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Abstract:

We present analytical and numerical results on the mechanism of excitation and ionization of hydrogen atoms under microwave fields. In
particular we predict the existence of a critical value of the microwave field, the quantum delocalization border, above which the quantum packet
delocalizes and strong excitation and ionization takes place. Below the quantum border, the packet is localized even though the corresponding
classical system can be chaotic and obeys a diffusion equation.

Our studies reveal some other unexpected new features of quantum dynamics which also could be observed in laboratory experiments and
provides a quantum theory for subthreshold ionization.

1. Introduction

In the last years significant interest has been devoted to quantum systems that are chaotic in the
classical limit [1-3]. It has by now become clear that such systems display quantum dynamical
properties that, even in the quasi-classical region, may be very different from the classical ones.

In our opinion, the most interesting phenomenon discovered in this connection is the quantum
limitation of the classical chaotic diffusion. This phenomenon was first observed in numerical experi-
ments on the periodically kicked quantum rotator [4]). The classical limit of this system exhibits a
“stochastic transition” for a certain value of the perturbation strength [5]. Above this value, the system
behaves in a quite disordered way, its motion being almost the same as if the perturbation were a
random and not a deterministic one. In particular, its energy grows indefinitely, according to a diffusive

law.

In the corresponding quantum system this chaotic diffusion is suppressed. Strictly speaking, the
quantum dynamics of the rotator depends in a sensitive way on the arithmetic relationship between the
rotator and the external frequency [12]. Nevertheless, apart for an exceptional set of values of this
frequency ratio, quantum interference effects lead to a complete arrest of the diffusive growth of energy
after a finite time. As a result, only a finite number of unperturbed levels are significantly excited during
the whole course of quantum evolution [3,4,6,7].

This quantum limitation of chaos may be considered as a dynamical version of the Anderson
localization in one-dimensional disordered solids [8]. For the rotator problem, the localization length
was shown to be equal to the classical diffusion rate, up to some numerical factor [9-11}, and this by the
way, may help to solve some new problems in solid state physics too.

Even though the quantum suppression of chaos was mainly investigated on the very particular
rotator model, nonetheless the nature of the arguments supporting it, and especially the localization
picture, indicate that quantum mechanics should indeed have an inhibitory effect on classical chaos
even for generic quantum systems subject to time-periodic perturbations. This is in itself a remarkable
discovery, bringing into light once more the deep fundamental difference between quantum and
classical mechanics.

However, there are sound reasons to believe that this quantum suppression of chaos must suffer
significant exceptions. As a matter of fact, the existence of a kind of quantum motion retaining some
features of classical chaotic diffusion is at the present time the only possible explanation for available
experimental results on the ionization of highly excited H-atoms (principal quantum number n ~ 60) in
microwave fields of frequency w/27 ~ 10 GHz with peak intensity ¢ ~ 10 V/cm, in conditions where
ionization would require the absorption of ~100 photons [13, 14].

In order to explain the surprising high ionization probability observed in experiments, a diffusive
excitation mechanism was suggested in [15], while, in [16], it was pointed out that a classical description
might be appropriate due to the high quantum numbers involved. Indeed, a numerical solution of the
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classical equations of motion [16] yields a satisfactory agreement with experimental data [13]. In the
classical system ionization is brought about by the chaotic motion of the electron, which causes diffusive
excitation for field strength above some critical value [17]. The conditions under which this chaotic
excitation occurs and the related diffusion rate were obtained [18,20] by means of the resonance
overlap criterion [5]. At this point, a most important question was how quantum effects would modify
this classical picture of diffusive excitation, since, in view of the results on the quantum rotator, hinted
to above, one may expect some quantum limitation of classical diffusion to occur in the H-atom, too.

In order to answer this question, a model for the hydrogen atom in a microwave field, that can be
solved at least numerically, both classically and quantum mechanically is needed. One such model is
indeed available: it describes the one-dimensional motion of an electron in a Coulomb field plus an
external monochromatic electric field. As discussed in [19], and as we will recall in the present paper,
this model conveniently describes an actual H-atom prepared in a so-called extended state. The same
one-dimensional model can be used in order to describe excitation of surface state electrons on liquid
helium {20, 21].

