Synchronization in Rings of Saturn

$\sqrt{4}$

with A.S.Pikovsky, J.Schmidt, F.Spahn (Potsdam)
12 Feb 2009, BINP: Theory seminar in memory of Boris Chirikov (06/06/1928-12/02/2008)

- Synchronization
- Experiments: Zero-resistance states
- Numerical simulations, Kapral collision model
- Coulomb interactions, rotating Wigner crystal
- Rings of Saturn

2D Electron transport in a microwave field

- EPJB 60, 225 (2007)

Synchronization, zero-resistance states and rotating Wigner crystal A.D.Chepelianskii (ENS, rue d'Ulm, Paris)
A.S.Pikovsky (Univ. of Potsdam) and DS

- Discussions:
A.Bykov (Inst. of Physics of Semiconductors, Novosibirsk)
F. von Oppen (Freie Univ. Berlin)
J.Schmidt and F.Spahn (Univ. of Potsdam)
- Support:

ANR PNANO projects MICONANO, NANOTERRA of French government

Hero of the talk

- Christian Huygens (1629-1695)

Experiments on Zero-Resistance States (ZRS)

- High mobility 2DEG in a microwave field
*M.A.Zudov, R.R.Du, J.A.Simmons, J.I.Reno PRB 64, 201311 (2001)
*R.G.Mani, J.H.Smet, K. von Klitzing, V.Narayanamurti, W.B.Johnson, V.Umansky Nature 420, 646 (2002)
*M.A.Zudov, R.R.Du, I.N.Pfeiffer, K.W.West PRL 90, 046807 (2003) (Fig. image)

Ch.Huygens (1665) "sympathy of two clocks"

A. Pikovsky, M. Rosenblum, and J. Kurths, Cambridge University Press (2001)

$4 \square>4$ 号 1 흐를

Numerical studies

Classical 2D electron dynamics with short range and Coulomb interactions. Short range interactions: the Nosè-Hoover thermostat (Hoover (1999)) combined with interactions treated in the frame of the mesoscopic multi-particle collision model (Kapral (2004)):
$\partial \mathbf{q}_{i} / \partial t=\mathbf{p}_{i} / m, \partial \mathbf{p}_{i} / \partial t=\mathbf{F}_{i}+\mathbf{f}_{L i}+\mathbf{f}_{a c}-\gamma \mathbf{p}$,
$\partial \gamma / \partial t=\left[\left\langle\mathbf{p}^{2}\right\rangle /(2 m T)-1\right] / \tau^{2}$
where $\mathbf{q}_{i}, \mathbf{p}_{i}$ are the coordinate and the momentum of particle $i, \mathbf{f}_{L i}=e\left[\mathbf{p}_{i} \times \mathbf{B}\right] / m c$ is the Lorentz force, \mathbf{F}_{i} is an effective force produced by particles collisions, τ is the relaxation time in the thermostat and $\left\langle\mathbf{p}^{2}\right\rangle$ means average over all N particles.
Another choice, used for short range and Coulomb interactions, is to equilibrate the heating induced by the microwave field we introduce in Eq. an energy-dependent dissipation with $\gamma=\gamma_{0}\left(E-E_{F}\right) / E_{F}$ for $E=p^{2} / 2 m>E_{F}$ and $\gamma=0$ for $E<E_{F}$. In such a way the dynamics remains Hamiltonian for $E<E_{F}$ while above E_{F} the dissipative processes are switched on as it is usually the case for 2 DEG ; thus E_{F} plays a role of Fermi energy.
In experiment electrons are at a Landau level $n_{L} \approx 100$.

Kapral collision model

Diffusion rate density D / D_{0} as a function of frequency detuning $\left(\omega_{B}-\omega\right) / \omega$ and rescaled microwave field strength ν / ω with $\nu=f /\left(m v_{T}\right)$ where $v_{T}=\sqrt{2 T / m}$ is the thermal velocity and D_{0} is the diffusion rate in absence of microwave at $\omega_{B}=\omega$. The particle dynamics is described by the NH thermostat at temperature T with short range interactions treated in the MMPCM formalism (see Eqs. above). The system parameters described in the text are: $N=1000$ $N_{c}=4 \times 10^{4}, \omega \Delta t=0.2, \omega \tau=10, \omega t=500$, $L / r_{B}=10, D_{0} / D_{c}=0.12$ (with $D_{c}=v_{T}^{2} / \omega$, $\rho=N / L^{2}$ and r_{B} taken at $\omega_{B}=\omega$, thus a number of particles inside a Larmor circle is

$N_{B}=\pi r_{B}^{2} \rho=\pi \rho V_{T}^{2} / \omega^{2}=10 \pi, \omega$ is kept constant). Color is proportional to D / D_{0} (black maximum $D / D_{0} \approx 1.2$; white minimum $D / D_{0}=0$).

