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1. The behavior of nonlinear quantum systems under
the action of an external periodic perturbation has recently
received much attention,'™ This is primarily related to
new possibilities of experimental studies of the behavior
of atoms and molecules in a laser-radiation field.%® Basic
difficulties in the theoretical analysis are encountered
when the external action cannot be agsumed to be small,
in which case perturbation theory no longer applies, In
this case numerical studies become increasingly impor-
tant, Such a study for a simple and well-studied model
in classical mechanics!? (a planar rotor under the action
of &—function pulses) was performed in Ref. 11. The basic
result was the discovery of significant deviations in the
Lehavior of a quantum system (in comparison with the
classical one) when the motion becomes stochastic. These
differences persist even if the quantum system is in the
strongly quasiclassical region. In particular, the diffusion
rate of the mean energy of the rotor coincides with the
classical value only over limited times, and then drops
off quickly. In addition, a distinctive type of motion, named
quantum resonance, was discovered, and has no analog in
the classical system, The present work is devoted to a
detailed study of the quantum resonance discovered in
Ref. 11.

2, The model selected is described by the Hamil-
tonian
'12
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where Kk is a parameter characterizing the size of the per-
turbation, 5T(:)= E &t -nT) is a periodic -function, J is
N

moment of inertia of the rotor, and ¢ is the angular vari-
ables in what follows we put J = 1. Solving the Schriédinger
equation with the Hamiltonian (1), we obtain for the wave
function after one step a representation that includes the
free rotation during the time T and the pulse (see Ref. 11):
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where k=khn, T=hT, 4, =,l’ﬂ f\b(ﬂ)e“"'“dﬂ Below we take
= 1]

i = 1. We note that according to (2) the motion does not
change when we replace T — T + 4rm, where m is an in-
teger. Therefore, it is sufficient to consider T on the in-
terval [0, 47].

As was noted in Ref, 11, in the case of the principal

quantum resonance (T =4rm, m is aninteger) the rotor energy

a‘l

] am o,
E(t)= ~5 | ¢ (8) 55 ¥(0)d6 increases quadratically with
0
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time at large values of t. We study the general case of
quantum resonance: T = 4rp/q, where p and q are mu-
tually prime integers. TFollowing certain transformations,
(2) can be represented in the form

-1

q
w(0)=exp(—ikcos8) 7,,1};(6 + -2&),
. n=0 q,
-1 2 2 @
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We write (3) in a form convenient for the following
analysis:

(o 2)- qZ; Smat(0+ 27 ): (4

where Sp,y i a matrix represented in the form of a prod-
uct of a diagonal and a cyclic matrix: Syp = 8m- ¥n-m}
By = exp(—ikcos{p + 2m m/q)]. Owing to the unitarity

of the matrix S, its eigenvalues are of the form hj(e) =
exp [{aj(8)], Il\rjrt =1, We emphasize that in the general
case the 1 ; depend on 4, From (4) one can find the time
dependence of the rotor energy (t is the dimensionless
time, measured by the number of pulses):

E()=EQ)y+n1* +a3i0t ¥ bra

g-1 q-1 (5
+ I Gum W+t T Ry (1),
m,m, =0 m,m, =0
where 7, ay, by are time-independent constants. As an
example we give the expressions for » and Rmm, (t):
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R (0= ~H 'E T 0 7, 0.0)0,0,000, m; Qo Com Qi
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X exp{i(ay, — om, )r)}, (6
where ®m(a, t) = ¥ (8 + 27 m/q, t), Q is the unitary matrix
that reduces Smn to diagona! form, and the prime denotes
a derivative with respect to 9. Since the am depend on 4,
at asymptotically long times Rym, (V) and Gmm, (H{m =
m,) are expressed in terms of an integral of a rapidly os-
cillating function and tend to Rmm(0), Gmm(0) with in-
creasing time. Thus, at asymptotically long times we
have

E(y=nt* +a,t +b, +E(0). . (N

The asymptotic ime dependence of the rotor momen-
tum is determined analogously: P(t) = ast + by + P(0). The
expressions obtained for the energy and momentum are
universal, and glve the form of the asymptotic behavior
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at long times.

