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LOCALIZATION OF DYNAMICAL CHAOS IN QUANTUM SYSTEMS 

B. V. Chirikov and D. L. Shepelyanskii UDC 530.145.61+530.182 

Numerical experiments with a simple quantummodel show that the localization 
length of dynamical chaos is determined by the diffusion velocity in the clas- 
sical limit. We investigate the localization phenomenon near the critical 
value of the parameter of the model. We determine the conditions for deloca- 
lization in the case of nonuniform diffusion. 

I. Introduction 

The phenomenon of dynamical chaos, i.e., random (unpredictable) motion of a fully deter- 
ministic (dynamical) system in classical mechanics, has been studied thoroughly and is, in the 
main, understood (see, e.g., [I, 2]). Besides an important applied value in the problem of 
stability of motion, the dynamical chaos is of considerable principal interest in physics 
since it changes appreciably our traditional concepts about the nature and mechanism of ran- 
domness and statistical laws by generalizing them (under definite additional conditions) to 
extremely simple systems (only two degrees of freedom for a conservative Hamiltonian system, 
and only one degree of freedom in the case of periodic external perturbation). For the dis- 
cussion below it is significant that the source of dynamical chaos is, in the final result, 
the continuity of the phase space in the classical mechanics; the mechanism which is used to 
transform this continuity into the chaotic nature of motion is associated with a strong (ex- 
ponential) instability of the trajectories [3]. A characteristic feature of the dynamical 
chaos is the diffusion in thephase space and, of course, the continuous spectrum of motion. 

In view of the above fundamental value of the dynamical chaos, a natural and important 
question arises: to what extent is this phenomenon conserved in the more exact quantum mech- 
anics? The answer to this problem was given by Krylov [4]: in quantum mechanics, this chaos 
is impossible by virtue of the discreteness of the spectrum of any system bounded in the 
phase space, as well as by virtue the discreteness of the phase space itself. We understand 
here a free evolution of the quantum system (its state vector ~(t)) without intermediate mea- 
surements. 

It is possible that exactly for this reason, the majority of works on "quantum chaos" 
whose review is given in [|, 3] studied simply features of the quantum behavior under the 
conditions of chaos in the classical limit. However, there is a principal question: how can 
one accommodate the absence of chaos in quantum mechanics with the correspondence principle 
which requires the transition to classical dynamics, including t:he chaotic one. This problem 
was formulated and solved in [3]. 
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The idea of the solution consists of the introduction of characteristic time scales of 
quantum evolution at which different properties of classical chaos are manifested. At pre- 
sent, two such scales are known. The first and the shorter (logarithmic) scale is determined 
by the fast spreading of the wave packet as a result of exponential instability of classical 
trajectories [3, 5]. Here, the dimensionless time T is measured in the units of the periods 
of motion, and q ~ h- is the characteristic quantum parameter of the problem (below we set 
h = l). According to the Ehrenfest theorem, during this very short time scale the wave packet 
moves along a classical trajectory and, therefore, the quantum dynamics has all the properties 
of classical chaos. 

The second, considerably longer (powerlike) and therefore more important time scale T d 
is of the order In Td ~ In q, and determines the diffusion and relaxation processes in quan- 
tum mechanics. This scale was observed in numerical experiments [6] and explained in [3]. 
The aim of the present work is to study in more detail the diffusion scale T d. 

2. The Model- 

As in the previous works [6-8], we use a model described by the so-called standard map- 
ping. In the classical limit the mapping (I, 8) § (I, 8) has the form (in dimensionless 
quantities) 

7=l+k sin O, - O = O + r I ,  (1) 

where (l, 0) are the action-angle variables, T is the period of the mapping, and k is the 
perturbation parameter. In a quantum system, the mapping for the wave function ~ § ~ takes 
the form [6] 

\ 2 O0 a 

The action is quantized(l = n is integral), and the transition to the classical limit corre- 
sponds to k § =, T + 0, K = kT = const. The last parameter determines fully the dynamics of 
the classical model (I). Depending on the value of the parameter K, there exist two qualita- 
tively different regimes: the finite ([AI[~ v~-/~ and infinite motion. The critical ~alue 
of K which divides both regimes is equal to Kcr = 0.9716... [9]. It should be noted that in 
both regimes there exist both regular and chaotic components of motion, and the measure of 
the first tends to zero with increasing K [2]. 

