Coulomb electron pairing in a tight-binding model of La-based cuprate superconductors

with Klaus Frahm (LPT, Univ. Paul Sabatier, Toulouse)

MAIN STATEMENT: repulsive long-range interaction creates two electron pairs in narrow band structures; PRR 2, 023354 (2020); EPJB 94, 29 (2021) Support: LABEX NANOX MTDINA project (disruptive)

Ancient interest to interactions in narrow energy bands

Correlation of Electrons in a Narrow s Band
Martin C. Gutzwiller
IBM Watson Laboratory, Columbia University, New York, New York
(Received 22 October 1964)

PROCEEDINGS THE ROYAL OF — SOCIETY

Electron Correlations in Narrow Energy Bands

J. Hubbard

Proc. R. Soc. Lond. A 1963 276, 238-257 doi: 10.1098/rspa. 1963.0204

Renewed interest due to twisted bilayer graphene

from Y.Cai et al. Nature 556, 43 (2018)

PHYSICAL REVIEW X 8, 031088 (2018)

Symmetry, Maximally Localized Wannier States, and a Low-Energy Model for Twisted Bilayer Graphene Narrow Bands

Jian Kang ${ }^{1, *}$ and Oskar Vafek ${ }^{1,2, \dagger}$

${ }^{1}$ National High Magnetic Field Laboratory, Tallahassee, Florida 32304, USA ${ }^{2}$ Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
Narrow band structure at low energies; indications on importance of electron -electron interactions (e.g. triplet pairs Y.Cao et al Nature 595, 526 (2021))

Tight-binding model for La-based cuprate superconductors

ORIGINAL PAPER

mandemphysik
www.ann-phys.org

A 3D Tight-Binding Model for La-Based Cuprate Superconductors

Raphaël Photopoulos and Raymond Frésard*
Ann. Phys. (Berlin) 2019, 1900177 (2019)

Figure 1. Illustration of $t_{p d}, t_{\sigma^{\prime}}, t_{p p}$, and $t_{\sigma^{\prime \prime}}$ in-plane hopping amplitudes.
Note that $\mathrm{t}_{p p}=\left(t_{\sigma}+t_{\pi}\right) / 2$ and $t_{\sigma^{\prime \prime}}$ are introduced using the rotated orbital basis (2p ${ }_{\xi}^{(X, Y)}, 2 p_{\eta}^{(X, Y)}$).

Table 2. In-plane tight-binding parameters set determined from LDA calculations or ARPES data and compared to the ones from the Emery model $\left(\Delta_{p d}=3.5 t_{p d}, t_{p p}=0.6 t_{p d}\right)$ and this work (parameters given in Table 1).

In-plane	t	t^{\prime} / t	$t^{\prime \prime} / t$	$t^{\prime \prime \prime} / t$	$t^{(4)} / t$
ARPES (ref. [47])	$0.25(\mathrm{eV})$	-0.09	0.07	0.105	-
ARPES (ref. [74])	$0.195(\mathrm{eV})$	-0.095	0.075	0.09	0.02
LDA (ref. [47])	$0.43(\mathrm{eV})$	-0.09	0.07	0.08	-
Emery model	$0.29\left(t_{p d}\right)$	-0.11	0.05	-0.0056	-0.0003
This work	$0.28\left(t_{p d}\right)$	-0.136	0.068	0.061	-0.017

$$
\begin{array}{r}
E_{2 D}\left(k_{x}, k_{y}\right)=-2 t\left[\cos \left(k_{x} a\right)+\cos \left(k_{y} a\right)\right] \\
-4 t^{\prime} \cos \left(k_{x} a\right) \cos \left(k_{y} a\right)
\end{array}
$$

$$
-2 t^{\prime \prime}\left[\cos \left(2 k_{x} a\right)+\cos \left(2 k_{y} a\right)\right]
$$

$-4 t^{\prime \prime \prime}\left[\cos \left(k_{x} a\right) \cos \left(2 k_{y} a\right)+\cos \left(k_{\gamma} a\right) \cos \left(2 k_{x} a\right)\right]$

Tight-binding model with nearby hoppings

The quantum Hamiltonian of the model in $d=1$ or 2 dimensions has the standard form [1-3]

$$
\begin{equation*}
H=-\sum_{\langle j, l\rangle}|j\rangle\langle l|+\sum_{j} \frac{U}{1+r(j)}|j\rangle\langle j|, \tag{1}
\end{equation*}
$$

where $j=\left(x_{1}, x_{2}\right)\left[j=\left(x_{1}, x_{2}, y_{1}, y_{2}\right)\right]$ is a multi-index for $d=1 \quad(d=2)$; each index variable takes values $x_{1}, x_{2}, y_{1}, y_{2} \in\{0, \ldots, N-1\}$, with N the linear system size with periodic boundary conditions. The first sum in (1) describes the electron hopping between nearby sites on a onedimensional (1D) (or 2D square) lattice with a hopping amplitude taken as the energy unit. The second sum in (1) represents a (regularized) Coulomb-type long-range interaction with amplitude U and the distance $r(j)$ between two electrons. For one

When interaction is much larger than a noninteracting energy band there are pairs of two electrons propagating together due to pair energy conservation; but this case is not realistic (hopping $t=1, U \gg B_{d} \approx 8 d$).

