Coulomb electron pairing in a tight-binding model of La-based cuprate superconductors

Dima Shepelyansky www.quantware.ups-tlse.fr/dima

with Klaus Frahm (LPT, Univ. Paul Sabatier, Toulouse)

MAIN STATEMENT: repulsive long-range interaction creates two electron pairs in narrow band structures; PRR **2**, 023354 (2020); EPJB **94**, 29 (2021) Support: LABEX NANOX MTDINA project (disruptive)

Ancient interest to interactions in narrow energy bands

PHYSICAL REVIEW

VOLUME 137, NUMBER 6A

15 MARCH 1965

Correlation of Electrons in a Narrow s Band

MARTIN C. GUTZWILLER IBM Watson Laboratory, Columbia University, New York, New York (Received 22 October 1964)

Electron Correlations in Narrow Energy Bands

J. Hubbard

Proc. R. Soc. Lond. A 1963 **276**, 238-257 doi: 10.1098/rspa.1963.0204

Renewed interest due to twisted bilayer graphene

from Y.Cai et al. Nature 556, 43 (2018)

PHYSICAL REVIEW X 8, 031088 (2018)

Symmetry, Maximally Localized Wannier States, and a Low-Energy Model for Twisted Bilayer Graphene Narrow Bands

Jian Kang^{1,*} and Oskar Vafek^{1,2,†}

¹National High Magnetic Field Laboratory, Tallahassee, Florida 32304, USA ²Department of Physics, Florida State University, Tallahassee, Florida 32306, USA

Narrow band structure at low energies; indications on importance of electron -electron interactions (e.g. triplet pairs Y.Cao et al Nature **595**, 526 (2021))

Tight-binding model for La-based cuprate superconductors

ORIGINAL PAPER

A 3D Tight-Binding Model for La-Based Cuprate Superconductors

Raphaël Photopoulos and Raymond Frésard*

Ann. Phys. (Berlin) 2019, 1900177 (2019)

Table 2. In-plane tight-binding parameters set determined from LDA calculations or ARPES data and compared to the ones from the Emery model $(\Delta_{nd} = 3.5t_{nd}, t_{nn} = 0.6t_{nd})$ and this work (parameters given in Table 1).

In-plane	t	t'/t	$t^{\prime\prime}/t$	t'"/t	$t^{(4)}/t$
ARPES (ref. [47])	0.25 (eV)	-0.09	0.07	0.105	_
ARPES (ref. [74])	0.195 (eV)	-0.095	0.075	0.09	0.02
LDA (ref. [47])	0.43 (eV)	-0.09	0.07	0.08	_
Emery model	0.29 (t _{pd})	-0.11	0.05	-0.0056	-0.0003
This work	0.28 (t _{pd})	-0.136	0.068	0.061	-0.017

$$E_{2D}(k_x, k_y) = -2t[\cos(k_x a) + \cos(k_y a)] -4t'\cos(k_x a)\cos(k_y a) -2t''[\cos(2k_x a) + \cos(2k_y a)] t'''[\cos(k_x a)\cos(2k_y a) + \cos(k_y a)\cos(2k_x a)] -2t''[\cos(k_x a)\cos(2k_y a) + \cos(k_y a)\cos(2k_x a)]$$

Figure 1. Illustration of t_{pd} , $t_{\sigma'}$, t_{pp} , and $t_{\sigma''}$ in-plane hopping amplitudes. Note that $t_{pp} = (t_{\sigma} + t_{\pi})/2$ and $t_{\sigma''}$ are introduced using the rotated orbital basis $(2p_{s}^{(V,Y)}, 2p_{\pi}^{(X)})$.

Tight-binding model with nearby hoppings

The quantum Hamiltonian of the model in d = 1 or 2 dimensions has the standard form [1–3]

$$H = -\sum_{\langle j,l \rangle} |j\rangle \langle l| + \sum_{j} \frac{U}{1+r(j)} |j\rangle \langle j|, \qquad (1)$$

where $j = (x_1, x_2)$ $[j = (x_1, x_2, y_1, y_2)]$ is a multi-index for d = 1 (d = 2); each index variable takes values $x_1, x_2, y_1, y_2 \in \{0, ..., N - 1\}$, with *N* the linear system size with periodic boundary conditions. The first sum in (1) describes the electron hopping between nearby sites on a onedimensional (1D) (or 2D square) lattice with a hopping amplitude taken as the energy unit. The second sum in (1) represents a (regularized) Coulomb-type long-range interaction with amplitude *U* and the distance r(j) between two electrons. For one

When interaction is much larger than a noninteracting energy band there are pairs of two electrons propagating together due to pair energy conservation; but this case is not realistic (hopping t = 1, $U \gg B_d \approx 8d$).