For K > Kcr , the motion with a single chaotic component can be described as a diffusion 
with respect to I with velocity (see [10] and Sec. 5 below) 

<(A/)2> Do(K ) 1 I(K2/2)(1-]-212(K)+21~(K)) (K>4,5) 
D c t ~  = T2 , ~ ' ~  , (3) t0,30 (K - -  Kcr) 3 (K ~ 4,5) 

where T i s  t he  number o f  i t e r a t i o n s  o f  t h e  mapping ,  and J2(K)  i s  t h e  B e s s e l  f u n c t i o n .  

I n  the  q u a s i c l a s s i c a l  r e g i o n  t he  d i f f u s i o n  law (3) i s  c o n s e r v e d  w i t h i n  the  d i f f u s i o n  
t ime s c a l e  which f o r  the  model under  c o n s i d e r a t i o n  i s  o f  the  o r d e r  o f  Td ~ Dcl ~ k 2 [ 3 ] .  
For  x <<Td, t he  quantum dependence  o f  Dq, i n  a c c o r d a n c e  w i t h  t he  c o r r e s p o n d e n c e  p r i n c i p l e ,  
repeats well all the details of the classical diffusion, including those which are not de- 
scribed by the simple relation (3). This is illustrated in Fig. I where the circles show 
numerical data of the classical model (I) [11]. The full line corresponds to the theory (3) 
[10], and the crosses are the numerical results for the quantum model (2) [12] with k ~ 40. 

For T >>Td, the quantum diffusion stops and is transformed into steady-state oscilla- 
tions [13] which have been investigated up to T = 5"104 [14]. This indicates the discrete- 
ness of the quasienergy spectrum of the model (2) [3]. If only for this reason, the "quantum 
chaos" in the entire quasiclassical region is not a true one as in the classical limit. We 
shall call it a pseudochaos. We note that the deviation from the true chaos begins already 
during a much shorter time scale ~s which manifests itself, in particular, in .the absence of 
local instability of the quantum motion for T > T s [15], and in the absence of residual cor- 
relations [15, 16] (see also [l]). 

For T ~I the motionis essentially quantum [I]. Nevertheless, pseudochaos is conserved 
also in this region under the additional conditions k~ 1. However, its statistical proper- 
ties, in particular, the velocity of initial diffusion, differ, generally speaking, from the 
region T ~I even for k>> ]. In the opposite case k<< I, the ordinary perturbation theory 
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holds (in the absence of resonance) which indicates that the corrections to the unperturbed 
states are small, i.e., the quantum dynamics is regular independently of the character of 
motion in the classical limit. This mechanism of quantum stabilization of the classical 
chaos, associated with the discreteness of the quantum spectrum, was considered by Shuryak 
[17] .  

In the case of a classical nonlinear resonance, the condition of quantum stabilization 
takes the form k/T ~1 which has the following simple physical meaning: the number of levels 
captured in the resonance is /k-/~l [17]. If both parameters are small (k ~1, k/T ~ I), 
all unperturbed states are conserved. This is the region of global applicability of the per- 
turbation theory. For k~ 1 but k/T~l, the unperturbed states are conserved only between 
resonances. Inside the resonances, the unperturbed states are mixed. However, the motion 
remains regular and one can go over to new, resonant, quantum numbers and their corresponding 
quasienergy eigenfunctions. Finally, in the quasiclassical region for k ~I and k/T ~ 1 (but 
kT~ l), the mixing takes place for all unperturbed states but the region of mixing does not 
exceed the width of an individual resonance. 

The above described quantum dynamics of the model takes place only for irrational values 
of the parameter T/4~. In the case of rational T/4~, a phenomenon of quantum resonance takes 
place which is specific for the present model [|8]. The quasienergy spectrum becomes con- 
tinuous, and the action Inl increases in proportion to T (T + ~) for any k. This feature of 
the model is associated with the character of the unperturbed spectrum En = n=/2 and is not 
typical for the quantum dynamics. For this reason, the dynamics of the model (2) is deter- 
n~ned by the quantity T taken modulo 47. 

