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The structure of chaos border in phase space and its impact on the correlation and other statistical properties of the chaotic 
motion are considered. We conjecture that such a structure is described by a chaotic renormalization group. The effects of an 
external noise and of dissipation are discussed. 

1. Introduction 

In this paper we discuss some statistical proper- 
ties of dynamical chaos in the Hamiltonian sys- 
tems with divided phase space. By dynamical chaos 
we term the random, in Alekseev's sense, motion 
of a completely deterministic (=  dynamical ) sys- 
tem. According to the Alekseev-Brudno theorem 
(see ref. 1) this randomness is equivalent to the 
exponential divergence of close trajectories. How- 
ever, this does not imply an exponential correla- 
tion decay, nor even the decay at all. The 
corresponding "anomalies" in the motion statisti- 
cal properties, particularly, occur when the "chaos 
border" in the phase space is present which sep- 
arates a chaotic and regular components of the 
motion. Such anomalies had been observed, ap- 
parently first, in ref. 2 and subsequently were 
studied in other papers [3, 4]. Our experience 
suggests that the most efficient approach to this 
problem would be investigating the statistics of the 
Poincar6 recurrences as has been implicitly done 
in ref. 2. As to the correlation decay it is usually of 
a complicated oscillatory nature, and it may be 
even random as a simple example due to 
Nagashima [5] demonstrates. 

Following ref. 3, we are going to consider, as a 
typical example, the stochastic layer of a nonlinear 
resonance where the motion can be approximately 
described by the mapping [6] 

y = y + s i n O ;  O= O -  hlnl .Pl+ r. (1) 

Here the phase O specifies the system position 
along the layer while the action y does so across 
it; the parameter h controls the layer width lYl < ~, 
and r affects the structure of the layer edge (see 
below). A local (about y = z) motion of the sys- 
tem (1) is described by the standard map 

P = P + K s i n O ,  0 = 0 + P ,  (2) 

where new action P = ~ ( z  - y ) / z  - ~ lnlz[, and 
new parameter K = -7~/z. Unlike eq. (1) the map 
(2) has no global chaos border but its parameter 
has the critical value K = Kcr ~ 1 which separates 
the finite ( K < K c r )  and infinite ( K > K c r )  mo- 
tions. 

An invariant curve of map (2) with the rotation 
number r (the motion frequency 2~rr) becomes 
critical at certain K = g r when the curve is de- 
stroyed. The structure near the critical curve of 
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irrational r is characterized by some scaling (re- 
normalization group) which depends on the con- 
tinued fraction representation of r = l / ( m  1 + 

1 / ( m  2 + • • • - [m 1, m 2 . . . .  ] with integers m i > 1. 

The convergents r, = p , / q ,  = [m 1 . . . . .  m , ]  - ,  r cor- 
respond to the strongest resonances near the criti- 
cal curve which determine the renormalization 
group. The latter is a sort of "dynamical system" 
in a functional space of mappings. The logarithm 
of spatial scale (the serial number n of convergent 
r , )  plays the role of " t ime",  the asymptotics n ~ oo 
corresponding to indefinitely small scales that is to 
the local structure. Due to discreteness of the 
sequence r, the renormalization group is also dis- 
crete that is, to say, it represents some "renorm- 
map" (of the structure on two different scales). 

The simplest scaling relates to the "golden 
mean" r = r ~ l ) = [ 1 , 1  . . . .  ]. This case has been 
studied thoroughly since the classical paper by 
Greene [7] (for survey of other papers see ref. 8). 
In this case the renormmap has a saddle fixed 
point that is a universal map exists which turns 
out to be close to map (2). That sort of scaling is 
also called the scale invariance (of the motion local 
structure), and it is directly related to the homo- 
geneity of the r (1) continued fraction. In a simple 
theory [9] all the scaling factors are related to the 
asymptotic value of the denominator ratio for two 
successive convergents q,  + i / q ,  --" So ( =  1 + r °) 

for r~a)), and they differ from the exact values [8] 
by less than one per cent. 

For a generic (almost any) critical curve we 
conjecture the scaling to be chaotic since the con- 
tinued fraction elements m i of the corresponding r 
form a random sequence [10]. In this case the scale 
invariance holds at average only, over many itera- 
tions of the renormmap. For dissipative systems a 
similar possibility was considered recently in 
ref. 11. 

