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g; hence one might expect the above condition to
be satisfied in roughly ¢ distinct regions of the
€ axis (one region centered on each root). This
is indeed the case, and is the basis for a very
striking (and at first disturbing) fact about this
problem: when a=p/q, the Bloch band always
breaks up into g-recisely g distinct energy bands.
Since small variations in the magnitude of a can
produce enormous fluctuations in the value of the
denominator g, one is apparently faced with an
unacceptable physical prediction. However, nature
is ingenious enough to find a way out of this ap-
parent anomaly. Before we go into the resolution,
however, let us mention certain facts about the
spectrum belonging to any value of a. Most can
be proven trivially: (i) Spectrum(a) and spectrum
(a+N) are identical. (ii) Spectrum(a) and spec-
trum(-a) are identical. (iii) € belongs to spec-
trum(a ) if and only if —¢ belongs to spectrum(a).
(iv) If € belongs to spectrum (a) for any a, then
-4 < €= +4. The last property is a little subtler
than the previous three; it can be proven in dif-
ferent ways. One proof has been published.!?
From properties (i) and (iv), it follows that a
graph of the spectrum need only include values of
€ between +4 and -4, and values of a in any unit
interval. We shall look at the interval [0,1]. Fur-
thermore, as a.consequence of properties, the
graph inside the above-defined rectangular region
must have two axes of reflection, namely the hor-
izontal line @ =3, and the vertical line ¢=0. A
plot of spectrum(ea), with a along the vertical axis,
appears in Fig. 1. (Only rational values of a with
denominator less than 50 are shown.)
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IV. RECURSIVE STRUCTURE OF THE GRAPH

This graph has some very unusual properties.
The large gaps form a very striking pattern some-
what resembling a butterfly; perhaps equally strik-
ing are the delicacy and beauty of the fine-grained
structure. These are due to a very intricate
scheme, by which bands cluster into groups, which
themselves may cluster into larger groups, and
so on. The exact rules of formation of these hier-
archically organized clustering patterns (I’s) are
what we now wish to cover. Our description of Il’s
will be based on three statements, each of which
describes some aspect of the structure of the
graph. All of these statements are based on ex-
tremely close examination of the numerical data,
and are to be taken as “empirically proven” theo-
rems of mathematics. It would be preferable to
have a rigorous proof but that has so far eluded

" capture. Before we present the three statements,

let us first adopt some nomenclature. A “unit
cell” is any portion of the graph located between
successive integers N and N +1—in fact we will
call that unit cell the N th unit cell. Every unit cell
has a “local variable” B8, which runs from 0 to 1;
in particular, B is defined to be the fractional part
of a, usually denoted as {a}. At 8=0and =1,
there is one band which stretches across the full
width of the cell, separating it from its upper and
lower neighbors; this band is therefore called a
“cell wall.” It turns out that certain rational val-
ues of B play a very important role in the descrip-
tion of the structure of a unit cell; these are the
“pure cases”
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Fig. 1. The numerically computed 2nd moments 4 of the distri-
bution in the unperturbed action variable . as a function of time
(given in number 7 of periods of the perturbing field). for @ =2.52,
£=0.5. £,=0.4. n,=60. The classical motion (dashed line) is dif-
fusive while the quantum (full line) saturates. Here is £2’~2.0
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Fig. 2. Same as Fig. 1. with w =0.6. Here £.¢’~0.2324. Two quan-
tum curves are shown with basis size 384 (broken line) and 738
(full line)

Fig. 1. enlarging the basis does not lead to any significant
modification of the wave packet evolution.

Due to obvious computational limitations the basis
could not be further enlarged. Strictly speaking, the ob-
tained numerical data do not therefore answer the ques-
tion. whether the observed transition is a rcal delocali-
zation due to the appearance ol a continuous spectral
component, or just a localization on a much larger scale.
On the other hand. a numerical computation can hardly
be expected to yield better evidence than the clear cross-
over illustrated by our data.

The above results clearly show that the quantum dy-
namics ol this model is quite dilferent from that of the
quantized standard map (5).
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Fig. 3. a A localized distribution: the probability of occupation P,
of the unperturbed state n. versus N. in logarithmic scale. Here
@ =2.52, £=0.5, £,=0.4, n,=60. b The total probability P, within
the N-th photon zone, versus N in double logarithmic scale
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Fig. 4. The spread of the wave packet An* over the unperturbed
states (2nd moment of the distribution in n), averaged in time from
100 to 200 field periods, versus the decimal logarithm of the variable
ew ™% for ny=5: Full diamonds: w=1.00, &=0.2; Circles:
@ =2.00, g,= 1.0; Triangles: w =2.52, &,=0.4; Crosses: w =4.60.
&,=1.44 and for n,=10: Full triangles: w =252, &=0.4. The
dashed line is drawn to guide the eye

