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Abstract

The interaction of three-level atoms with a two-mode
clagsical electromagnetic field is considered in the case
when transitions between all levels are allowed. It is
found that for exact resonance with field fraquencies the
Avamice is chaotic in the rotating-wave approximation, i.e.
for an erbitrary small atomic density. The possibility of
experimental observation of this phenomenon for Rydberg

atoms is discussed.

After the pioneer work of Jaynes and Gummingai1} the
problem of a collection of two-level atoms interacting with
a self-congistent field in a resonator attracis attention of
many physicists (see e.g. Ref.2 and Refs. there in). To ana-
lyse the interaction the well-=known rotating-wave approxima-
tion (RWA) is usually usad, The validity of the RWA is based
on the fact that for ordinary density of atoms P the dimen-

gionless coupling constant is small

A= (B2 )Pt o

and the non-resonant terms may be neglected (here d is the

dipole moment and &2 is the transition frequency). In this
case the motion is integrableii'gj. For /\ ~ 1 the influence
of non-resonent terms becomes significant and leads to the
failure of the RWA and chacs(3'5}. The review of works in

this direction is given in Ref.6., However, it is importent to
note that the realization of this interesting regime for

optic frequencies requires extremely high density.pav1021cm'3
that makes its experimentel obsgervation very difficult.

In this paper on the basis of the RWA we conaider a
model of atom in which chaos exists for /l=0. In ithe model
atom has three approximately equidistant levels. The transi-
tion matrix elements between all three levels are different
from zero and we assume that Vo= \f3=d, Vz=d, # 0.
Such a system may be considered as a model of the hydrogen
atom excited in the states with magnetic and parabolic quan-
tum numbers m =0 and W, >> n,~1. As these states are very
extended along the field direction we obtain a one-dimensional

(7)

atom*'’, If the main quantum number [ »1 then the spectrum

is close to equidistant and its three levels give the sugges-



ted model with d »0.325 n® and d;_/,{ o 0.344. Here we use
atomic unites and nmumerical factors ,  taken from Refs. 7-8.
The esgential new element is the possibility of direcl transi-
tion 1-+3 which is comparable with the transitions 1-+< and
2—»3, This leads to an effective excitation of two modes of
the field if ihe resonator frequencies are close to the tran-
sition frequencies.

The interaction of three~level atoms with & two=-iode

electric field in the RWA is described by the equ&tiona(4’5):

E":;_ t &Jffi = 4’?“03:PJ (Crcz*ca.c:*c:ca +C£C;)
E;_ + c._;:{._';: 4;ca:9d1(CIC;+C4C:)

C:.= - (E,'I_dcz -I‘E’_G(J_C;) (2)

{i-,.z:'. C‘JC:E - ELJ{C,,*'C;J
(Co= (2w+Aw)(Cy - (Ej.dcg‘*'ﬁ,,,d’ics.)
vhere E:I,R eud CJy p are the field strengthes and the fre-

™~

w

quencies of the modes in a resonator, Cglg’y, are the probabi-
1ity amplitudes of the levels. The frequencies of transitions
12 and 2—3 are accordingly equal to < and W+AW, hsl,
These equations may be written in the Hamiltonian form., To do
this it is cctnvenient to introduce action-phase m:f*ia.hlea:
¢ = W é‘gf; ék/wk +EEy =(16.P'P¢0k:‘h)ia€d}jﬂ1 12433
k =1,2. Then in the RWA we obtain the Hamiltonian:

H= T, +(2+&" 4V Jy + % e -
AL LT, in(¥-6+6)+(3,T,1,)%in(g-§+§ 1 ©3)

+ D(LT,I,)? sin(4-6+8;)]

where & = Aalw . )}k="‘3k/UJf D= I'Gé;fa&l nand dimensionless
time f;= «9¢. The system (3) has two additional integrals of

motion: Hn= J;+JI_,+J£+2.‘I, and IJ."" I‘z + I.a =1/2, The last

one corresponds to the probability conservation. After int-
roduction of three new linear independent phases 'ﬂ=‘&—€+%,
Y=4,-26,+46;> }3‘:%“2@‘!* 6y sconjugated to actions Jy,J,, 153
and new time 2 =-/7¢’ we obtain the Hamiltonian:

K=Kg +al;+ A"‘[Hi-iJL +(%-2)1,1;
K= [+ T80+ H N H 2T, 100,01 “sin ) +

+[ 3,1, (H,-2T,-3,-23,0] 2 sin (% - N3 )+

+D LT, (3+L 4234 0-H )] sin (%- o)

where A=-§/). For exact resonance (4 =0, ), =2, =2) the

(4)

dynamical vehaviour of system (4) is determined by the reso-
nance Hamiltonian KR and does not depend on the small coup-
ling constant (1). Therefore, if the motion of this aystem
is chaotic then chaos exists in (2) for arbitrary small V. B
This beautiful phenomenon has been discovered and examined
in Ref, 9 for the problem of three interacting waves. The
same effect arises for the interaction of homogeneous clas-
sical massive Yeng-Mills fields 19}, Notice thet the Kolmo-
gorov=Arnold-lMoser theorem is inapplicable to this case due
to isochronism of system (3) at /1 =D{ﬂ}.