The structure of a chaos border (lYl --" ~ for the 
map (1)) depends on the marginal rotation number 
r =  r0(h ) which, in turn, is determined by the 
fractal diagram of the function Kcr ( r  ) for map (2). 
This diagram, studied in ref. 12, looks like an 
infinite, scale invariant hierarchy of local maxima, 

inside each maximum on one scale being two 

principal maxima of close Kcr values on the next 

scale (see fig. 2 in ref. 12)'. Such a doubling results 
in formation of the set of "most  stable" r = r  s 
which is an uncountable Cantor set of zero mea- 
sure. The continued fraction elements for r s = [mi] 
take on two values only: m, = 1,2, and the se- 
quence m i is random for almost all rs. We conjec- 
ture that for almost all ~ the marginal values r 0 
(2,) belong to the set rs, and, hence, the scaling at 
the chaos border is also chaotic. In this case the 
corresponding renormmap would have a sort of 
"chaotic saddle". The asymptotic structure at the 
chaos border appears also to be universal for any 
canonical two-dimensional mapping. 

2. Chaos border and statistical "anomalies" 

The scale invariant structure of chaos border 
drastically changes statistical properties of the 
chaotic motion. In fig. l a  the integral probability 
P( ' r )  for the Poincar6 recurrences after time inter- 
val r is presented for two mappings with divided 
phase space. The circles show data from ref. 3 for 
the map (1) with ~ = 3 (a single trajectory by 108 
iterations). Crossings of the line y = 0, or transi- 
tions from one half of the layer (y  > 0) to the 
other (y  < 0) and vice versa, were recorded. The 
solid curves present the results of the unique com- 
putation due to Karney [4] for the map 

y = y + 2 ( x 2 - K ) ,  ~ = x + y  m o d L ,  (3) 

with K =  0.1 (1600 trajectories by 2 x 10 9 itera- 
tions each!). An overall dependence P(T) appears 
to be similar for both mappings even though the 
global structure of their motions is quite different: 
a bounded stochastic layer for map (1), and a 
bounded stable region for map. (3). At average, the 

*This visual picture is similar to and confirms the principal 
"two resonance" approximation assumed in ref. 13 to develop 
a particular renormalization technique. 
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Fig. 1. Statistical properties of motion in presence of the chaos 
border: (a) the Poincar6 recurrences; (b) the correlation decay. 
Two solid curves represent Karney's numerical data [4] for map 
(3); the circles do so for map (1) (after ref. 3). The straight lines 
are power law dependences with the exponent p given. The 
dashed curve shows the effect of external noise (9). 

dependence  

P(T) ¢x,-P (4) 

is a power  law one with the empir ical  exponent  
p = 1.44 (the solid straight line in fig. la) .  The  
dashed  line with p = 1.61 imposes  an upper  limit 
for  p.  These  da ta  are to compare  with the mean  
value ( p  } = 1.45 over  various ~ as given in ref. 3. 
Apparen t ly  irregular  oscillations are also char-  
acteristic for  the dependence  P ( r ) .  These  oscilla- 
tions, as well as the p value, do not  depend  on 
initial condi t ions of  the mot ion,  even though the 
lat ter  is highly unstable.  Thus,  they relate not  to 
some fluctuations but,  rather,  to the s tructure of 
the layer edge that  depends,  in turn, on the mar -  

ginal r 0. 

Fig. 2. Statistic of the Poincar6 recurrences in map (1) for the 
"golden" marginal rotation number r 0 = 0.617 = [1, 1, 1, 
1,1,1, 3 .... ] ~ rO) ;  10  7 iterations. The upper points are for 
~= 3.22 and P = 0 ; p =  1.338 (the straight line). The lower 
points, shifted for convenience by A log P = -1 ,  are for ?~ = 2.65 
and r = -0.185 × 2rr; p = 1.321 (the straight line). The loga- 
rithms here and below are decimal. 

To  get some insight into the p rob lem we under-  
took  the special computa t ion  in which the pa rame-  
ters ~ and v were chosen in such a way to provide  
r 0 = r (t) = [1,1 . . . .  ] and,  thus, to "k i l l "  at least the 

initial oscillation in P ( r ) .  No te  that  oscillation 
ampl i tude  as well as the per iod are the bigger the 
larger initial differences (m i - 1 ) .  The  results of  
this compu ta t ion  are presented in fig. 2. The  oscil- 
la t ion has been  considerably reduced, indeed, that  
quali tat ively confirms its relat ion to the structure 

of  the chaos border .  Moreover ,  without  oscillation 
the p value can be measured  much  more  accu- 
rately, and it becomes  more  reliable, too. The  least 
square  fit within the interval 1 < logr  < 4 gives 