The present paper is devoted to a detailed study of this one-dimensional model, including a large
amount of numerical data and the theoretical framework developed in order to interpret them. Some of
these results we already presented in previous short papers {19, 22, 46, 47] and also much of the
theoretical analysis presented here, appeared before in a more or less fragmented way. Here we
attempt at a systematic exposition, including details of the numerical techniques. Besides that, we also
present many fresh numerical data, obtained by a numerical method especially devised in order to take
into account the continuous part of the unperturbed spectrum.

Indications from these and older results merge into a definite picture according to which quantum
effects do indeed produce a quantum limitation of chaos in this problem, so that it is possible to observe
situations where the quantum packet is localized in contrast to the chaotic diffusion that would be
predicted by classical mechanics. Nevertheless, it was possible to identify a critical value for the field
strength, typically lying above the classical chaotic threshold, above which a “diffusive” excitation takes
place in the quantum atom, too. In this region the classically predicted ionization rate is a good
approximation to the real quantum rate. An unexpected consequence of this fact is the existence of a
frequency threshold for ionization, lying well below the conventional photoelectric threshold for
1-photon ionization, and leading to a much stronger ionization than predicted by the standard
perturbative theory of the photoeffect.

Another interesting phenomenon discussed in some detail here is the appearance of peaks in the
distribution connected with multiphoton transitions over the unperturbed levels.

On the theoretical side, we give here conditions for the applicability of the one-dimensional
approximation both in the classical and in the quantum case, and we explain the estimate presented in
[22] for the two-dimensional delocalization border, which is much lower than in the one-dimensional
case. We also give a theoretical prediction for the ionization probability over long interaction times, and
for its dependence on the field strength, for a given initial distribution of the atoms over the quantum
states with a given principal number.

Experimental techniques are nowadays available, that allow for laboratory investigations on highly
excited atoms; see, e.g., [13, 14, 23-27]. It is even possible to prepare atoms with prescribed parabolic
quantum numbers; for instance, in [24] extended states with parabolic number n, =0 and magnetic
number m =0 were prepared, and it was shown that one-dimensionality is preserved during the
interaction time. Therefore, the one-dimensional model is appropriate. On the other hand, in these
experiments the perturbing microwave field was well below the threshold for the classically chaotic
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motion [28], and they do not therefore allow us to decide whether classical chaos survives in quantum
mechanics.

Recent experiments [27] on three-dimensional atoms with wn® = 1 have shown that the critical field
strength, required for strong excitation, is close to the value for which chaotic excitation takes place in
the classical atom. These experiments therefore demonstrate an agreement between quantum and
classical chaotic excitation. According to our numerical computations these experiments were made in
the delocalization regime, so that this result is consistent with our theoretical predictions, too.

In order to observe in laboratory experiments the phenomenon of quantum localization, which is
predicted and explained in this paper both on numerical and on theoretical grounds, it is necessary to
prepare atoms in extended states and to go to the high frequency region (wn’>1) in which this
phenomenon should be particularly clear. Such experimental verification of the localization
phenomenon seems to lie within the scope of present experimental techniques.

The theory we present here is certainly still in a very primitive stage, and great improvements are
needed in order that the role of classical Chaos in Quantum Mechanics be completely clarified.
However, we believe that all the physically essential traits are already present in our provisional
analysis. In particular, we believe that semiclassical arguments cannot be dispensed with in any attempt
to expose diffusive-like excitation mechanism in the quantum H-atom.

2. Semiclassical theory of electron excitation
2.1. Classical dynamics of electron excitation

In this section we will develop the classical theory of the excitation of a hydrogen atom in a linearly
polarized monochromatic electric field.
Here and in the following we will use atomic units, in which the Hamiltonian takes the form:

H=p%2—-1/r+ ez cos ot (1a)

where ¢ and o are the field strength and frequency respectively and the z-coordinate is measured along
the direction of the external field. The classical dynamics associated with (1a) is conveniently studied in
parabolic coordinates since the unperturbed dynamics is separable in these coordinates. Accordingly,
action-angle variables (n,, n,, m, A, A,, ¢) can be introduced [31}], in which the Hamiltonian takes the
form:

H=-1/2n+ g z(n,, n,,m, A, A,)coswt;  n=n,+n,+|m|. (1b)
Owing to axial symmetry, m (which is the z-component of the angular momentum) is an integral of the
motion; therefore, (1) describes an essentially two-dimensional model.