3. The Principle of Quantum Localization of Chaos 

Following [3] we consider, first qualitatively, the mechanism of diffusion restriction 
in the model (2). It is based on the following simple physical arguments. According to the 
correspondence principle, the quantum motion in the quasiclassical region should be, in some 
sense, close to classical, at least over some characteristic time scale. This is clear for 
the shortest time scale Ts, i.e., until the spreading of the wave packets which move along 
classical trajectories. For T >>T s the quantum dynamics, of course, does not coincide fully 
with the classical one but, as numerical modelling shows [3, 6, 15], the classical diffusion 
in the system continues. If the diffusion were unrestricted as in the classical limit, the 
spectrum of quasienergies would be continuous. It is important, however, that in the case 
of purely discrete spectrum with average level density po, the classical diffusion can con- 
tinue during the time 

-- ~e ~ ~. (4) 
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This follows irmnediately from the uncertainty principle sLnce for T<< po the system does not 
resolve ("does not feel") the discrete character of the spectrum. The estimate (4) also 
determines the diffusion time scale for the model (2). We should note that the density Po 
in (4) is determined only by the eigenfunctions represented in the given state of the system, 
whose number is always finite. 

To estimate the quantity 0o we consider initially the evolutionof an arbitrary unper- 
turbed state. As a result of classical diffusion during the time Td, some number An 
(DcITd) I/a of the neighboring unperturbed states will be effectivel~ excitedo This means 
that the exact eigenfunctions of the system are superpositions of several (of the order of 
An) unperturbed states. Vice versa, any unperturbed state is represented by this number of 
eigenfunctions. Hence Po ~ An ~ T d according to (4) and [3] 

�9 d~Dez, t ~ A n ~ D ~ l ,  (5) 

where I is the effective number of unperturbed states which are invoived in the steady-state 
oscillations after the diffusion terminates. In other words one can say that the quantity l 
determines the size of the localization region of the eigenfunctions in the unperturbed basis 
(with respect to n). The quantity ~ will be called the localization length. A notable fea- 
ture of relations (5) is that they establish a relationship between the quantum characteris- 
tics of motion (diffusion scale Td and localization length l) with the diffusion velocity D 
in the classical limit. 

The estimate (5) for T d is clearly independent of the initial state of the system, in 
the same way as the localization length of the eigenfunctions. As far as the localization 
length I of the steady-state oscillations is concerned, the estimate (5) is valid only in the 
case when the size of the initial state lo<< ~. If lo~l, the size of:the state remains, in 
order of magnitude, unchanged. 

Rechester et al. [I0] noted an analogy between the above localization in the momentum 
space (with respect to n) and the well-known Anderson localization in a random potential (see, 
e.g., [20]). The most important difference between the two phenomena is due to the fact that 
the model (2) Which we consider here does not contain any random parameters. By continuing 
this analogy one can note that the quantum resonance corresponds to the delocalized Bloch 
states in a period potential [18, 19]. We also note that the localization mechanism in both 
systems is, generally speaking, quite different depending on the parameters of motion. For 
example, for the model (2) for K ~I and k > I, the localization of the spectrum is associated 
with the termination of classical diffusion as a result of interference effects. If K~] 
(k > I), the localization is determined by quantum tunnelling to the classically inaccessible 
region. 
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4. Quantum Localization Under Uniform Diffusion 

Below we shall consider the quantum localization associated with the termination of 
quantum diffusion, i.e., for the model (2) we shall assume that K > Kcr and k>> I. We con- 
sider first the case of uniform (with respect to n) diffusion for K>> I. In this case one 
can also practically neglect the stable component of the motion [21]. To improve the esti- 
mate (5) it is necessary, first of all, to determine more accurately the diffusion scale T d 
and (or) the localization length I. As we have explained, this is done most conveniently 
just for the quantity I since the localization law of the eigenfunctions predicted in [22] 
by analogy with the Anderson localization can be approximately represented in the form of 
the following expression: 

I w.~(n) ] ~ e-i=--~!/l+a~=, (6) 
where the random quantity ~nm characterizes fluctuations around the mean exponential locali- 
zation and<~nm>=0. 