Figure 4 provides a check for the validity of the es-
timate (10) for the critical field for delocalization. The
data in Fig. 4 illustrate how the localization (measured
by the spread of the wavepacket after a fixed time) is
destroyed upon increasing & while keeping w fixed. The
data in Fig. 4 correspond to four different values of w.
In each case, the spread increases more or less sharply
from O to a saturation value (which is determined by the
filling up of the finite basis set). In Fig. 4 the spread is
plotted (in semi-logarithmic scale) against the variablc

ew ~*? that. according to (10..11) is the same as g/&(¥ - -
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Mngnetotunn-eling- Spectroscopy of a Quantum Well in the Regime of Classical Chaos

T. M. Fromhold, L. Eaves, F. W. Sheard, M. L. Leadbeater,* T. J. Foster, and P. C. Main

Department of Physics, University of Nottingham, Nottingham NG7 2RD, United Kingdom
~ (Received 7 December 1993)

Resonant tunneling spectroscopy is used to study the energy-level spectrum of a new chaotic dynami-
cal system, an electron in a trapezoidal potential well in the presence of a high magnetic field tilted rela-
tive to the confining barriers. Distinct series of quasiperiodic resonances are observed in the current-
voltage characteristics which change dramatically with tilt angle. These resonances are related to unsta-
ble closed orbits within the chaotic domain. The experimental results are explained by identifying and
studying the properties of periodic orbits accessible to the tunneling electrons.

PACS numbers: 73.20.Dx, 05.45.+b, 73.40.Gk, 73.40.Kp

Our theoretical understanding of the quantum proper-
ties of systems which display chaotic classical dynamics
has advanced considerably in recent years [1]. Despite
the complexity of the energy-level spectrum of such sys-
tems, universality has been identified in the distribution
of energy levels [2] and in the response to an external
perturbation [3]. In the semiclassical limit the ‘encrgy-
level pattern and spatial eigenfunctions have been related
to the occurrence of closed classical orbits within the
chaotic sea [1,4]. However, the experimental studies of
quantum phenomena in nonintegrable systems have been
few. Most investigations have focused on hydrogenic
atoms in a high magnetic field close to the ionization
threshold [5,6]. In this regime, the classical motion is
chaotic but distinct unstable periodic orbits exist, which
give rise to series of periodic quasi-Landau resonances in
the photoabsorption spectrum. In the solid state, chaotic
motion in two-dimensional quantum-dot stadia [7] and
antidot superlattices [8] has been studied and periodic
components in the magnetoconductance related to unsta-
ble periodic orbits in the structures. : '

In this Letter we study a new dynamical system, an
electron in a trapezoidal potential well, which we show is
classically chaotic in the presence of a high magnetic field
tilted with respect to the confining barriers. When the tilt
angle @, relative to the direction normal to the barriers, is
0° or 90° the motion is regular corresponding respective-
ly to helical orbits or skipping orbits between the barriers
[9]. For intermediate tilt angles, when the cyclotron ra-
dius is sufficiently small, the orbit segments between suc-
cessive collisions with the barriers rapidly become un-
correlated giving rise to strongly chaotic motion. As
shown in Fig. 1, unstable periodic orbits also occur in this
chaotic dynamic sea, for particular values of the initial
electron velocity. ‘

We have investigated the quantized energy-level spec-
trum associated with this classically chaotic system by in-
corporating the potential well into a double-barrier semi-
conductor heterostructure as in Fig. 1. In our experi-
ments the GaAs quantum well (QW) of width w =120
nm is enclosed between AlgsGaogsAs tunnel barriers of
width b =5.6 nm surrounded by weakly n-doped (2x10'®
cm ~?%) contact layers [9]. Under bias, charge accumu-

2608

lates and a bound state is formed at the emitter-barrier
interface. At liquid-helium temperatures this gives rise to
a degenerate two-dimensional electron gas (2DEG). In
the presence of an applied magnetic field B=(B,,0,B.),
the component B; =B cosé perpendicular to the plane of
the 2DEG quantizes the 2D in-plane motion into Landau
levels [10]. The magnetic field is sufficiently large (11.4
T) that, except for 8 close to 90°, only the lowest Landau
level is occupied. Resonant tunneling occurs when the
energy of this discrete emitter state coincides with the en-
ergy €, of a subband in the QW [11]. As the bias voltage
V is varied the tunneling electrons thus scan the energy-
level spectrum of the QW. Continuity of the current lis
maintained by leakage through the collector barrier.