The function z(n,, n,, m, A, A,) can be expanded in a double Fourier series in the angle variables
AL Ay

2= 2 2,0, (m, iy, m) expliChody + o)} (19)
12

The coefficients z, , can be found as shown in appendix I, and are given by [19]:
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24, = [0k, + )] (1, T (i (ky + k,)) Jl'c?_(ﬂz(kl +k,))
o J;cl(l‘q(kl +k,)) sz(l“?(kl t k) for k, + k,#0

_ /0 for k#0
3n(n, —n,)/2  fork=0.

(1d)

Here J, are Bessel functions of the first kind and J; their derivatives. The dependence of z, , on n,,
ny, mis embodled in the parameters u,, u,, which are defined by

Mp= (n1,2)1/2(n1,2 + lml)llz/n . (1e)

According to standard semiclassical approximation theory [29], z, «, §ive semiclassical values of
dipole matrix elements for the transitions n, ,—>n;,=n, , + &, ,. The 'element Zy, Which is just the
average of z over the unperturbed torus labeiled by n,, n,, m, yields the standard quantum mechanical
expression for the linear Stark effect.

If the electron is initially in an “almost one-dimensional” state, i.e., in a state with n, > n,, n, > m,
then in (la-le) we can assume p, =1, u, =0. In that case, the dynamics will be described in first
approximation by the one-dimensional Hamiltonian

©

H=-1/2n*+ en® cos wt [% -2 Ji(k) k™' cos k)t] ' v (2)
k

which is just the Hamiltonian, in action-angle variables, for an electron moving along the positive z-axis
(18, 21]:

H=pY2-1lz+ezcoswt, 2>0. (2a)

We start our analysis with this simplified Hamiltonian (2). Later in this section we shall discuss the
validity of this one-dimensional approximation, i.e. we shall discuss to what extent the one-dimensional
Hamiltonian (2) is adequate in order to describe the evolution of quasi-one-dimensional initial states
under the full Hamiltonian (1).

Under appropriate conditions, the classical system described by the Hamiltonian (2) undergoes a
transition to chaotic dynamics. By this we mean that a profound change occurs in the nature of orbits,
which, above a certain perturbation strength, become extremely sensitive and complicated and wander
erratically in phase space. This irregular motion, if described in the unperturbed action—angle space,
has a diffusive character and leads to fast ionization. Quantitative conditions for the onset of chaotic
dynamics can be obtained by means of the resonance overlapping criterion [18, 21]. The starting point
of this analysis is realizing that the external field will more effectively perturb the undisturbed motion at
first-order resonances, i.e., at values n of the unperturbed actions such that the external frequency
resonates with some harmonic of the unperturbed electron motion. These values of n are such that
s {(n) = » with s an integer and £2(n) the angular frequency (Kepler frequency) of the unperturbed
motion:

0(n)=dH,/dn=1/n.

1/3

First-order resonances are then given by n, = (sw™')'">. However, despite the fact that for these
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values n, the perturbation is very effective, as soon as it manages to drive the motion away from one
unperturbed resonant orbit its effect becomes weaker, and nonlinear stabilization may occur. In that
case, the motion remains in a neighborhood (a “resonance region™) of the original unperturbed orbit.

However, if the perturbation is sufficiently strong, the motion can be driven so far away from the
original resonant value of the action, that it can fall under the influence of another nearby resonance.
There, the same process may repeat, so that the orbit may wander in action-angle space in a diffusive
way.

A quantitative estimate of the perturbation strength which is necessary in order that this may happen
is determined by evaluating the width of the various resonance regions and then by requiring that
nearby regions overlap [18].

The analysis just outlined can be applied to model (2); it is then found that for w, = wn; > 1 (Where
n, is the initial value of the action) and for field strength exceeding a critical value &,

g, = eng> g, ~1/(500)" (3)

all resonance regions corresponding to n, = n, do overlap. Then an orbit leaving with action n, in a
region of phase space where both w,>1 and (3) are satisfied will diffuse indefinitely and eventually
ionize.

Notice that in (3) we have introduced rescaled values &, = en; for field and o, = wn; for frequency.
The usefulness of this scaling is due to the fact that classical dynamics depends on 7, only via these
variables since, as can be readily checked, changing the initial , by some factor will change the solution
n(t) at any later time by the same factor, provided ¢, and w, are kept constant, and time is measured in
periods of the field (see also [16]).