Let us suppose that at the initial moment of time, the system is in the state with n = 
0. The steady-state oscillations which are established for T >>T d are characterized by a 
time-averaged distribution 

f (n) =I* (~,*)]~ = Z L~= (0) ~ (n) l~ 
m 

We note that f(n) is an analog of the density-density correlator in a solid [20]. 
on average, 

< 1 ~  (n)I~> ~ i e-~l~-~l% 6 (8) 

we obtain from (7) 

_ ( 2 - 1 e x p  2[n~_']  1 q -  n z 

2z-7 4 ,/ 4 Y' 
The quantity I s can differ from the localization length of the eigenfunetions ~. 
is due to the fluctuations ~nm- For example, in the case of Gaussian fluctuations with 

= D IAnl we have (m = 0) 

Iq~o(n) i ~ exp - - 7 - + ~  2D.:~z dL 
ri l l  

(7) 

Noting that, 

( 9 )  

The reason 

(t0) 
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Evaluating the integral we obtain 

1 1 De D ~ l . ~ l ,  1 1 D t l >  1 (11) 
ls l 2 ' l~ 212D~ 

An a n a l o g o u s  phenomenon i s  w e l l  known in  s o l i d s  [ 2 0 ] .  An example o f  the  s t e a d y , s t a t e  d i s t r i -  
b u t i o n  i s  shown i n  F i g .  2 f o r  k = 10, T = 0 . 5 ,  K = 5,  x = 2 n / l s ,  fN = ~ ( n ) 2 1 s / ( 1  + x ) ;  t he  
straight line is fN = e-X" Within the statistical fluctuations, the law (9) holds in a vast 
range which includes about ]0 orders of magnitude of the variation of T N. A typical large- 
scale structure is associated, clearly, with strong fluctuations of the quantity ~nm (see 
(I0)). 

In numerical experiments, the localization length I s was determined from a steady-state 
distribution using relation (9). According to (5), the relation 

= l~/O~l = l~T2/Do (~ 2) 

should not depend on the parameters of the model. Figure 3 shows our numerical data for the 
dependence ls T2 on Do (circles) on a log--log plot. It is seen that in a range of almost four 

orders of magnitude, the expected dependence (12) indeed holds, and the average value <~>~- 
1.04 • 0.03 (the error is statistical) is very close to unity. The quantum perturbation 
parameter k change s in the interval 5-120, T ~ I and the localization length I s = 9-180. 
Figure 3 also shows the data obtained in [23] for the localization length of the eigenfunc- 
tion: 1 -I = ~In[~m (n)[/n> (points). The parameters vary in the intervals: k = 5-75, T~ I, 
1 = 8-1200. In the calculation of l, Shepelyanskii [23] used a special method ~hich makes it 
possible to obviate the determination of full eigenfunctions. Despite the scatter of points, 
the obtained data clearly show that Is = 21. From this relation we determine the diffusion 
velocity ~nm and the velocity of the wavefunetion D~ = I/l = 2/Dcl. A direct calculation of 
D$ by the method of [23] confirms this relation. 

In fact, it is seen from Fig. 3 that the localization la~ (12) remains in force also in 
the region K ~ I where the classical diffusion becomes considerably nonuniform and large re- 
gions of stable motion are formed. We note that in the range of values of K in the insert of 
Fig. 3, the dependence of Do on AK = K -- Kcr is very complicated (see (3)). 

5. Quantum Localization in the Critical Region 

For K + Kcr, the velocity of classical diffusion in the model (I) sharply falls as a 
result of formation of a specific critical structure [9, 24]. According to [24], Do ~ (AK) 3 
(AK = K -- Kcr ). This law agrees with the old measurements of Do [21] and was verified with 
more accuracy by us in the interval K = I I-2.8 where the diffusion velocity can be described 
by the empirical formula (3) (see insert in Fig. 3). 

Expression (3) gives the average diffusion velocity during a time much shorter than the 
time of the transition between neighboring integral resonances (~pproximatelyequal to 130 
(AK)-3). The local diffusion velocity in this region becomes sharply nonuniform, again be- 
cause of the formation of a critical structure. Nevertheless, the law of quantum localiza- 
tion (12) holds satisfactorily also in this region under the additional condition that the 
quantum parameter p is sufficiently large. In the opposite case, the character of the steady- 
state distribution sharply changes (Fig. 4, k = 10, K = 1.5, the period of the resonant struc- 
ture 2~/T ~ 42). Here, the nonuniformity of diffusion leads to a nonmonotonic variation of 
~(n). Clearly pronounced are four resonances which correspond to "plateaux" of T(n). The 
lowest plateau is determined by the roundi~ngerrorsin the calculation. The plateaux inside 
the resonances are formed as a result of rapid oscillations wi'th:respect to n. Between reso- 
nances, in the regions of critical structure, the diffusion velocity and, alongside, the 
localization length decrease sharply and this leads to a fast fall of f(n). This case will 
be called nonuniform localization. 