The resonant tunneling characteristics are shown in
Fig. 2 for a range of tilt angles at B=11.4 T. Second
derivative plots are used to suppress the monotonically
varying background. At 6=0° a single series of reso-
nance peaks is observed with a voltage period AV=30

(a)

emitter well

collector

FIG. 1. (a) Conduction band profile of double-barrier struc-
ture under bias voltage ¥, showing resomant tanneling of elec-
trons from emitter 2DEG imto subband level & in the well. [n-
set shows tilt angle 8 of magnetic field B refative to tunneling
(x) direction. (b) Projection in x-y planc of closed periodic or-
bit (¥ =440 mV, B=11.4 T, 8=20°). (c) Chaotic orbit resuit-
ing from 0.1% change in initial electron velocity.
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with conjugates momenta n, and 7. Then we consider

the Hamiltonian
+ oo

H' = Ho(#) + oy +0nia +V(6,61,62) 2 5(t—s), (5)
¥ - e OO

with A= —i0/86,2 Equation (5) describes a quan-

tum rotator with three freedoms (6,6),6,) subjected to

periodic kicks, the strength of which is not explicitly time

dependent. The one-period propagator for this rotator is

the unitary operator

. —iv(0.0,0) , —ilHo#) +aniy +orial

In order to show that the 3D quantum model defined
by (5) and the 1D model defined by (1) and (3) are sub-
stantially equivalent, we rewrite the Schrodinger equa-
tion for the 3D model

id/dtv(e,el,ez,l) -HIW(Oy 9!9921t) ’
in the interaction representation defined by

v(0,0,,0,,0) =e TPV 5(0,6,,6,,1) . (52)

In this way we obtain

+o0

i dy/dt =Hoy+ V(6,6 +wit,6:+0at) Y 0t—s)y,
§=—co

i.c., the Schrodinger equation for the evolution of the 1D

model.

We can now apply a transformation to the three rota-
tor (5), which was originally devised in Ref. 2 for the
standard, 1D kicked rotator and was subsequently gen-
eralized in Ref. 11. Because of this transformation the
problem of our determining the quasienergy eigenvalues
and eigenvectors for the three rotator turns out to be for-

Inf,
0-—

L0

-50r

1

mally equivalent to solving the equation

Tlul+§0WrUI+t-fu., (6)

where n= (n,n,,n2) and r label sites in a 3D lattice,
T,=—tanl§ (E,+maoy+n2e+2)1,

A is quasienergy, W, are coefficients of a threefold
Fourier expansion of tan[ ¥(6,6,,6,)], and = —Wo.
We now choose

BT - — a2k CosB+eaBitTosEnT, (62)
so that (6) becomes
Ttk u=0, (@)}

where the sum 2 includes only the nearest neighbors to
n. The tight-binding model (7) with the potential T, is
in a sense equivalent to the original rotator problem.
The quasienergy eigenfunctions of the rotator will be lo-
calized or extended over the unperturbed eigenstates of
Hy, depending on whether the tight-binding model has
localized or extended eigenstates; in the localized case,
the localization length will be the same. Since the dy-
namics of the rotator is determined by the nature of its
quasienergy eigenstates, any change from localized to ex-
“tented states that may take place in the tight-binding
model (7), as the coupling parameter k is increased, will
be mirrored by a simultaneous change in the rotator dy-
namics, from a localized recurrent behavior to an unend-
ing spreading over the unperturbed base. As we men-
tioned above, the latter type of transition can be numeri-
cally detected with less effort than by our directly tack-
ling the tight-binding model.

NSNS

.
I

FIG. 1. Example of localized steady-state probability distribution e
within the interval 95000 <t < 100000. Here parameter k =0.38.
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(n-ny)?
4000.

3000.

2000.

]
t 20.x103

FIG. 2. Second moment {(n —1no)2) of the probability distri-
bution as a function of time ¢ (in number of iterations) in the
delocalized regime. Here Parameter k =06,

10. 15.

Was used. The initial state Was chosen in the middle of
this base and jts time evolution wag numerically deter-
mined by iteration of the quantum map (4) giving the
one-period evolution, up to 105 iterations, for different

values of the perturbation parameter £. A transition be-

ization lengths could pe determined by our fitting the
probability distributions with the exponential Jaw
exp(—Zln—nol/I). In the delocalized regime, up-
bounded diffusive excitation occurs and the related

s = o L

were delocalized. Thijs was further confirmed by the

In Fig. 4 we show the dependence of the diffusion rate

" D={(n=ne)/t (in the delocalized regimé) ang of the

inverse localization length y=/ -1 (i the localized re-
gime) on the perturbation parameter k. In order to
suppress fluctuations, for each fixed value of & the values
of y and D were computed for ten different realizations
of the random spectrum of Hy, and average values were