Coulomb interactions

Dependence of electron square displacement R^{2}, rescaled by electron density ρ, on the rescaled time ωt. Here the Larmor frequency is $\omega_{B}=\omega$ at microwave field strength $f=0$ (red top curve); $f /\left(m v_{F} \omega\right)=0.059\left(f a / E_{F}=0.02\right)$ for $\omega_{B}=\omega$ (blue bottom curve), $\omega_{B}=0.875 \omega$ (second from top black dashed curve), and $\omega_{B}=\omega$ with impurity scattering mean free path $I_{i}=96 r_{B}$ (second from bottom green curve). Total number of electrons is $N=100$ and $N_{B}=\pi \rho v_{F}^{2} / \omega^{2}=34.7$. The linear fit gives the diffusion rates
$D / D_{c}=0.089,0.068,0.0040,9 \times 10^{-6}$ with $D_{c}=v_{F}^{2} / \omega$ (respectively for curves from top to bottom ordered at $\omega t=400$).

Coulomb interactions: diffusion rate

Dependence of rescaled diffusion rate D / D_{0} on the rescaled frequency difference $\left(\omega_{B}-\omega\right) / \nu$. Here $\nu=f / m v_{F}, D_{0}$ is diffusion rate in absence of microwave at $\omega_{B}=\omega, f a / E_{F}=0.02$ and number of electrons in a Larmor circle is $N_{B}=2$ (stars), 8 (triangles), 34.7 (squares), 138.8 (points) with $D_{0} / D_{c}=0.054,0.089,0.12,0.14$ and $D_{0} / v_{F} a=0.20,0.35,0.53,0.64$ respectively. Total number of electrons is $N=100$, $L=\sqrt{N / \rho} \approx 17.72 \mathrm{a}$.

Rotating Wigner crystal

Instant image of the rotating Wigner crystal formed by $N=100$ electrons (points) in a periodic cell with $L=\sqrt{N / \rho} \approx 17.72 a, \omega t=480$ $\omega_{B}=\omega, f a / E_{F}=0.02$ and $N_{B}=34.7$ (bottom curve in one of previous Fig.); the circle shows an orbit of one electron for $240 \leq \omega t \leq 480$; lines are drawn to adapt an eye showing a hexagonal crystal with a defect.

Synchronization domain of ZRS phase:

$$
\begin{equation*}
\left|\omega_{B}-\dot{\omega}\right| \leq 0.8 f / m v_{F} \tag{1}
\end{equation*}
$$

For experiment conditions the relative size of ZRS plateau is $\Delta \omega / \omega \approx 2 \nu / \omega \approx f v_{F} / \omega E_{F}$ and with $E_{F} \sim 100 K^{\circ}, v_{F} \sim 3 \times 10^{7} \mathrm{~cm} / \mathrm{s}$ and
$\omega / 2 \pi=35 \mathrm{GHz}$ this gives $\Delta \omega / \omega \approx 0.1$ if the field strength acting on an electron is $f / e \approx 5 \mathrm{~V} / \mathrm{cm}$. The coherent rotation of electrons in the crystal creates a rotating current in 2D plane which in its turn generates a magnetic field $B_{W} \sim \mu_{0} e v_{F} \rho \sim 1 G$ parallel to 2DEG and rotating in the plane with a frequency close to ω.

Coulomb crystals in rf-traps

FIG. 3. Images of Coulomb crystals. (a) Time averaged image based on data from MD simulations of Coulomb clusters with 2685 ions at $\Gamma \sim 400$ (temperature: $\sim 5 \mathrm{mK}$). The averaging time is 10 ms . (b) Image from experiments with clusters containing ~ 2700 ions.

Mainz experiments: G.Werth et al. Phys. Rev. A. 56, 4023 (1997); Eur. Phys. J. D 18, 295 (2002)
Aarhus experiments: A.Mortensen, E.Nielsen, T.Matthey, and M.Drewsen, Phys. Rev. Lett. 96, 103001 (2006) [Fig. image]

NASA Cassini images of Saturn Ring (2007) Features to explain: enormously long life time (10^{12} rotations) and very sharp edges (10 m) Ch.Huygens coded in 1655:
"It (Saturn) is girdled by a thin flat ring, nowhere touching, inclined to the ecliptic"

