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1. In recent years there has been an increasing in-
terest in the dynamics of nonlinear quantum systems that
are stochastic inthe classical limit K =0 (in what follows,
these systems will be called stochastic quantum systems)
(Refs. 1-7). This i3 due mainly to the new possibilities
of experimental study of the behavior of atoms and mole-
cules in a laser-radiation field.¥ One of the methods of
investigation of such systems is the quasiclassical ap-
proximation (see Refs, 1, 3, 4, and 7). It is also known
that in nonlinear systems corrections to the quasiclassi-
cal approximation increase with t;ime..“J and after some
time 7* the quasiclagsical approximation becomes in-
applicable. For integrable systems, these times are
proportional to some characteristic quantum number of
the problem (7 * a hghar « 1 /H). This follows from the
Ehrenfest theorem, and is a result of the fact that, until
the packet spreads out, it moves along classical trajec-
tories, For the stochastic guantum systems, the problem
of times for which the WKB method is valid is more com-
plicated because of the local instability of the classical
trajectories, This instability leads to an exponentially
fast spreading of the quasiclassical packet during the
time 4 o« InDgpar « In(1/ f). In the present work we
use the results of Maslov¥*115 to obtain a general condition
of applicability of the quasiclassical appraximation to
stochastic quantum systems. For simple models we find
the times for which the deviations from the classical val-
ues are small.

2, Suppose a classical system is described by the
Hamiltonian H = Hy(}) + eV (I, ¢, i}, where I and ¢ are the
action and angle of the unperturbed problem, & <« 1, and
the condition of moderate nonlinearity is satisfied 1113
In this case, in the study of the quantum corrections it is
sufficient to limit oneself to terms up to (A)? in the ex-
pansion of H about the initial I). For Iy/h > 1, the stand-
ard quantization!»!? leads to the Hamiltonian

A=l +y* Qre{m.,, 8, 1) + %IV, (8, 1) + v, (8,00 + %iV2(8,00], (3)

where
dH, dos

1
“ =T \Ho"" Z di \Hn
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Following Refs. 14 and 15 we obtain the quasiclassical
approximation for the wave function which satisfies the
Schrodinger equation with Hamiltonian (1) and initial con-
dition (8, t =0) = @(0) expliS(8)/ n):

N )
- —n i T
wie, 0= k2=1|-]k| exp(hSk(B,r) lzﬂk)

X1 2 [Ef (@) | b +oa™), (2)

68,5050, k)

where the summation over k is carried out over all classi-
cal trajectories which arrive at the point 6 at time { and
satisfy the initial conditions

as 368y, 1)
00(0.0y=08, Io60)= 55 | . Te=—pp" |
8,70

le,'—-af,"

where Sk(9, t) is the action along the classical trajec-
tory which connects 6y and ¢, and g is the Morse index.
The sum over m is essentially an expansion in powers

of fi. The quantum corrections are small if

- t 2
Lxeo(@0)=ih ]y +SV2)| g 1% U7 260 | 200)

BI
L/ BG

(3)

2|J i i (l-’kl 112%);d,<%(00)

Since the classical system is stochastic, the Jacobian
Jjc and the number N of terms in the sum increase ex-
ponentially with time: Ji, N ~ exp(ht), where h is the KS
entropy; 11713 this leads to exponentially fast spreading of
the initial packet, Nonetheless, a detailed analysis? shows
that the condition for the applicability of the gquasiclassi-
cal expansion (2) is (3). As usually," the term with m =0
gives the classical value for the averages (the contribution
of the interference terms is small because of the random
nature of Sk, and also because of the absence of a saddle
point in these terms), The successive terms with m =0
give quantun corrections which will be small while (3) is
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TABLE 1

kT l ki ’ a , T ! 5 l (¥ 056}
T T T + —_
5-36 5-80 0 5-320  014-0.50 0.27 0,32
5-10 5-10 0.1-0.35 40-500  0.53-17 i 0.31
2./3
- o[y~ % (L ayop)?,
=0 NATL() {5)
| ;z.ff
+ P where AT} = ((AL())?) /2 is the change of the action
i . +2 during an impulse, averaged over the random phase ¢,
| 3+ .l Since AI ~ &, the terms €V, in (4) can be neglected,
]
, tan + We now consider a rotator with H = 12/2 + kcos 6 -
t s+ 5 6 7{t), where K is a parameter which characterizes the
T magnitude of the perturbation, and §.()= I 5( - n7).
.
L ; | L | In the classical system for KT > 1, the energy of the rota~
a1 aF as ar 25 {k7/2x} tor increases according to the diffusion law E = (Iz/ 2y =

FIG. 1, Dependence of the ratio of the experimental diffusion coefficient
Dg to the theoretical value Dy = k%4 on the fractional parr {g} ;1)
m

for the classical system; 2) for the quantwm system with k/fi~ 40, The
numbers by some points give the values of kT,

satisfied. We note that this is not valid for the correla-
tors which decay exponentially in the classical problem,
since in the time r they become ~ #, and so the quantum
corrections, which are small in absolute value, are rela-
tively large.