p = 1.338 ___ 0.014 and p = 1.321 ___ 0.014 

for  the two cases in fig. 2. Both values are compat i -  
ble with each other  and with the value 

p = 4 / 3  (5) 

we assume for  fur ther  analysis. 
A quali tat ive explanat ion  of the dependence  (4), 

based  upon  the effect of  t rajectory "s t icking"  at 
the chaos border ,  has  been  given in ref. 3 (see also 
ref. 9). Here  we a t t empt  to relate the dependence  
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(4) to numerical data [6] on the diffusion rate in 
the standard map (2) near the critical K = Kcr + c 
(e<< 1) as well as to the theory of the latter 
process developed in ref. 14. Assuming, like in ref. 
3, the recurrence time ~" - r, to be of the order of 
the transit time from one scale to the next bigger 
one, we estimate z~ via a rough analogy between 
the transition among integer resonances in the 
standard map and that among scales near the 
chaos border. According to ref. 14, in the former 
case the transit time 

TST --  CST 3 ( 6 )  

that satisfactorily agrees with numerical data. We 
assume, further, that near the chaos border the 
parameter en=Ay~=yn-y o where Y0 indicates 
the border. This is suggested by the fact that the 
average derivative {dK/dz>o is a constant at the 
border. Since the time scale T, - x~ 1/2 (see ref. 9) 
we have "rn- T~e~ 3 -  Xn 7/2. On the other hand, 

the measure scale/z~ - x~, and the motion ergodic- 
ity implies (see ref. 3): " rP(z ) - ( t - ) / z ;  ( ~ ' ) -  1 
(this holds for p > 1 only, otherwise (~-)= oo). 
Whence p = 9 / 7  --- 1.29 that is fairly close to the 
empirical value (5) thus justifying the above as- 
sumptions. The crucial assumption is that the tran- 
sit time between the scales is determined by the 
local parameter c, and it grows indefinitely as 

i~ ----~ 0 .  

For additional examination of this assumption 
we studied numerically the Poincar6 recurrences to 
the line P = 0 in the standard map at K = Kcr = 
0.971635. The least square fit of the data in fig. 3 
within the interval 2 < log ~-< 5 reveals a power 
law dependence with the exponent p = 0.975 _+ 
0.013. The actual value of the rotation number 
reached in 108 iterations was r 0 = 0.3797 (1 - r <1~ 
=0 .3819 . . . ) .  Note that the data for ~-> 105 are 
unreliable due to a poor statistic while the initial 
behavior of P(T)  is affected by the phase oscilla- 
tions on the integer resonance P = 0. Since the 
exponent p is very close to unity the correlation 
decay is nearly absent (see eq. (7) below). This 
indicates a very long transit time under c---0 on 

-2 

-.. 

Fig. 3. Same as in fig. 2 for the s t andard  m a p  (2) with K = Kcr 
= 0.971635 ( r  = 1 - r<l)); 108 i terations;  p = 0.975 (the 

s t ra ight  line). 

all the scales. Note the crucial difference from the 
chaos border where c is assumed to grow inward 
the chaotic component. 

The external border of a chaotic component is 
not the only chaos border since near the former an 
intricate network of internal borders exists sur- 
rounding stable periodic trajectories. This question 
is discussed in refs. 4, 9. If the structure of any 
chaos border is universal it would not change the 
motion statistical properties and, particularly, the 
exponent p. However, the internal borders with 
their own rotation numbers may cause oscillations 
in P(~-) even though ro=r(l) at the external 
border. We observed this indeed in numerical 
simulations. On the other hand, it was checked 
that in the absence of oscillations (see figs. 2, 3) 
the most long recurrences were related to trajec- 
tory sticking just near the external border. 

Consider the particular correlating function 
which is constant within a strip along the whole 
chaos border. Then, the correlation C( r )  is merely 
proportional to the measure of a region in which 
the sticking time is > r. From ergodicity (see ref. 

3): 

c(¢)- Ce(¢), (7) 

hence the correlation decay is also a power law 
one with the exponent Pc = P  - 1. The exact rela- 
tion between C('r) and P(~') is given in ref. 4. An 
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example of the correlation for map (3) is shown in 
fig. lb  taken from ref. 4. The empirical value of 
exponent Pc = 0.42 is certainly less than 0.61 (the 
dashed line), and, in any event, Pc < 1 (the lower 
line). The latter inequality implies a qualitative 
change in the statistical properties. Particularly, 
the diffusion equation, related to the correlation 
under consideration, proves to be completely inap- 
plicable since the process is essentially non- 
Markovian (see also [4]). For example, in case of 
map (1) the quantity ((t)2) 
5 2 = i~=ly i OCt d, d = 3 - p  > 1 (8) 

grows faster than time. We checked the relation 
d + p = 3 numerically for various h, and we have 
found it to hold within 10 per cent for t _< 10 4 
while oscillation in P(z)  was not very important. 
It is quite likely that such statistical anomalies 
were observed experimentally in ref: 15 (see [9] for 
discussion). 

