Thermoelectricity at nanoscale:
theoretical models

Joint work with Oleg Zhirov (BINP) Europhys. Lett. 103, 68008 (2013)
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Early works

T. Seebeck-deflection of a compass
needle (circa 1823)

from Y.Imry (Weizmann Inst) talk at Inst. H. Poincaré, Paris{(2012)
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Early works

A.F. Ioffe
Qil burning lamp powering a radio using
semiconductors the first commercial thermoelectric
and figure of merit generator containing ZnSb built in

USSR, circa 1948

from Y.Imry (Weizmann Inst) talk at Inst. H. Poincaré, Paris (2012)
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Main characteristics

Seebeck coefficient:
S=AV/AT = n2kg? T[(dIno/dE)]|e-/e (Mott relation (1958))

For 2DEG with Wiedemann-Franz law: S = 2rkg® Tm/(3eh?ne);
typical value S~ 10uV /K at T = 0.3K, ne = 4 - 10'"%cm—2
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Thermoelectric figure of merit ZT

Thermoelectric figure of merit ZT = 0 S?T /x,
thermal conductivity k = ke + Kphonon (heat flux Q = -k <z T)
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Experiments on Seebeck coefficient for 2DEG

High-mobility Si-MOSFETs
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Figure 4. The thermopower S for sample 1 at various fixed electron
densities n (in units of 10'* m~2) as a function of temperature.

R.Fletcher, V.M.Pudalov et al. Semicond. Sci. Technol. 15, 386 (2001)
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Experiments on Seebeck coefficient for 2DEG
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FIG. 5. (Color online) (a) S vs n, for 0.28 K < T < 0.7 K. The broken green line shows S, [Eq. (2)] at 0.28 K. Inset: pyprs Vs 1, at the
same T' values; there is little T’ dependence in this range. (b) Low-T linear variation of S Inset: Descriptions based on variable-ranged hopping,
where § is expected to decay to zero as 7'/, do not adequately describe the observed data.

V.Narayan, S.Goswami, M.Pepper et al. PRB 85, 125406 (2012)
In dimensionless units S = 10mV /K ~ 100 > 1
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ZT in various materials
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from http://www.thermoelectrics.caltech.edu/thermoelectrics/
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ZT in p-type Bi> Tez/ Sbo Te; superlattices

Phonon-blocking/electron-transmitting structures
The results obtained with the 10A/50A Bi,Te;/Sb,Te; superlattices
indicate that we can fine-tune the phonon and hole (charge carriers)
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Figure 3 Temperature dependence of ZT of 10A/50A p-type Bi,Tes/Sh,Te; superlattice
compared to those of several recently reported materials.

R.Venkatasubramanian et al. (N.Carolina) Nature 413, 597 (2001)
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ZT in SnSe
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Figure 1 | SnSe crystal structure Pama and ZT values. a, Crystal structure
along the a axis: grey, Sn atoms; red, Se atoms. b, Highly distorted SnSe;
coordination polyhedron with three short and four long Sn-Se bonds.

¢, Structure along the b axis. d, Structure along the ¢ axis. e, Main panel, ZT
values along different axial directions; the ZT measurement uncertainty is
about 15% (error bars). Inset images: left, a typical crystal; right, a crystal
cleaved along the (100) plane, and specimens cut along the three axes and
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corresponding measurement directions. Inset diagram, how crystals were cut
for directional measurements; ZT values are shown on the blue, red and grey
arrows; colours represent specimens oriented in different directions.

Li-Dong Zhao et al. (lllinois) Nature 508, 373 (2014)
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Research at CNRS Grenoble (O.Bourgeois
Refs.3,4)
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Applications

TE Applications are mostly ‘Niche’ Applications
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Thermoelectricity of Wigner crystal

in a periodic potential
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Hamiltonian H =}, (p' + Kcos X+ 5 Z,;e/ xi— x,\)

Dynamic equations p; = —9H/0x; + Egc — np;i + 9&i(t) , Xi = pi

Here the Langevin force is given by g = v2nT, <§,(t)£,(t’)) = Jjio(t—t');
ne =v/2m, v =vy = 1.618... Fibonacci rational approximates.

