Dynamical thermalization in isolated
quantum dots and black holes
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Duality relation between an isolated quantum dot with infinite-range strongly
interacting fermions and a quantum Black Hole model in 1 + 1 dimensions:
the Sachdev-Ye-Kitaev (SYK) model (1993-2015)
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SYK model Refs
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Duality in SYK model (in short)
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FIG.2. Summary of the properties of the SY state (Sec. IT) and planar charged black holes (Sec. IIT) at T = 0. The spatial coordinate ¥
has d dimensions. All results also apply to spherical black holes considered in Appendix B. The AdS, x RY metric has unimportant
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Model description (TBRIM)

The model is described by the Hamiltonian for L spin-polarized fermions on M
energy orbitals ex (ex1 > €x):

Z J,-,-,k,&,* &IT &k &/ ;
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E:,-T, ¢; are fermion operators; matrix elements Jj x are random complex
variables (Sachdev2015) with a standard deviation J and zero average value
(Kitaev2015 used Majorana fermions). In addition to the interaction
Hamiltonian Hjy;, there is an unperturbed part Iflo describing one-particle
orbitals ex = vx/v/M in a quantum dot of non-interacting fermions. The
average of one-orbital energies is taken to be v2 = V2 with v, = 0. Thus the
unperturbed one-particle energies ¢, are distributed in an energy band of size
V and the average level spacing between them is A ~ V /M°®/? while the
two-body coupling matrix element is U ~ J/M?/2. Hence, in our model the
effective dimensionless conductance is g = A/U ~ V/J. The matrix size is
N = M!/LY(M — L)! and each multi-particle state is coupled with
K=1+LM-L)+L(L-1)(M—-L)(M—L—1)/4 states. We consider an
approximate half filling L ~ M/2.
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Emergence of quantum ergodicity

At g > 1 the RMT statistics appears only for relatively high excitation above
the quantum dot Fermi energy Er:

SE=E—Er >6Epn~g?*A; g=A/UxV/I>1.

This border is in a good agreement with the spectroscopy experiments of
individual mesoscopic quantum dots (Sivan1994).

This is the Aberg criterion (PRL1990): coupling matrix elements are
comparable with the energy spacing between directly coupled states

(also Sushkov, DS EPL1997, Jacquod, DS PRL1997).

Related Eigenstate Thermalization Hypothesis (ETH),
Many-Body Localization (MBL).

At g = 0 TBRIN or SYK model => Wigner-Dyson level spacing statistics P(s):
Bohigas, Flores PLB1970-71; French, Wong PLB1970-71
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Dynamical thermalization ansatz

At g > 1 => Fermi-Dirac thermal distribution of M one-particle orbitals:

1

k= gt 11 '

B=1/T,

with the chemical potential . determined by the conservation of number of
fermions "), ng = L.

At a given temperature T, the system energy E and von Neumann entropy S
are

M M
E(T)=> e, S(T)=-> nklnny.
s s

Fermi gas entropy is SF = — Z,’L (nkInng + (1 = nk) In(1 = ng)).

S and E are obtained from eigenstates ¢, and eigenenergies E, of H via
k(M) =< ¢m|CF Sk |vom >.

S(T) and E(T) are extensive and self-averaging.

This gives the implicit dependence S(E).
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Wigner-Dyson (RMT) level spacing statistics
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Top row: densﬂy of states p(E) = dN(E)/dE. Bottom row (c,d): integrated
statistics /(s fo ds’'P(s’); Poisson case Pp(s) (green), Wigner surmise
Pw(s) = 3232 exp(—4s? /) /72 (red) and numerics P(s) for central energy
region with 80% of states (blue); M = 14, L = 6, N = 3003, and
J=1,V=0,g=0(ac)andJ=1,V = ﬂg V14 (b,d).
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Quantum dot regime (g > 1)
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Dependence of filling factors nk on energy e for individual eigenstates
obtained from exact diagonatization of (red circles) and from Fermi-Dirac
ansatz with one-particle energy e (blue curve); blue stars are shown at
one-particle energy positions € = ¢x). Here M =14, L = 6, N = 3003,

J =1,V =+/14 and eigenenergies are E = —4.4160 (left), —3.0744 (right);
the theory (blue) is drown for the temperatures corresponding to these
energies f = 1/T = 20 (left), 2 (right).
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Quantum dot regime x(T), E(T)
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Dependence of inverse temperature 3 = 1/T on energy E (right) and
chemical potential . on j (left) given by the Fermi-Dirac ansatz for the set of
one-particle energies ¢ as in above Fig.

Negative temperatures T < 0.
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Quantum dot regime S(E)

(a) M =12, L:5,N:792?J:1;(b)M:16, L=7,N=3003,J=1;(c)
M=14,L =6, N=11440,J=1;(d) M=16,L =7, N =3003, J = 0.1.
Blue points show the numerical data E;, Sy, for all eigenstates, red curves
show the Fermi-Dirac thermal distribution; V = v/14.

S(E =0) = —LIn(L/M) (equipartition).
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Fermi-Dirac distribution for quantum dot
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Top: p(E) vs. E ([ p(E)dE :k1). Bottom: occupationks nk(E) of one-particle
orbitals ¢4 given by the Fermi-Dirac distribution (left), and by their numerical
values obtained by exact diagonalization (right); nx are averaged over all
eigenstates in a given cell. Colors: from black for ny = 0 via red, yellow to
white for nx = 1; orbital number k and eigenenergy E are shown on x and y
axes respectively; M =16,L=7,N=11440,V =4 J = 1.
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SYK black hole regime S(E)
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S(E) for SYK black hole at V = 0 (left) and quantum dot regime V = /14
(right); M =16,L =7,N = 11440 (black), M = 14, L = 6, N = 3003 (blue),
M=12,L =5 N =792 (red), M =10,L = 4, N = 210 (magenta); here J = 1.
Points show numerical data E,, S, for all eigenstates, the full red curve
shows FD-distribution (right). Dashed gray curves in both panels show
FD-distribution for a semi-empirical model of non-interacting quasi-particles
for black points case. Here S(E =0) ~ LIn2; L ~ M/2.

Semi-empirical model: non-interacting particles on orbital energies ex
reproducing many-body density of states
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Low energy excitations: quantum dot vs. SYK

Quantum dot: AE « 1/L3/2; SYK black hole: AE oc exp(—cL)

0.8

02

FIG. 5. Level spacing distribution P(s) resulting from exact diagonalization of the SYK Hamilto-

nian Eq.
‘We only consider the infrared part of the spectrum, about 1.5%, which is related to the gravity-

for N = 32 and 400 realizations (squares) and IV = 24 and 10000 realizations (circles).

dual of the model. As in the bulk of the spectrum [40] [4T], we observe excellent agreement with
the Wigner surmise for the Gaussian Orthogonal Ensemble (GOE). This strongly suggests that
full ergodicity, typical of quantum systems described by random matrix theory, is also a universal

feature of quantum black holes.

from Garcia-Garcia, Verbaarschot RSYK8 (2017)
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SYK black hole:
interesting model without evident quasi-particles,
strongly interacting many-body system

Possible experiments:
quantum dots at g < 1 (Kvon et al. IFP RAS 1998);
ions in optical lattices (Vuletic MIT 2016)

Possible extentions to higher dimensions...

Isolated black holes:
no heat bath, only dynamical thermalization is possible
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