Classical chaotic dynamics of electron pair

Classical Hamiltonian and chaos

The corresponding classical dynamics in two dimensions is described by the Hamiltonian

$$
\begin{equation*}
H=-2 \sum_{\mu=1,2 ; \alpha \in\{x, y\}} \cos p_{\mu \alpha}+U_{C}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \tag{2}
\end{equation*}
$$

with $U_{C}=U /\left[1+\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}\right]$ and conjugated variables of momentum $p_{\mu x}$ and $p_{\mu y}$ and coordinates x_{μ} and y_{μ} [in one dimension we have in (2) only $p_{\mu x}$ and x_{μ}]. In one

Pairing mechanism at moderate Coulomb repulsion

Energy and momentum of pair ($p_{+x, y}=p_{1 x, y}+p_{2 x, y}$) are conserved
Writing $\quad \cos \left(p_{1 x}\right)+\cos \left(p_{2 x}\right)=2 \cos \left(p_{+x} / 2\right) \cos \left[\left(p_{2 x}-\right.\right.$ $\left.p_{1 x}\right) / 2$] (and similarly for y), we see that at given values of p_{+x} and p_{+y} the kinetic energy is bounded by $\Delta E=4 \sum_{\alpha}\left|\cos \left(p_{+\alpha} / 2\right)\right|$. Therefore, for TIP states with $E>\Delta E$, the two electrons cannot separate and they propagate as one pair. In particular, for $p_{+x}=p_{+y}=\pi+\delta$ (with $|\delta| \ll 1$) close to π, there are compact Coulomb electron pairs even for very small interactions U as soon as $\Delta E \approx 2 d|\delta|<U \ll B_{d}$, with $B_{d}=8 d+U$ the maximal energy bandwidth in d dimensions. The center of mass velocity of such pairs [in direction $\alpha \in\{x, y\}$] is $v_{+\alpha}=$ $\left(v_{1 \alpha}+v_{2 \alpha}\right) / 2=2 \cos (\delta / 2) \sin \left(p_{1 \alpha}-\delta / 2\right) \approx 2 \sin p_{1 \alpha}$ and it may be close to a maximal velocity $v_{+\alpha}=2$. Figure S1 of and there is an effective narrow energy band of width:
$\Delta E \approx 2 d|\delta|<U \ll B_{d}$ for $p_{+}=p_{y}+=\pi+\delta$.

Time evolution of 2 electrons on 2D-NxN lattice

FIG. 3. Two-dimensional wave function densities obtained from the time evolution shown at times $t=445 \Delta t$ and $10^{4} \Delta t$ in left and right panels, respectively, for initial electron positions at approximately $(N / 2, N / 2)$, with $N=128$ and $U=2\left[\Delta t=1 / B_{2}=\right.$ $1 /(16+U)$ is the Trotter integration time step]. The top panels show a close-up of the density for $(0 \leqslant \Delta x, \Delta y<32)$ in the $\Delta x-\Delta y$ plane of relative coordinates obtained from a sum over x_{1} and y_{1}. The bottom panels show the density in the $x_{1}-x_{2}$ plane obtained from a sum over y_{1} and y_{2}. The corresponding values of the probability near the diagonal w_{10} are $w_{10}=0.106$ and 0.133 for the left and right
interaction $U=2 \ll B_{d}=16+U$, Trotter integration time scheme small size of pairs (a few lattice sites, like in La-based cuprates with a pair size of about 15angstroms (e.g. Dagotto Rev. Mod. Phys. (1994)

Eigenstates of 2 electrons on 2D-NxN lattice

FIG. S7: Certain 2D (totally symmetrized) block eigenstates in $\Delta x-\Delta y$ plane for $U=2, N=128$. Top panels correspond to conserved total momentum $p_{+}=p_{+x}=p_{+y}=0$ and block level numbers $l=2143$ (left) and $l=2135$ (right). Center panels correspond to $p_{+}=21 \pi / 32 \approx 2 \pi / 3, l=2143$ (left), $l=2131$ (right). Bottom panels correspond to $p_{+}=$ $63 \pi / 64 \approx \pi, l=2072$ (left), $l=1991$ (right).
interaction $U=2 \ll B_{d}=16+U ; N=128$