3.  N o i s e  a n d  d i s s i p a t i o n  

To study the effect of external noise we added 
into the right-hand side of the first equation (1) the 
term f in  where in are independent random quan- 
tities distributed homogeneously within the inter- 
val ( - ½ ,  ½), and where f is a constant. An 
example of noise influence upon the statistic of 
Poincar6 recurrences is shown in fig. l a  for f = 0.3 
(the dashed curve). From some ~-=~'f on, which 
depends on the noise power f2,  the recurrence 
probability falls down much slower, approximately 
as 1/¢~- that corresponds to a free diffusion in- 
ward the stable region. 

The value ~-f can be estimated from the condi- 
tion that the scale A y, related to the recurrence 
time ~'f, is passed over due to the external noise in 
the same time: A y - f v ; - ~ / -  "rfP('rf). Whence, the 
recurrence probability for • >> ~'/is given by 

--- 0.Tf/ , (9) 

where the factor 0.7 has been obtained from the 
numerical simulation. If the stable region is of a 
finite size the dependence (9) is going to change, 
finally, into an exponential one. 

In presence of dissipation the chaos border and 
chaotic attractor are generally incompatible due to 
the capture of trajectory into one of the stable 
regions [16]. Therefore, one would expect both the 
correlation as well as Poincar6 recurrences decay 
exponentially. To see whether this conjecture is 
true we did undertake numerical simulations for 
the modified map (1) in which the variable y was 
additionally multiplied by the dissipation parame- 
ter "/ (0 < T < 1). A chaotic attractor occurs at 
sufficiently large dissipation whose critical value 
can be approximately evaluated from the condi- 
tion for the absence of stable fixed points. 

As well as for T = 1, the statistics of Poincar6 
recurrences to the line y = 0, or the transitions 
between two symmetric halves of the attractor, 
were studied. Typical dependences P(T) for )~ = 3 
and 3' = 0.5 (curve 1), and "t = 0.2 (curve 2) are 
shown in fig. 4. Unlike the Hamiltonian case (fig. 
2) the recurrence probability is well described by 
the simple exponential law (the Poisson distribu- 
tion) 

P ( I - ) = A W ' - I = A e  <'-l)/~Y, z > l ,  (10) 

-2 

-L 

PCc) z 

"--1 2 

Fig. 4. Same as in fig. 2 with dissipation and ?, = 3; r=O: (1) 
"t = 0.5; (2) T = 0.2. 
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where ( 1 -  W) means the transition probability 
onto the other half of the attractor, and ~'y is the 
relaxation time. The empirical values of the distri- 
bution parameters are as follows: W =  0.56; A = 
0.79 (y = 0.5); W = 0.64; A = 1.26 (7 = 0.2). For 

= 1 - y << 1 these parameters can be evaluated 
from the diffusion equation (see ref. 17) to give 

e ( ' r ) = v ~ e x p ( - ~ ' r ) ,  ~>> I. (11) 

For  example, at ?, = l0  s and 8 = 0.049 the ratio 
- In W/8 = 0.93, and A2/28 = 0.97. Transitions 

across the line 0 = 0 (instead of y = 0) were also 
investigated. The distribution (10) holds in this 
case as well, for instance, at ~ = 3; ~, = 0.5 the 
value W = 0.32. Similar results have been obtained 
also for some other models with a chaotic attrac- 
tor. 

4. Conclusion 

Numerical  evidence strongly supports the ex- 
istence of a universal critical behavior for the 
Hamil tonian two-dimensional maps near the chaos 
border. This behavior is qualitatively understood 
in terms o f  a particular renormalization group. It 

is conjectured that generally this group is chaotic 
which results in the average scaling only. The 
latter appears to receive some support from an 
irregular oscillation observed in the Poincar6 re- 
currences. Whether it does affect the average criti- 
cal exponent, i.e. whether the difference between 
the special value p = 4 / 3  (5) and the average one 
( p )  = 1.45 [3] is real, remains an open question. 

It  is also found that the critical behavior under 
consideration is not structurally stable with respect 
to the external noise, and dissipation. In the latter 

case the "normal" ,  exponential, relaxation is re- 
covered. 
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