The investigation of system (4) has been carried out
by numerical simulation for lézE}_é =2, At first we consider
the case of exact resomance with 4 =0. Numerical experiments
have shown the existence of the chaotic component which is
characterized by the maximal positive Lyapunov exponent /\R .
Its value depends on the infergals of motioﬁ Ha end KR
and determines the maximal exponent /\2/1,'\,2 in system (2).
The positivity of A involves the positivity of KS-entropy
I'T. },,\ > 0 and is one of the most effective numerical

criterion of chaos (see e.g. Ref.12). An example of the
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calculation of Ap  for chaotic ( AR‘} 0) and stable (,\R={}}
trajectories is shown in Fig.1. The field in & resonator ini-
tially was equal to zero (zero field state with J,= Jz =0,

Knul'}}. The ﬁower gpectrum P(.V) of dipole moment di_g H‘)=
=£_{:{ fcstiC_;*)for the trajectories of Fig.1 is showm in PFig.Z2.
.A:g Ag =0 the spectrum contains only discrete lines but at ,\Rw
it becomes continuous. In the last case the main part of power
iz concentrated in the frequency region gV=fV-foMa‘tLThe
spectrum P(Y} was obtained by taking & 16384 fast Fourier
transform.

A share of the chaotic component S' was determined for
the zero Tield state in the following way. Hundred trajectories
with random values of I*Jr QJ were taken on a surface I1+];2+1:;=
= 4/9 and for each of them the value of /\g was computed.
Then the number of trajectories with /\R} 0 yields the share
of chaos 5 in percents, For the extended states of the Hyd-
rogen atom ])=VFJ1 /H 2 1/2, In this case it was obtained

$ =56%. The distribution of values of ’\R is shown in

Tig.3. The average value <)LR)::D.D16. The maximum ’\ﬁ. corres-~
ponds to Ilezzﬂ and Hox 1. The dependence of }‘R on Ho
(see Pig.3) was obtained by averaging over small intervel AHU
for trﬂjecto.rieﬂ with )l.‘} 0. The relatively small scatier of
values )\R from one intervel AH;. (aAR//\&,-., 1/10) indicates
the absence of an additional integral in (4). Qualitatively
the same type of motion takes place also for Kg"’H;—‘l. How-—
ever for H 1 the dynamics becomes more stable because here
the field dependence on time may be considered as a fixed one.

The motion of system (4) depends on two external para-
meters A and D (lfﬂ =2)£ =2). For A =0 the share of cheaos

S igs significant even for as small ratio cﬁ/‘,{ as 1/50

5

(see Fig.4). From the numerical data obtained it follows that
& significant chaotic component takes place only for 4% A,=1.
Using this value and expression (1) we can determine a criti-
cal density of highly excited atoms ¢ above which the in-
teraction with the self-consistent field leads to chaos., In

the case of exact resonance ".‘t =EV1 =2 the crilical wvalue of

the coupling constant is equal to Ac -"—-S’:-Xtand for extended

states we obtain 24
o~ 4 % i 0 -3
For such a densityﬁ{a.‘l’r!ﬁmn's and therefore the gas of atoms
8 en™3. Here we

is dilute. For M ~ 70 the density £ ~ 10
need to note that for exact determination of P: for atoms
with mn®1 it is nécesaary to take into account the in‘terac—'
tion with other near-by levelgwhich are also close to the
resonance. The allowance for these levelswill lead apparently
to a decrease of _ﬂ: and one needs a separate investigation,
Another interesting question is the quantization ol =n olece
tromagnetic field in the region of chacs sz il has been done
for the two-level model with /1 ~ 1 in Ref. 13.

The present high level of experiments with Hydocr:
atoms(14"15) allows one to excite extended states''?) and ma-
kes it quite possible to observe the described phenomenon in
laboratory.

The auther expresses his deep gratitude to B.V.Chirikov

for attention to this work and valuable comments,
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Fig.1

Fig.?2

Fig.3

Fig.4

Figure caption
The meximal Lyapunov exponent A, for the case of
exact resonance in (4) with KP.:O' The solid line
corresponds to ”u =0.985 (a) and the dashed line to
Hﬂx 0,464 (b). For (b) )"R is multiplied on 10.
The normalized power spectrum of the dipole moment dy4(¢)
for the trajectories of Fig.1: P, (V)= w P(V)/df,
5y =|Y-2wIl/Awia) Ag>0: (0) A =0. The
logarithm is decimal.
’\R for the
Y, =2V, =2, D =1/2
and Kp=0 ( J; = J‘z =0 at ¥ =0). /V, is the number of

The histogram of the destribution of
gystem (4) with A =0,

trajectories with )‘R in the corresponding interval.
In the inset the dependence of /\Ron Hﬂ is shown.
The dependence of the share of the chaotic component
on the parameter D=ﬁdﬂ? in (4) at A =0, \é =
=2 Y, =2, initially = _‘,[! =0, The dependence of
S' on the detuning A is shown in the inset for

D =1/2. § is measured in percents.
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