Classical chaotic dynamics of electron pair

Classical Hamiltonian and chaos

The corresponding classical dynamics in two dimensions is described by the Hamiltonian

$$H = -2 \sum_{\mu=1,2;\alpha \in \{x,y\}} \cos p_{\mu\alpha} + U_C(x_1, x_2, y_1, y_2), \quad (2)$$

with $U_C = U/[1 + \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}]$ and conjugated variables of momentum $p_{\mu x}$ and $p_{\mu y}$ and coordinates x_{μ} and y_{μ} [in one dimension we have in (2) only $p_{\mu x}$ and x_{μ}]. In one

Pairing mechanism at moderate Coulomb repulsion

Energy and momentum of pair ($p_{+x,y} = p_{1x,y} + p_{2x,y}$) are conserved

Writing $\cos(p_{1x}) + \cos(p_{2x}) = 2\cos(p_{+x}/2)\cos[(p_{2x} - p_{2x})]$ $p_{1x}/2$] (and similarly for y), we see that at given values of p_{+x} and p_{+y} the kinetic energy is bounded by $\Delta E = 4 \sum_{\alpha} |\cos(p_{+\alpha}/2)|$. Therefore, for TIP states with $E > \Delta E$, the two electrons cannot separate and they propagate as one pair. In particular, for $p_{+x} = p_{+y} = \pi + \delta$ (with $|\delta| \ll 1$) close to π , there are compact Coulomb electron pairs even for very small interactions U as soon as $\Delta E \approx 2d|\delta| < U \ll B_d$, with $B_d = 8d + U$ the maximal energy bandwidth in d dimensions. The center of mass velocity of such pairs [in direction $\alpha \in \{x, y\}$] is $v_{+\alpha} =$ $(v_{1\alpha} + v_{2\alpha})/2 = 2\cos(\delta/2)\sin(p_{1\alpha} - \delta/2) \approx 2\sin p_{1\alpha}$ and it may be close to a maximal velocity $v_{+\alpha} = 2$. Figure S1 of

and there is an effective narrow energy band of width: $\Delta E \approx 2d|\delta| < U \ll B_d$ for $p_+ = p_y + = \pi + \delta$.

Time evolution of 2 electrons on 2D-NxN lattice

FIG. 3. Two-dimensional wave function densities obtained from the time evolution shown at times $t = 445\Delta t$ and $10^4\Delta t$ in left and right panels, respectively, for initial electron positions at approximately (N/2, N/2), with N = 128 and U = 2 [$\Delta t = 1/B_2 =$ 1/(16 + U) is the Trotter integration time step]. The top panels show 0.25 a close-up of the density for $(0 \le \Delta x, \Delta y < 32)$ in the Δx - Δy plane of relative coordinates obtained from a sum over x_1 and y_1 . The bottom panels show the density in the x_1 - x_2 plane obtained from a sum over y_1 and y_2 . The corresponding values of the probability near the diagonal w_{10} are $w_{10} = 0.106$ and 0.133 for the left and right

interaction $U = 2 \ll B_d = 16 + U$, Trotter integration time scheme small size of pairs (a few lattice sites, like in La-based cuprates with a pair size of about 15*angstroms* (e.g. Dagotto Rev. Mod. Phys. (1994)

Eigenstates of 2 electrons on 2D-NxN lattice

FIG. S7: Certain 2D (totally symmetrized) block eigenstates in Δx - Δy plane for U = 2, N = 128. Top panels correspond to conserved total momentum $p_+ = p_{+x} = p_{+y} = 0$ and block level numbers l = 2143 (left) and l = 2135 (right). Center panels correspond to $p_+ = 21\pi/32 \approx 2\pi/3$, l = 2143(left), l = 2131 (right). Bottom panels correspond to $p_+ = 63\pi/64 \approx \pi$, l = 2072 (left), l = 1991 (right).

