * Entier Twitter (2009): N = 41 millions
- * Entier Phys. Rev. citation network(1893-2009): N = 460422

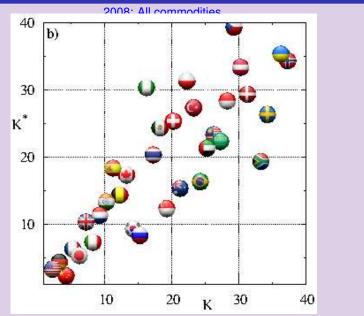

* World Trade Network (WTN) from UN COMTRADE about 50 years: N = 227 for all commodities; multiproduct trade with 61 products N = 13847; available with 5000 products and $N \approx 1$ million

- * Bitcion network transactions (beginning 2009 till April 2013): N = 6297009
- * Linux Kernel network: N = 285509
- * UK university networks till 2006: U Oxford, Cambridge $N \approx 200000$
- * Network of protein-protein interactions for cancer: $N \approx 3000$

see Ermann, Frahm, DS Rev Mod Phys (2015) ALL PUBS: http://www.quantware.ups-tlse.fr/dima/subjgoogle.html

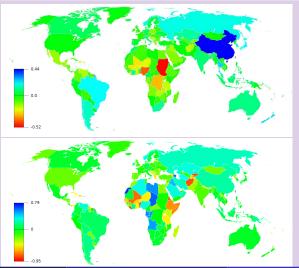
・ロト ・回ト ・ヨト ・ヨト

World trade network (WTN) of United Nations COMTRADE 1962-2010

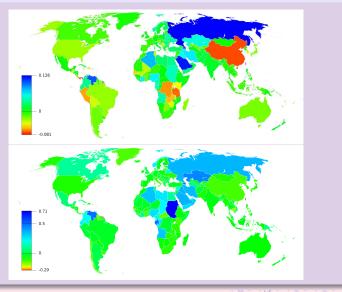


Number of countries (black), links (dashed/points) and mass volume in USD (red)

Leonardo Ermann, DS arxiv:1103.5027 (2011); EPJB (2015)

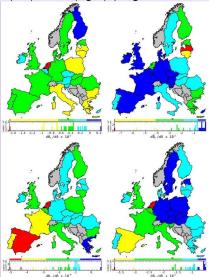

(Quantware group, CNRS, Toulouse)

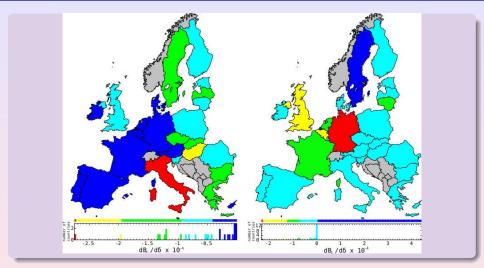
Ranking of World Trade


CheiRank-PageRank balance (2008)

 $B_c = (P_c^* - P_c)/(P_c^* + P_c)$ (top - CheiRank-PageRank; bottom -Export-Import volume; multiproduct world trade $N_c = 227 countries, N_p = 61 products, N = 13847 ==> UN COMTRADE)$

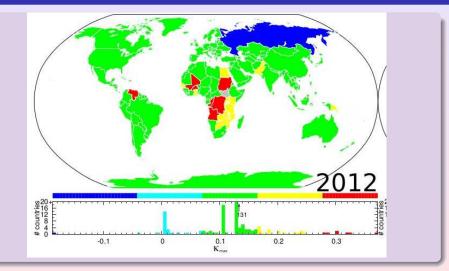
Sensitivity to petrolem price (2008)


 $B_c = (P_c^* - P_c)/(P_c^* + P_c)$, color => $dB_c/d\delta_{petroleum}$)


(Quantware group, CNRS, Toulouse)

EU sensitivity to petrolem price (2016)

Top: RU (Page-Chei-Rank - left); RU (Import-Export - right) Bottom: Saudi Arabia (left), USA (right) (Page-Chei-Rank)



EU sensitivity to gas price (2016)

Balance derivative $dB_c/d\delta$ from gas price increase from Russia (left), Norway (right)

Model of crisis contagtion in the world trade network of (UN COMTRADE 2012)

Blue - stable; red - bankruptcy

(Quantware group, CNRS, Toulouse)

Ref.1 L.Ermann and D.L.Shepelyansky, "Google matrix of the world trade network", Acta Physica Polonica A v.120(6A), pp. A158-A171 (2011) Ref.2 L.Ermann and D.L.Shepelyansky, "Google matrix analysis of the multiproduct world trade network", Eur. Phys. J. B v.88, p.84 (2015) Ref.3 C.Coquide, L.Ermann, J.Lages and D.L.Shepelyansky, "Influence of petroleum and gas trade on EU economies from the reduced Google matrix analysis of UN COMTRADE data", Eur. Phys. J. B v.92, p.171 (2019) Ref.4 C.Coquide, J.Lages and D.L.Shepelyansky, "Crisis contagion in the world trade network ", submitted to Springer Series 17 Feb (2020) (arXiv:2002.07100[q-fin.TR])

Articles available at http://www.quantware.ups-tlse.fr/dima/subjgoogle.html