3. We study the structure of the quasienergy spec-
trum. At time t = 0 the wavefunctions with definite quasi-
energy can be represented in the form

q-1
_ 9.0y= £ ¢! 2mm
Vo) 0. 0= E Ch00)524(0400 +ST). ®
The quasienellgy ej(6p is determined by the eigenvalues
Ajlog = explicji8y)] of the unitary matrix Spm = Bnl6h
Yn-m?
€(80) = —F(6)/T. (9

The coefficients CJ\(6,) are elements of eigenvectors of

- the matrix Sppy,, and §, is & continuous parameter: 0=

6 < 2r. It is seen from an analysis of (9) that the quasi-
energy spectrum has discrete levels when the matrix

Spnm has eigenvalues Aj that do not depend on g,. It fol-
lows from the explicit form of Sy, that for any p/q (p/q #
1 /s the spectrum of energies (9) is continuous at reso-
nance., One easily find from (8}

) e e .
\bei(an)(e, 1y =exp(—ikcosd - 80t -TH Z mA,,exp(—rT +m0) .

n=—

o=<r<T,

where A,, are the Fourier components of ¥ejo,)(0,0), HE -
T) is the unit step function, Itis interesting to note that
{nly increases at resonance linearly with time; there-
fore, if the unperturbed system possessed a spectrum
Ep~nm (m > lis an integer), its energy would increase
with time according to the law E(t) ~t™.

The explicit form of i}'( ¢ is found in three cases:

a) p A = 1 (the principal resonance). The time depen-
dence of the energy (when the ground state n = 0 is initially
excited) is given by the formula E(t) = k%?/4. The quasi-
energy spectrum is £ (g} = kcos gy/ 4.

b)pA =1/, From (3) we obtain ¥ (§) = exp (~ik cos 6) -
¥ (g + m). After iwo pulses the system returns to the in-
itial gtate. The eigenvalues A, ,= *1. The gquasienergy
spectrum consists of two levels with quasienergies £, = 0,
£~ !Y/,. This degeneracy of eigenvalues (when the Xj are
independent of §) is accidental, and obviously does not
occur for other resonances,
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FIG. 1. Time dependence of rotor energy E in case of quantum resonance:
T=am-%/g k= 0.5;t= 200
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c) p/q = ‘A._ﬂ_}t follows from (3) that $(s) = exp (—ik"
cos 0)- 2-V2 [e7174(0) + ¢!"Ayi(p + m)). The eigen-
valyes A4 = Ay = exp[+ Lla( 6) — ir/4), where cos [a(0)]"
2-V2 oog (kcos 6). For k<« 1, when the ground state is
initially excited, we obtain n ~ k*/16. For k> 1 we have

n ~ k2/12. The quasienergy spectrum i8 e.(05)=% ¥ a(fo)im.

From the estimates obtained for n it follows that for
k <«q, n ~ (& q* and the quasienergy spectrum consists
of q exponentially narrow bands of width A¢ ~ k/@%. In
the case k » q (5 ~ k%), to find the band structure it is
required to know the detailed properties of the eigenvalues
of the matrix Spm.

4, Along with the theoretical analysis we also inves-
tigated the model numerically. In solving the problem
the Fourier components of the wave function were found

from the formula 4, = b FmAm. where Fppy = (—h-m-

e
exp (-iTm¥2)J, (&) Jy_p (k) is a Bessel function. Tn
effect the sum contains ~ 2k terms, since [Ju(k)| falls off
exponentially with increasing n’ for n' > k (the pulse en-
compasses ~ 2k levels). The accuracy of the calculation
was controlled by checking the condition of normalization

of the wave function: W= I |4,1' =1. In all cases the

n=—e

errors did not exceed W £ 3-1073, The errors of the
calculation increases with time because of the finite num-
ber of levels N = 4001, The initial conditions were varied
from the excitation of one level (the ground state) to the
excitation of ~ 20 levels (a Gaussian packet). In all cases
the asymptotic form of motion depended weakly on the
choice of the initial state, The rotor energy was calcu-
+m 2
lated from the formula £= Z -"; i4, I*. The numerical re-

= —ea

gults for a very wide range of k, q, p show that the de-
pendence E{t) is quite well approximated by a quadratic
polynomial {see Fig. 1). The experimental values of n
agree in order of magnitude with the analytic estimates,