We emphasize that the estimate (3) is valid only for w,>1. Indeed for w, <1, i.e. in that phase
space region where w is smaller than the Kepler frequency, there are no first-order resonant values of n,
and the motion is therefore more stable. A transition ta chaotic behavior can still occur {18, 21] due to
the finite width of the resonance region associated with w, =1, but, in order to compute the ¢, in this
region, also higher-order resonances sf2 = pw, p > 1 must be taken into account. It is then found that
the critical field increases with decreasing w,; however, for very low w, static field ionization occurs
when &, =~0.13.

Of course, higher-order resonances play a role in the chaotic transition also for w, >1 and, indeed,
an approximate account of them was already taken in (3) via the choice of the numerical factor 1/50
[18]. A proper second-order analysis [30] leads to but a small increase in this numerical factor.

In the chaotic regime, ¢,> ¢_,, w, > 1 the process of diffusive excitation is conveniently described in
statistical terms. Indeed, an equation of the Fokker-Planck type can be derived [18]:

aflér = 5 8/an(D df/on) 4)

where f(n, r) is the distribution and 7 is the dimensionless time, measured as the number of periods
7= wt/2m of the external field. The diffusion coefficient D in quasi-linear approximation is given by

D =d{(dn)*) /dr =2en’l(w]’n,) =26"nY0’ " )

((4) and (5) were also derived in [21]).*

* The numerical coefficient 2 in (5) corresponds to the frequency range 1< w, <3. For w, >3, the asymptotic value of this coefficient must be
used, which is near to 3.
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Since D increases with n according to a power law, it is possible to find an exact solution of (4). In
order to do this, we must take notice that the stochastic diffusion ruled by (4) can take place only in
that part of phase space where the chaotic transition has occurred. Going down to lower and lower
action values, one will eventually meet an invariant curve which has not been destroyed; we must
therefore look for a solution of (4) satisfying the boundary condition df/dn|,_,. = 0 of zero flux across
the boundary n = n* of the region of stability. In order to do that, the change of variables y = n/n,,
7=1ew;"" is convenient. Then, as shown in appendix II, for 7/y <1 and letting y = n*/n,, the
solution assumes a sufficiently simple form:

fy, 7)= {exp[—(LVF ~ 21V3 + 1)17) + exp[—(1vF = 1)I7]} 1[2y*(m7) ). (53)

As will be seen in section 3, this formula compares remarkably well with the results of numerical
integration of the equations of motion.

The possibility of using this statistical description will play an important role in our subsequent
analysis of the ionization process. Indeed, due to the rapid growth with n of the diffusion coefficient,
stochastic orbits diffuse so fast towards high values of n that in practice we can assume that they actually
ionize —i.e. n becomes infinite - in a finite time. A rough estimate of the ionization time adequate for
our present purposes can be gotten from eq. (5) (see also eq. (12)):

T ~nilD~w]/(2€l). (6)

In later1 sections we'll use expression (6) in order to roughly estimate the diffusive ionization rate
Pi~r .

In the remainder of this section we discuss the validity of the one-dimensional approximation (2).
Let’s consider first the case when n, > n,, n,>m and therefore u, <1. Then, since z, , ~ uy? for
large |k,|, the main contribution to the variation of n, will be given by terms in (1c,d) with k, = £1.
(Notice that z, , give semiclassical matrix elements for transitions with An, = +k,. The fast decrease of
these matrix elements with small w, when k, is large was already remarked in [32].)

For ¢,> ¢, the phase A, begins to vary chaotically, and this leads to a diffusive change in n, also.
The diffusion rate for n, in quasi-linear approximation can be derived, as shown in [17], by retaining in
(1c) only terms with k, = +1. One finds that:

D, =n,(n, +|m|)DIn* . (7

This estimate shows that over the ionization time (6) the change in n,: (An,)’ ~n, (n, + |m|) <n’
appears to be small. This fact indicates that the onset of stochasticity doesn’t lead to significant
violations of the one-dimensional approximation.