An estimate for kcr can be obtained as follows. Using a method described in Sec. 3, we 
represent the localization length in the form 

~ k2 --I- ( ~ o / ~ )  ~a ~ ~ .  (13)  

Here, the term k 2 characterizes the contribution of the first, period of perturbation (for 
the initial state n = O) which is important for Do ~ 0 (K + Kcr). It is seen from (13) that 
two regimes of quantum localization are possible, depending on the ratio of both terms. If 
k2 <<DoTd/T 2, i.e., the contribution of the first period of the perturbation can be neglected, 
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then ~D0/T 2, and we return to previous expression (12). This is the regime of fast diffu- 
sion which leads to a smooth steady-state distribution (Fig. 2). This regime is conserved 
even for K § Kcr if the quantum parameter k is sufficiently large (13). In the opposite 
limit of slow diffusion D0~d/T 2 << k 2, the localization becomes nonuniform (Fig. 4). The 
boundary between the two regimes is given by the estimate k 2 m DoTd/T 2 or 

Dokcr/K 2.~ 1, (14)  

where the empirical value of the nonuniformity parameter is taken from the numerical data. 
The boundary (14) can be associated with the characteristics of the critical structure for 
K § Ker. A simple resonant theory of such structure is described in [25]. According to 
this theory, the above-critical perturbation c = AK > 0 disrupts all small-scale features of 
the critical structure up t 9 the features with characteristic time of motion Tr ~ ~-~. We 

~/3 where we used the estimate Do ~ e3 (3) and we put K ~ I. then find from (14) Tr ~cr , 

If, instead of the quantum parameter k we use h, and understand the transition to the 
classical limit as h § 0, the last estimate takes the form ~ ~ h -I/3 and coincides formally 
with the result of [26] obtained by another method. However, the interpretation of this 
result is here completely different. First, in [26], the time h-~/3 is in no way associated 
with the magnitude of the perturbation ~. Second, Fishman et al. [26] take it as the diffu- 
sion scale T d. This quantity, however, is much larger (see (13)): 

~r 

6. Delocalization 

If the velocity changes during the diffusion process, the character of quantum localiza- 
tion can be affected considerably. In particular, delocalization is possible when the quan- 
tum diffusion continues without limit. This phenomenon was studied in [3] using the model 
(2) in which the parameter k(T) depends explicitly on time. In the case of the power-law 
dependence k = kiT~ (kl > I), the deloealization sets in for ~ ~I/2. 

Below we consider the example of nonuniform diffusion with respect to n by taking 
Dcl(n) = DInB. If B is sufficiently large, i.e., the diffusion velocity increases faster 
than n, the number of unperturbed states (An) associated with diffusion before some time T 
will increase faster than T. Since for number of quasienergy eigenstates and their density 
po~ An ~ T~ the equality (4) is not reached and localization does net take place. This also 
determines the conditions of delocalization. 

Let us suppose that initially n = no ~ I. We then obtain from the diffusion equation 
DIT ~ n =-B < Din. This inequality also gives the delocalization boundary: ~ I, Di~ I, and 
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the condition D] ~1 is equivalent to the requirement that k ~ D ~  I for any T (the Shuryak 
boundary, see Sec. 2). We note that the restriction O~ I coincides precisely with the above 
condition ~ ~1/2 for an explicit time dependence of diffusion velocity. If the initial no>> 
1, the localization is possible also with $ > 1 for the length of uniform localization (5) 
with Dcl = Dcl(no) < no. Hence, the delocalization condition [27] Dl~n~-~<< ]. In the oppo- 
site case, the system "does not feel" the increase of Dcl with n. For no ~ 1, this condition 
reduces to DI~ I. The described mechanism of delocalization is important in the excitation 
of the hydrogen atom by a monochromatic field [27]. 

It is a pleasure to acknowledge the constant interest and support of A. V. Gaponov-Grek- 
hov to whom we are deeply grateful. 
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