. L . . 0
i 3 4 5 B 7 & 9 10

k. Error bars were obtained from statistics over ten different
realizations of the random spectrum. The dotted lines resut -
from a three parameters least-squares fit (MINUIT) of numeri-
cal data,
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FIG. 1. Dependence of the square width of wave packet asa
function of time for the model (1), with IV = 1.3, w = 0.001,
wi/w = 1.618..., V¥ = 1, ¢ = 0.5. The size of the lattice is
¥ = 2048. Initially, only one site level is excited with cnergy
E = 0. The dashed line shows the lincar fit with D = (.135.
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FIG. 2. Diffusion rate D as a function of the rescaled vari-
ables for the model (1) with V =1, ¢ = 0.5, | = 25(V/IV)?,
wi/w = 1.618... £ = 0. Symbols are: o for W = 1.5, o
for WV = 1, "% for w = 0.07, A for w = 0.005, and O for
w = 0.0003. Dashed line represents the least squares fit while
the full line shows the theoretical slope a = 2/3. -
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FIG. 3. Diffusion rate D as a function of the rescaled
variables for the model (1) with kT = 6, «y/w = 1.618...,
Do = k3/2. Symbols are: o foc k = 3, ¢ = 0.5; o for w = 0.001.
¢ = 0.5: x forw = 0.0001, ¢ = 0.5: A forw =0.001, & = 10.08.
Dashed line represents the lcast squares fit while the full line
shows the theoretical slope @ = 2/3. :
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Stable Planetary Atom Configurations

A proper description of highly doubly excited atoms or
ions is still an outstanding problem of ‘“‘elementary”
quantum mechanics. Current interest both experimen-
tally and theoretically is focused on highly correlated
electron motion, where any independent-particle model is
inadequate to describe the properties of such states.

In a recent publication' Eichmann, Lange, and
Sandner reported on the observation of planetary atomic
states, where two electrons of a barium atom were both
in highly excited states. The authors could reproduce
their data quite well within a “frozen-planet approxima-
tion” (FPA), where one electron is fixed at some radial
distance, whereas the other electron moves in the field of
the residual barium ion and of the frozen electron. The
remarkable success of their model indicates that there is
a dynamical mechanism behind the ad hoc assumption of
a frozen electron at large radial distances. We will com-
ment on this mechanism and show that indeed there are
classically stable configurations, which are close to the
frozen-planet configuration of Ref. 1.

Our procedure to solve the classical equations of
motion for the general three-body Coulomb problem are
described elsewhere.? Here we focus on the helium atom
with total angular momentum J=0. Because of inherent
classical scaling properties the results are valid for all
(negative) energies.? Most of the classical orbits are un-
stable and ionize, but stable bound motion does also ex-
ist. The most stable configuration we found is a collinear
one, where both electrons are on the same side of the
atom and where both electrons oscillate with the same
frequency. The radial extents of these motions are very
different and are indicated in Fig. 1(a). The stability of
the motion is rather insensitive to variations in initial
conditions. This is exemplified in Fig. 1(b), which shows
the (regular) motion for slightly different initial condi-
tions. It is obvious from Fig. 1(a) that the dynamical
configuration of the electrons is very close to the FPA
configuration considered in Ref. 1, which explains the
success of their model.

It is straightforward to quantize the motion semiclassi-
cally.? Associated with the regular phase-space volume
around the dynamical FPA orbit is a series of resonances
converging to the double-ionization threshold. The reso-
nance energies are given by (atomic units)

2+t +k+ P p+U+ 1)y’

Enkl e

where §=1.4915 is the action of the orbit and 7,
=0.4616, y>=0.5677 are the winding numbers of the
trajectory describing the behavior of nearby trajectories.
The quantum numbers n,k,/ have the meaning of nodal
excitations along the orbit (n) and perpendicular to the
orbit (k,/), with {k,7,} describing bending motion. 7 is

g2 T r e
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FIG. 1. The radial extents of the electrons for (a) the FPA
periodic orbit, and (b) a nonperiodic but regular trajectory in
its neighborhood.

unlimited, but the upper limits of &,/ depend on .
Semiclassically these states are bound, but they can de-
cay quantum mechanically by (dynamical) tunneling.
The decay times T for such processes are typically ex-
ponentially small, that is In(7) = —n, with n defined
above.

The charge distributions of the associated wave func-
tions show a huge gap between the turning point of the
inner electron and the localization of the frozen electron.
Therefore, laser excitation of such states must occur in
multiple steps, as has been done in Ref. 1. The states
Should also show up in experiments using coherent laser
excitation of wave packets.® In such an experiment the
first laser pulse prepares the outer wave packet and a
second laser pulse excites the inner one. The time delay
between the two laser pulses plays a crucial role: The
outer wave packet has to be at its turning point when the
second wave packet is excited.
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