Aubry transition at K = K; = 0.0462.
I.Garcia-Mata, O.Zhirov, DLS EPJD 41, 325 (2007)
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Time evolution of Wigner crystal
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Electron density variation in space and time from one Langevin trajectory at
K/Kc.=26,T/K;=0.11,n=0.02, N =34, M = L/27 = 21; density
changes from zero (dark blue) to maximal density (dark red); only a fragment
of x space is shown.
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Left panels: dependence of electron temperature Tg(x) (top, blue points) and rescaled density v/ (x) (bottom, black points) on distance x along the chain
placed on the Langevin substrate with a constant temperature gradient (it is shown by the blue line) at average temperature T = 0.01 and temperature
difference AT = 0.2T; black line shows the fit of density variation in the bulk part of the sample. Right panel: density variation produced by a static electric
field Ege = 4 X 10— at a constant substrate temperature T = 0.01; black line shows the fit of gradient in the bulk part of the sample. Here

N =34, M =21, K = 1.52K¢, n = 0.02, averaging is done over time interval t = 107; S=3.3atT =0.01 = 0.22K¢.
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Seebeck coefficient
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Left panel: Dependence of the Seebeck coefficient S on rescaled potential amplitude K /K¢ at temperatures T /K¢ = 0.065, 0.11, 0.22 and 0.65 shown
by black, blue, green and red colors, respectively from top to bottom. The full and open symbols correspond respectively to chains with N = 34, M = 21
and N = 55, M = 34. Right panel: Dependence of Son T /K¢ at different K/K¢z = 0, 0.75, 1.5, 2.2, 3 shown respectively by black, violet, blue, green
and red points; N = 34, M = 21; the dashed gray line shows the case K = 0 for noninteracting particles. The stars show corresponding results from left
plane at same N, M. Dotted curves are drown to adapt an eye. Here and in other Figs. the statistical error bars are shown when they are larger than the

symbol size. Here n = 0.02.
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Conductivity and thermal conductivity
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Left panel: Rescaled electron conductivity o /o as a function of K/K; shown
at rescaled temperatures T/K. = 0.065, 0.22, 0.65 by black, green and red
points respectively. Right panel: Rescaled thermal conductivity x/xo as a
function of K/K; shown at same temperatures and colors as in left panel.
Here we have N =34, M = 21, = 0.02, 09 = vg/(271), ko = coKe.
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ZT dependence on parameters
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Left panels: Dependence of ZT on K/K; at temperatures T/K; = 0.11 (top
panel) and T/K; = 0.65 (bottom panel); the black points and open triangles
correspond respectively to n = 0.02 and n = 0.05 at N = 34, M = 21. Right
panels: Dependence of ZT on T/K; for K/K; = 0.75 at n = 0.02, N = 34,
M = 21. Bottom right panel: Same as in top right panel at K/K; = 2.6 and
N = 34, M = 21 (black points); N = 89, M = 55 (green circles); N = 144,
M = 89 (red stars).
(Quantware group, CNRS, Toulouse)
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ZT dependence on parameters

Dependence of ZT on K/K; and T /K. shown by color changing from ZT =0
(black) to maximal ZT = 4.5 (light rose); contour curves show values
ZT =1,2,3,4. Here n = 0.02, N = 34, M = 21.
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Other quantities dependences
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Left panel: Rescaled thermal conductivity x/xq as a function of rescaler
temperature T/K;, to adapt an eye the straight dashed line shows the

dependence «/ro = 0.6 T/Ky; right panel: same as in left panel for S5 /.

Data are obtained at K/K; = 2.6, 1 = 0.02, N = 34, M = 21, 0p = vg/(271),

R = O'()Kc.
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Physical parameters

In physical units we can estimate the critical potential amplitude as

U. = K:€?/(ed), where ¢ is a dielectric constant, Ax is a lattice period and
d = vAx /27 is a rescaled lattice constant Ref.5. For values typical for a
charge density wave regime Ref.6 we have ¢ ~ 10, v ~ 1, Ax ~ 1nm and
U; ~40mV ~ 500K so that the Aubry pinned phase should be visible at
room temperature. The obtained U, value is rather high that justifies the fact
that we investigated thermoelectricity in the frame of classical mechanics of

interacting electrons.
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Message from Novosibirsk GES
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