Along similar lines, we can show that a suitable one-dimensional approximation is valid also in cases
when n, ~ |m|> n,. Indeed from (1e) it follows that, in such cases also, u, <1. Then; upon neglecting
&, in (1c,d) we obtain the one-dimensional dynamics for the variable n, = n — |m|, described by the
Hamiltonian

H=-1/2n"+ en cos wt [3(n ~|m|) /12~ 2u,n 2, T k) k™" cos k)tl] (8)
k
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with u, = (1 —|m|/n)'">. We can now apply to this one-dimensional dynamics the resonance analysis,
just as was done for (2). From the asymptotic properties of J;(ku, ) for k— o [33] it follows that high-k
harmonics in (8) become exponentially small as soon as k is so high that (3/k)*” <= m/n. This means
that the resonances of the field with such high harmonics (which take place when w,=k with
(3/k)*”® = m/n), cannot significantly contribute in the chaotization process. Therefore, when w, > 1 the
transition to chaotic motion is possible only for m = m_, with

m, =n,(3/w,)”  for w,>1. 9)

For w, ~ 1 we may take m_ = n,. At this point we might start afresh the analysis for the Hamiltonian
(8) in order to determine the critical field and the diffusion rate under condition (9). However a
comparison of (8) with (2) suggests that the results of this analysis shouldn’t deviate more than a factor
2 from formulas (4) and (5).

Again, the one-dimensional approximation (8) is not significantly violated over the ionization time;
this can be seen at once, because the diffusion rate for #, is still given by (7), so that an estimate for the
variation An, similar to the previously established one for (2) holds for the present case.

Further details on the classical dynamics of excitation for the model (2) will be given in section 3.2,
where we shall also discuss the results of numerical simulations of this model.

2.2. Theory of quantum localization

The main result of the classical analysis carried out in the previous section was that for sufficiently
strong fields the classical model (2) exhibits a transition to chaotic motion. After this, the classical
distribution f(n, 7) spreads diffusively in action space, and ionization takes place in a finite time.

We will now tackle the basic question, of what modifications would be imposed on this picture by
quantum mechanics. In particular, we will study the behavior of the quantum probability distribution
over the unperturbed levels, which is the quantum analog of f(n, 7).

Previous studies on periodically perturbed quantum systems that become chaotic in the classical
limit - in particular, on the kicked rotator model - brought to light the localization phenomenon as a
typical occurrence. The quasi-energy spectrum is typically a pure point one, and quantum effects lead to
a limitation of the classical diffusion and to exponential localization of the probability distribution
around the initially excited level n,; which means that in the average, and apart from fluctuations
(which can be large) the distribution looks like:

f,ocexp(=2|n—ny| /). (10)

Here f, is the time-averaged population over the unperturbed levels with the values n for the quantized
actions, and [ is the localization length.

In the light of these previous findings, it is natural to assume that a similar picture applies also in the
present case. Specifically, we will assume that even in the semiclassical region, and when the classical
motion is chaotic, a mechanism of quantum limitation of the chaotic diffusion is working, and that,
under suitable conditions, this mechanism will produce a situation analogous to the rotator case. Under
such conditions, the part of the q.e. spectrum relevant to our analysis will be quasi-discrete; the small
line breadth of its levels will be negligible on a time scale short in comparison with- the very long one
associated with multiphoton ionization. While it remains true that the quantum atom described by (2)
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will eventually ionize, no matter how small &, nevertheless on the time scale involved in the actual
experiments the localization phenomenon discussed here will give it a remarkable stability in contrast
with the properties of chaotic motion. The obvious premise that localization in the hydrogen atom is
related to a finite time scale, should not be forgotten throughout this paper. This assumption will be
fully supported by the results of our numerical experiments.

Under such assumptions, we shall presently determine the localization length by the simple method
described in [3]. In this way, we will be able also to determine the quantitative conditions under which
the localization picture actually applies. To this end, let us start with the case of homogeneous classical
diffusion, that is, we overlook the variation of D with n.

In the semiclassical regime, the evolution of a quantum state initially coinciding with one unpertur-
bed eigenstate n, will initially follow to some extent the classical development of f(n, 7). Therefore,
over the time scale in which this semiclassical approximation holds, the spread of the wave packet over
the unperturbed eigenstates will grow in time according to An(r) = (Dr)''2

However, the discrete character of the quasi-energy spectrum will prevent this diffusive growth from
going on indefinitely, as it would in the classical case. The time 7 after which the discreteness of the
quasi-energy spectrum will become manifest can be estimated by 7, ~ N, where N is the number of q.e.
eigenstates significantly excited by the original unperturbed eigenstate; indeed 27r/N is just the average
spacing of g.e. eigenvalues significantly contributing to the packet evolution. Then, the number of
unperturbed levels excited by the wave packet after the time 7, is An(r,) = (Drp)"’>. This means that
one unperturbed level contains N~ An(r,) q.e. levels and that, vice-versa, one q.e. eigenstate
“contains” ~An(r,) unperturbed levels. The latter number, however, is the maximum spread attain-
able by the wave packet, i.e., it coincides with the localization length /. Therefore we get an equation
for 7,:

7~ a An(ry) ~ a (Dry)' * = al

where we have introduced an undetermined numerical factor a, to be found by numerical experiments
[10]. For the rotator model, it was found a = 1. The same choice for a in the hydrogen atom case would
yield

I=D(ny) =, (11)

where D(n,) is given by (5): D(n,) =2¢niw, .