From (3) we obtain the condition for applicability of
the quasiclassical approximation:
t af 2
K| =g 3 3 g
|89 |m0f{(y+2v,) [41,, (aau
‘3 al'fk} € .3 8V 0Jy

1..
1y _% —w—}dl <1.
7% 3p2 47% 38, 26, |

LY

The integral over time in (4) should be understood in the
sense of a difference of primitive functions at times t and
0, since at intermediate times Jy. can be zero (corre-
sponding to passage through a caustic), and the result of
the integration does not have a definite sign. Since Jy ~
exp(ht), 5Jk /86, ~ exp(2ht), ete., &, increases no Faster
than linearly with time, and the quasiclassical approxima-
tion is therefore valid for times ty ~1/H.

d. Consider a system with H = Ho(l) + eV (I, §)g(t),
where g(t) has the form of impulses acting for a time Ty
and succeeding each other a time interval T (T s To.
Suppose that the change of the action during the time of
the impulse is Al, and the criterion of stochasticity is
Satisfied, 1.e., 3¢ ~ y TAI » 1.1™8 The integral in (4)
¢an be decomposed into a sum of integrals over the inter-
vals T + Ty, Noting that the terms in the sum are statis—
tically independent because of the stochastic nature of the
classical system, and

T, of T
JaT+To 40 ~JGT + To) (1 + L), o ~T*T + To)(1 +2 ),

etc., where n isthe dimensionless time measured by the
Wumber of impulses, we obtain that, on average, 6 K in-

. ‘Creases according to the law
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k'n/4 (see Refs. 11-13). The numerical experiments of
Ref. 2 showed that, in a quantym system the energy in-
creases diffusively with rate close to the expected rate,
but only during a certain time t*. Fort > t*, the rate of
diffusion decreases substantially. It follows from (5) and
the condition & ~ 1 that the quantum corrections are
small for t  t), where t; ~ T(k /H)?, Thus, it is natural
to expect that for ¢ s t, the characteristics of the quantum
problem fe.g., the energy of the rotator) will deviate ap-
preciably from their classical values. Hence one can
give an estimate of the time t* after which the diffusion
in energy begins to slow down, as observed in Ref. 2:

t¥ ~ty ~ Tlk /)%

Suppese now that k increases with time: k(t) =k .
{t/T)*. This roughly corresponds to the case k = k(I).
Then for 0 < @ = 0,5, the quasiclassical approximation is
valid for

15 to ~ T[(k/M)*(1 - 209] V101200 )
and during this time the energy increases inthe same
way as in the classical system:

E 29 4 £(0).

- K,
a1 +2a)" (7
For « > 0.5, the quantum corrections are small at all

times, and (7) is valid at all times.

When the classical system is a current, and when its
dynamics cannot be reduced to the action of impulses,
we have 83 /0 0y ~ J%, 8%/ 00} ~ J%, ete. The integral
in (4) can then be decomposed into a sum of integrals over
the time intervals At ~ 1o = 1/h, which are now statis-
tically independent, and we thus obtain

7
60912 =00 [ (o0 pyhar < 1. ®
o

For vy =const, (8) gives |6,| ~ (H-y/h)(ht)I/z. For ex-
ample, if
It M
H=y= +k Z cos(d +mS¥ +y,,),
2 m=M
where om is aset of random phases and M » s = (ky /2.
Q7' > 1, then h ~ 0st/3 (Rek. 11), and t, ~ h/(1%yY),
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4. To check the results obtained we have carried out
a numerical study of the rotator model with k = const and
k(t} = ki{t/ T)%, For the system with k = const we have
compared some sensitive characteristics of the classical
and quantum problems such as the dependence of the diffu-
sion coeefficient D = DE/dt on the parameter kT at times
smaller than t* (for the classical system this problem
was studied in Ref. 13). For identical initial conditions
(in the classical system, the line p(8) =0, 0 < § =< 2w,
and in the quantum problem, the ground state with E =0
and k /fi =~ 40) the experimental data for D(kT) are given
in Fig. 1. The small difference is at the level of the quan-
tum corrections.

From the experimental data we have determined the
time during which the energy increases according to a
law close to the clagsical law. For t* we have taken the
time t after which the energy of the quantum rotator dif-
fered by 25% from the energy in the classical case. To
check the functional dependence (6) we have evaluated the
quantity

J[@emi-re %

8 [ (k_/fl)m = const.

The experimental results for the average value (6}, the

- standard deviation ¢ g, and the ranges of variation of the
parameters are given in Table I. The results of the ex-
periments show that, in agreemrent-with the predictions,
the time t* increases sharply with increasing k/h and o

5. The investigations carried out in the present work
show that the quasiclassical appraximation for stochastic
quantum systems is valid at times tyec Dgharoc1/H. For
concrete systems, an estimate for £y can be obtained from
{(4). It is interesting to note that in some cases {8} [k =
k(t}), @ > 0.5] the quasiclassical approximation is applic-
able at all times. Knowledge of the time t, over which
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the quasiclassical approximation is applicable can be use~
ful in the study of the excitation of nonlinear quantum sys-
tems by an external variable field.
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