Density distribution of particles in the ring in the plane of local epicycle velocities ($-3<v_{x} / v_{e p}<3 ;-3<v_{y} / v_{e p}<3$) obtained by the numerical simulations with $N=1000$ particles inside the spacial square box $S=5 r_{s} \times 5 r_{s}$ where r_{s} is the epicycle radius; the particle density is $\rho=N_{p} / S=40 / r_{s}^{2}$. The rotation frequency ratio is $\Omega / \Omega_{s}=\Omega / 2 \omega=1.15$ (top panel) and 1 (bottom panel, synchronized regime); the dimensionless force amplitude of Mimas is $\epsilon=0.64$. The number of Kapral cells is $N_{\text {cel }}=100 \times 100=10^{4}$, the Kapral collisions are done after time $\tau_{K}=0.5 / \Omega_{s}$; the relaxation time of Nosè-Hoover dynamics is $\tau_{H}=16 / \Omega_{s}$. The data are averaged over time interval $0 \leq t \leq 10^{4} / \Omega_{s}$. Density is proportional to color (red/gray for maximum, blue/black for minimum).
Hill equations in local box:

$$
\begin{aligned}
& \partial x / \partial t=v_{x} ; \quad \partial y / \partial t=v_{y}+v_{s} ; \quad \partial v_{x} / \partial t=2 \Omega v_{y}+F_{x}(t) / m_{p} ; \\
& \partial v_{y} / \partial t=-\Omega v_{x} / 2 ; \quad v_{s}=-3 \Omega x / 2 ; F_{x}(t) / m_{p}=\epsilon v_{e p} \sum_{m} \delta\left(t-m T_{\text {mimas }}\right) ; \\
& \epsilon \approx 0.6, v_{e p} \sim 0.5 \mathrm{~cm} / \mathrm{s}, \Omega_{S}=1.52 \times 10^{-4} \mathrm{~s}^{-1}, \Omega_{S} / \omega=2, R_{B}=117580 \pm 10 \mathrm{~km}
\end{aligned}
$$

Dependence of the rescaled diffusion rate D / \tilde{D}_{0} shown by color on the rescaled frequency $\Omega / 2 \omega$ (horizontal axis) and driving force strength ϵ (vertical axis) for the range $0.85 \leq \Omega / 2 \omega \leq 1.15$ and $0 \leq \epsilon \leq 0.7$. The color is proportional to D / \tilde{D}_{0} with red/gray for maximum value ($D / \tilde{D}_{0}=1.26$) and blue/black for minimum ($D / \tilde{D}_{0}=4 \times 10^{-4}$), here \tilde{D}_{0} is the diffusion rate at $\epsilon=0, \Omega=\Omega_{s}$ (also $D / D_{0}=1.7 \times 10^{-5}$ with $D_{0}=r_{s}^{3} \Omega_{s}$). Data are obtained for time $t \leq 10^{4} / \Omega_{s}$, $N=1000, N_{\text {cel }}=200 \times 200$, other parameters are as in previous Fig.

Dependence of density of particles (in arbitrary units) on time $\Omega_{s} t$ (vertical axis) and position in the ring x / r_{S} (horizontal axis) for $\epsilon=0.6, \Omega / 2 \omega=1.1$ and zero frequency gradient $g=0$.. There are $N_{\text {cel }}=1200 \times 120$ in the whole space box $S=50 r_{s} \times 5 r_{s}$; $\tau_{K}=0.5 / \Omega_{s}, \tau_{H}=4.5 / \Omega_{S}$. Initially there are $N=60$ particles in the left box $S=5 r_{S} \times 5 r_{S}$ and this number is kept constant during the computations till the finite moment of time $\Omega_{s} t=6.28 \times 10^{4}$ when there are 305 particles in total.

Dependence of density of particles (in arbitrary units) on time $\Omega_{s} t$ (vertical axis in logarithmic scale) and position in the ring x / r_{S} (horizontal axis) for $\epsilon=0.6$, the frequency gradient in space is $g=0.002$ with $\Omega / 2 \omega=1.05$ at $x=0$ and $\Omega / 2 \omega=1$ at $x / r_{s}=25$ corresponding to the outer B ring edge. There are $N_{c e l}=1200 \times 120$ in the whole space box $S=50 r_{S} \times 5 r_{S}$ (only half is shown); $\tau_{K}=0.5 / \Omega_{s}, \tau_{H}=4.5 / \Omega_{S}$. Initially there are $N=60$ particles in the left box $S=5 r_{S} \times 5 r_{S}$ and this number is kept constant during the computations till the finite moment of time $\Omega_{s} t=6.28 \times 10^{5}$ when there are 300 particles in total.

Mimas and the Great Division (NASA Cassini Mission image of Sept 7, 2007; http://photojournal.jpl.nasa.gov/ catalog/PIA09750)

A generic mechanism of SYNCHRONIZATION INDUCED SELF-ASSEMBLY is proposed