However this result was obtained under the assumption that D =~ const., which is justified only in that
region where [/ <n,. Instead, for /~n,, the dependence of D on n may substantially modify the
localization picture, and, if the field strength exceeds some critical value, it may even turn out that
localization is not possible at all. (A similar “delocalization” phenomenon was investigated and
explained in a simple example in refs. [3, 10].)

In order to clarify how delocalization occurs, we need to modify the above method for determining /,
in such a way that the dependence of D on n is explicitly taken into account. Therefore, in place of
An(r) =~ (D(n,) 7)'"> we must substitute the dependence of An on r that is enforced by the Fokker-
Planck equation (4). In this way we find, as a result of the calculations developed in appendix 111, that
An(r) is given by:

An(r)=[(1-3&w, *1)? -1)"n, V3. (12)
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By the same argument as above, we can now find 7, and / from the localization condition
An(7,) = 7,. However, if ¢, is large enough, the curve An(7) will never intersect the straight line ar
before exploding at 7= w, */3¢2. When this happens, no localization is possible and this implies
unbounded diffusion for the electron. More specifically, in appendix 111 we show that the solution of

An(r,) = ar, gives the localization length / in the form:

I~a Y(0)/e))ul3 (13)
where u is the least of the two solutions of the equation*

3a’(w;"%nye,)! = g(u) = u(1 - u)’ (2~ u) (14)

such that 0 < u < 1. Numerical data indicate that here too, like in the rotator case, a =1 is to be chosen
(see e.g. fig. 10 and related comments in section 3). Therefore, since the function g(u) in the interval
(0,1), has a maximum ~1/11 at u = (3 — V/5)/2, it follows that for

£> ef:) = w; I/ 6n, (15)

eq. (14) has no solution.

Thus sfl” defines the threshold for quantum delocalization. Of course, in order that delocalization
may occur, it is also necessary that g, exceeds the threshold for classical chaos (3), because the
semiclassical estimate (12) holds under the assumption that chaotic diffusion takes place in the classical
system. According to the argument just outlined, across the threshold £!” a qualitative change occurs,
and the localization picture is no longer justified. We should then expect that above this threshold there
is no quantum limitation to the classical diffusion and, indeed, this will clearly appear from numerical
resuits.

In deriving the above estimate we implicitly assumed that all unperturbed levels are involved in the
diffusion. However, this is true only under the condition (see ref. [36])

£z,, > wl2
where n and n’ are such that the associated transition is the “most nonresonant” one, i.e.: w/2=
1/2n* —1/2n"
Then since [34]:
z,. =13/[0**(nn’)*"?]. (15a)
We get the following condition:
£,> wy n’l3ng . (15b)

In particular, the delocalization estimate (15) holds if w, < n,'* (n~ n,). Inequality (15b) is always

* The slight difference in numerical coefficients between (13) and the analogous formula of ref. [22] is due to the fact that in [22] a value of &
somewhat lesser than 1 was introduced in /= aD.
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violated for sufficiently high n which results in arising a chain of sharp peaks related to the successive
one-photon resonant transitions both in the localization and delocalization regimes (see figs. 7 and 14).
Particularly, behind the last peak a formal power law ‘localization’ builds up [50] due to the decay of
the matrix element z,,.. However, the ionization is not at all suppressed, and does proceed over the
region of ‘localization’ via a fast direct one-photon transition into continuum.

The above one-dimensional analysis can now be modified, so as to apply also in the two-dimensional
case for quasi-one-dimensional states. Indeed, even though we know from section 2.1 that the
one-dimensional approximation is not violated for such states, still we cannot a priori exclude that the
presence of an additional degree of freedom can destroy the localization of these quasi, but not strictly,
one-dimensional states. However, we can answer this question by the same method used in the
one-dimensional case. Assuming that the classical diffusion proceeds independently in both n, = n and
n,, the number of unperturbed levels excited at time 7 will be (An, > 1)

N=An, (1) An,(7).