• • • • • • • • • • •

interaction $U = 2 \ll B_d = 16 + U$; N = 128

Time evolution on NxN and HTC lattices

Fig. 2 2D Wavefunction density $\rho_{XX}(x_1, x_2)$ in $x_1 \cdot x_2$ plane (see Eq. (8)) obtained from the time evolution using to the Trotter formula approximation for initial electron positions at $\approx (N/2, N/2)$ with distance $\Delta \bar{x} = \Delta \bar{y} = 1$ for N = 128, U = 2 and Trotter integration time step $\Delta t =$ $1/B_2 = 1/(16 + U)$. Top (bottom) panels correspond to the time value $t = 445 \, \Delta t \, (t = 10^4 \, \Delta t)$ and left (right) panels correspond to the NN-lattice (HTC-lattice). The corresponding values of the pair formation probability w_{10} are 0.106 (top left), 0.133 (bottom left), 0.0940 (top right) and 0.125 (bottom right). Related videos are available at [14,15]

interaction $U = 2 \ll B_d = 16 + U$; N = 128; NxN/HTC lattice left/right

Pair size on NxN and HTC lattices

Fig. 3 2D Wavefunction density $\rho_{\rm rel}(\Delta x, \Delta y)$ in $\Delta x - \Delta y$ plane of relative coordinates (see Eq. (9)) for the same states, cases and parameters of Fig. 2 (N = 128, U = 2). All panels show the zoomed density for $0 \leq \Delta x, \Delta y < 32$. Related videos are available at [14,15]

interaction $U = 2 \ll B_d = 16 + U$; N = 128; NxN/HTC lattice left/right; same parameters as on a previous slide

Probability of pair formation on NxN and HTC lattices

Fig. 4 Phase diagram of electron pair formation in the plane of pair momentum $\mathbf{p}_{+} = (p_{+x}, p_{+y})$ for the NN-lattice (left panels), the HTC-lattice (right panels) and the interaction values U = 0.5 (top panels), U = 2 (bottom panels). Shown is the pair formation probability w_{10} for N = 192obtained from the exact time evolution for each sector of \mathbf{p}_+ with an initial electron distance $\Delta \bar{x} = \Delta \bar{y} = 1$ and computed from an average over 21 time values in the interval $10^4 \leq t/\Delta t \leq 10^6$. In all panels the horizontal (vertical) axis corresponds to $p_{+x}(p_{+y}) \in [0,\pi]$ and the numerical values of the color bar correspond to the ratio of w_{10} 0.25 over its maximal value. The maximum values corresponding to the red region at the top right corner $\mathbf{p}_{+} = (\pi, \pi)$ are $w_{10} = 1$ (both left panels), $w_{10} = 0.4510$ (top right) and $w_{10} = 0.8542$ (bottom right). For comparison the ergodic value is $w_{10,erg} = (21/192)^2 = 0.01196$

color gives probability w_{10} of 2 electrons in a band distance 10 for NxN (left) and HTC (right) lattice

Probability of pair formation on HTC lattice

Fig. 6 Dependence of the electron pair formation proba-Fig. 7 bility w_{10} on $\nu = (1 - \cos(p_+/2))/2$ for $p_+ = p_{+x} = p_{+y}$ bility w_{10} and the HTC-model at U = 0.5, 2 and N = 256. w_{10} is and the computed from the same long time average as in Fig. 4. computed

Fig. 7 Dependence of the electron pair formation probability w_{10} on $\nu = (1 - \cos(p_+/2))/2$ for $p_+ = p_{+x}, p_{+y} = 0$ and the HTC-model at U = 0.5, 2 and $N = 256. w_{10}$ is computed from the same long time average as in Fig. 4.

Optimal probability of pair formation

Fig. 10 Dependence of the electron pair formation probability w_{10} on the effective 2D filling factor ν_{2D} for the NN-lattice (top) and the HTC-lattice (bottom). The values of w_{10} have been obtained from the data of Fig. 4 (for N = 192) by an average along lines of constant electron pair energy E_c at momenta $\mathbf{p_1} = \mathbf{p_2} = \mathbf{p_+}/2$ with $p_{+x}, p_{+y} \in [0, 2\pi]$. Lowest (largest) energy corresponds to $\nu_{2D} = 0$ ($\nu_{2D} = 1$). The data points shown correspond to an effective histogram with bin width $\Delta \nu_{2D} \approx 0.01$. There d (blue) curve corresponds to the interaction value U = 2 (U = 0.5) and the grey dashed line corresponds to the ergodic value $(21/192)^2 = 0.01196$

optimal $v_{2D} \approx 0.2(0.8)$ for NxN and $v_{2D} \approx 0.2(0.75)$ depending on U for HTC lattice

- * Formation of two-electron pairs by moderate Coulomb repulsion in band structures
- * Relatively small size of pairs being of about 3-10 lattice spacings
- * Maximal probability of pair formation at filing factor $v_{2D} \approx 0.2(0.8)$
- * Problem remaining: finite electron density case; ihomogeneous electron density at low energys and pairs near Fermi energy?