5. The studies performed show that for quantum reso-
nances whose system is everywhere dense ‘the asymptotic
time dependence of the rotor energy is universal and is
described by the quadratic law (7). This implies that the
guantum stability limit (k = 1) predicted in Ref. 3 and ob-
served in the nonresonance case!! is absent at the reso-
nance. It is also important to note that there exists no
classical stability criterion (kT = 1) either, even though
the system may be in the strongly quasiclassical region.
At the same time, for a nonlinear system with a classical
Hamiltonian corresponding to (1), according to the Kol-
mogorov—Arnold—Moser theory'?~!4 and the numerical
experiments of Ref. 10, when the perturbation is small the
motion is stable and the energy of the system is bounded.
All this indicates an essential difference between the he-
havior of the quantum system and that of the classical one,

It is easily shown that for a perturbation of type f(x).
&p(f) it is necessary for the existence of regonance that
the spectrum of the unperturbed Hamiltonian H, be dis-
crete and have the form of a polynomial in the quantum
number with rational coefficients. n this case it is also
required that the condition $m¥n = $men be satisfied for
the eigenfunctions of the Hamiltonian Hy, It is quite likely
that the latter condition can be weakened,
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The quantum-regonance effect considered here can
be useful in the study of rapid excitation of quantum sys-
tems by means of sufficiently short periodic laser pulses.

The authors are sincerely grateful to B. V. Chirikov
for his interest in this work and for valuable comments,
to G. M. Zaslavskii,I. A. Malkin, V. V., Sokolov, and 5. A.
Kheifets for stimulating discussions, and L. F. Khailo for
help in performing the calculations.
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The problem of detecting gravitational waves (GW) in-
troduces the very important task of developing methods of
effective investigation of the behavior of various systems
(detectors) in the GW field. We consider one of such pos-
sibilities, based on the well known averaging method of
Krylov and Bogolyubov,!»?

We will proceed from the Golikov--Sherman equa-
tions,? which describe the displacements of particles in
a gravitational field relative to a reference line,

° 5 s 0.0
65 -u u,){zﬁ» - &_E +£5(20P; + R@mﬂ*ﬁ") ] =0, (D
where RY..» is the Riemann —Christoffel tensor, u® is the
particle velocity {@,8 , v =0, 1, 2, 3), % = (1/mc?) F,
FO(x; u) is the four-dimensional force field, £ is the
relative displacement vector, and the quantity

'6¢°/d‘é =§7 _ &p + I“";,, (f,ﬂn‘-"r
is the absolute derivative of the four-force vector % in

the direction of the vector £. All the quantities appearing
in (1) are defined on the reference line.

Let a gravitational wave
ds? = (dx®) — (dx?)? — gp(x° +x*)dxdx®, a, b =1,2, {2)

which is propagating along the coordinate x°, impinge on a
detector located in the coordinate plane (x'x%, (The actual
form of the detector as wetl as the type of GW, which can
be weak or strong, is not of concern at the moment,)
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Let us take 38 the reference line the geodesic of the
center of mass (% = 0) and use the frame of reference
co-moving with the center of mass (1% = 3. Then the
original equations assume the form

drg o di?
2rd _ = w0 3 .
T +20%, P, x=x®+x% (3)

This does not contradict the conclusion of Ref. 4 that the
displacements of particles in a field of plane waves are

longitudinal, although we consider the co-movement condi-

tion only in the local neighborhood of the reference line
and not over the whole region of space-time.

We expand the force 3% onthe worldline ¥%(r) ina
Taylor series:
3= %’q bl o (o @ o, +B<D°‘ (o) Ly O
= +— —_ — X —_
ax,rx)x X)au"' @ —u’) |
de" (4
+,,.=-KSE-DY— +...,
')'s T ds
where the quantities
abT o

i 1
S 1 PR x), Dé=—d* = _
me? ¥ ax”() T me

I

X5

are Interpreted as the stiffness constant and internal re-
sistance of the detector. We next introduce the small
positive parameter ¢ = i/¢ and reduce Eq. (3) to the fol-
lowing form:

dijdx = €G*(x, ), dnfdx = HY +eHY, (5)
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