Time evolution on NxN and HTC lattices

Fig. 2 2D Wavefunction density $\rho_{X X}\left(x_{1}, x_{2}\right)$ in $x_{1}-x_{2}$ plane (see Eq. (8)) obtained from the time evolution using the Trotter formula approximation for initial electron positions at $\approx(N / 2, N / 2)$ with distance $\Delta \bar{x}=\Delta \bar{y}=1$ for $N=128, U=2$ and Trotter integration time step $\Delta t=$ $1 / B_{2}=1 /(16+U)$. Top (bottom) panels correspond to the time value $t=445 \Delta t\left(t=10^{4} \Delta t\right)$ and left (right) panels correspond to the NN-lattice (HTC-lattice). The corresponding values of the pair formation probability w_{10} are 0.106 (top left), 0.133 (bottom left), 0.0940 (top right) and 0.125 (bottom right). Related videos are available at $[14,15]$
interaction $U=2 \ll B_{d}=16+U ; N=128 ; N x N / H T C$ lattice left/right

Pair size on NxN and HTC lattices

Fig. 3 2D Wavefunction density $\rho_{\text {rel }}(\Delta x, \Delta y)$ in $\Delta x-\Delta y$ plane of relative coordinates (see Eq. (9)) for the same states, cases and parameters of Fig. $2(N=128, U=2)$. All panels show the zoomed density for $0 \leq \Delta x, \Delta y<32$. Related videos are available at [14,15]
interaction $U=2 \ll B_{d}=16+U ; N=128 ; N x N / H T C$ lattice left/right; same parameters as on a previous slide

Probability of pair formation on NxN and HTC lattices

Fig. 4 Phase diagram of electron pair formation in the plane of pair momentum $\mathbf{p}_{+}=\left(p_{+x}, p_{+y}\right)$ for the NN-lattice (left panels), the HTC-lattice (right panels) and the interaction values $U=0.5$ (top panels), $U=2$ (bottom panels). Shown is the pair formation probability w_{10} for $N=192$ obtained from the exact time evolution for each sector of \mathbf{p}_{+}with an initial electron distance $\Delta \bar{x}=\Delta \bar{y}=1$ and computed from an average over 21 time values in the interval $10^{4} \leq t / \Delta t \leq 10^{6}$. In all panels the horizontal (vertical) axis corresponds to $p_{+x}\left(p_{+y}\right) \in[0, \pi]$ and the numerical values of the color bar correspond to the ratio of w_{10} 0.25 over its maximal value. The maximum values corresponding to the red region at the top right corner $\mathbf{p}_{+}=(\pi, \pi)$ are $w_{10}=1$ (both left panels), $w_{10}=0.4510$ (top right) and $w_{10}=0.8542$ (bottom right). For comparison the ergodic value is $w_{10, \text { erg. }}=(21 / 192)^{2}=0.01196$
color gives probability w_{10} of 2 electrons in a band distance 10 for NxN (left) and HTC (right) lattice

Probability of pair formation on HTC lattice

Fig. 6 Dependence of the electron pair formation probability w_{10} on $\nu=\left(1-\cos \left(p_{+} / 2\right)\right) / 2$ for $p_{+}=p_{+x}=p_{+y}$ and the HTC-model at $U=0.5,2$ and $N=256 . w_{10}$ is computed from the same long time average as in Fig. 4.

Fig. 7 Dependence of the electron pair formation probability w_{10} on $\nu=\left(1-\cos \left(p_{+} / 2\right)\right) / 2$ for $p_{+}=p_{+x}, p_{+y}=0$ and the HTC-model at $U=0.5,2$ and $N=256 . w_{10}$ is computed from the same long time average as in Fig. 4.

Optimal probability of pair formation

Fig. 10 Dependence of the electron pair formation probability w_{10} on the effective 2 D filling factor $\nu_{2 D}$ for the NN-lattice (top) and the HTC-lattice (bottom). The values of w_{10} have been obtained from the data of Fig. 4 (for $N=192$) by an average along lines of constant electron pair energy E_{c} at momenta $\mathbf{p}_{1}=\mathbf{p}_{2}=\mathbf{p}_{+} / 2$ with $p_{+x}, p_{+y} \in[0,2 \pi]$. Lowest (largest) energy corresponds to $\nu_{2 D}=0\left(\nu_{2 D}=1\right)$. The data points shown correspond to an effective histogram with bin width $\Delta \nu_{2 D} \approx 0.01$. The red (blue) curve corresponds to the interaction value $U=2(U=0.5)$ and the grey dashed line corresponds to the ergodic value $(21 / 192)^{2}=0.01196$
optimal $v_{2 D} \approx 0.2(0.8)$ for NxN and $v_{2 D} \approx 0.2(0.75)$ depending on U for HTC lattice

Discussion

* Formation of two-electron pairs by moderate Coulomb repulsion in band structures
* Relatively small size of pairs being of about 3-10 lattice spacings
* Maximal probability of pair formation at filing factor $v_{2 D} \approx 0.2(0.8)$
* Problem remaining: finite electron density case; ihomogeneous electron density at low energys and pairs near Fermi energy?