For An,(7) we will now take eq. (12); moreover, since An,(r) < n, can be assumed (see section 2.1), we
will take An,(7) ~(D,7)""* with D, as in formula (7). Imposing now the delocalization condition N = 7
[3, 6, 10, 11, 19, 22] one easily gets the estimate for the two-dimensional delocalization threshold:

&> e = Bay I {n[n,(n, + m])) ') 12 (16)

where again an undetermined numerical factor 8 ~1 was introduced.*

The estimate (16) clearly indicates that two-dimensionality sharply decreases the delocalization
threshold. Nonetheless, for states with m ~ n, ~1 the two-dimensional threshold is almost the same as
the one-dimensional one. We are therefore justified in assuming that for such quasi-one-dimensional
states, the localization—delocalization picture remains valid.

In closing this section, a couple of remarks concerning the validity of considering the quantum
system described by the Hamiltonian (2) to be a physically realistic model are in order. In the first
place, in the quantum theory discussed above we considered the electric field as classical. This
approximation holds if the full number N of field quanta inside the microwave cavity of volume V:

N = Ve¥/(4mhw) ~ 1076/ (n)w,)

is sufficiently large. For instance, for ¢, =10.05, w,=1, n,=100, V= 1 cm’®, which are typical for the
range explored in our investigations, we get N~ 10".

Also the question may be raised whether the diffusive excitation process, that is made possible by the
delocalization phenomenon, should not be significantly reduced by the spontaneous decay. However,
the rate I of the latter process is much less than the diffusion rate I},. Indeed even for orbital quantum
number [~1 the rate I~ (c’n)l*)"' =c 7 n;> [34]. Estimating I, by the inverse of the classical
ionization time, i.e., by 7, 'w/2, with 7, given by (6), we obtain:

L/, ~3wy/(Ce) ~107°

* Actually a more refined analysis shows that in the two-dimensional case here considered one has localization on an exponentially large scale
(see ref. [45] and eq. (4.4) of ref. [6]), so that delocalization takes place only slightly above (16).
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where the numerical estimate is given for the typical values w, =1, &, = 0.05; notice also that the ratio
does not depend on n,. Actually, this ratio is even smaller because the extended state contains / up to

~VTig> 1.

2.3. Ionization in the presence of localization

According to the theory developed in the previous section, as long as the one-dimensional
approximation is valid, the dependence of ionization on the field strength should have a more or less
marked threshold character, defined by the quantum delocalization border (15). However, a mi-
crocanonical distribution of initial states looks fairly typical in many physical situations, so that it is
interesting to investigate what should be in that case the dependence of ionization probability on the
field intensity. Indeed, since the two-dimensional localization border (16) depends on both quantum
numbers n,, n,, in that case we should expect that for any (not too “high”) field, a fraction of the
states, depending on the field strength, will be delocalized, while others will be localized and will
therefore give no contribution to the ionization rate.

We will derive this dependence, under the assumption that the interaction time 7, , of the atom with
the field is large enough for the classical system to undergo complete ionization, i.e., that the classical
ionization probability P{'=1. Besides that, however, 7., must not be so large that multiphoton
quantum ionization from the stationary distribution (10) into the continuous spectrum becomes
effective (see the comments in section 2.2).

Let’s first assume that we have initially a homogeneous distribution of states with a fixed value of n,
and of the magnetic quantum number m. Then, after the time 7, all atoms initially in states with
g > € 2)(n2, m) will be ionized. These are precisely the atoms initially in states with n, > n3" given by
the equation ¢, = s(z) (n3", m). Then, recalling that n, + n, = n, — |m|, we see that the fraction of atoms
in the ensemble which will ot be fonized at time 7. . is equal to 2n;'/(n, — |m|) (the factor 2 is due to

int

symmetry for exchanges n, < n,). Computing ;" from eq. (16), we get:

=[(m’ + mpA*)!"* = |ml]/2. (17)

The ionization probability is therefore given by:

Py =1-2n3/(ny = |m|) =1 {[m* + ngA’]""* = |m|} /(n, ~ |m])
where

A= 2[32 7/3 (;2”0 ' (18)

Now let’s assume that the initial distribution is microcanonical, i.e., that all quantum states with a
fixed n, are equally represented in it. The full number of such states is 3. For any given value of m, the
number of non-ionized states at time 7, for the given &, is just n3'(m, ¢,). We must then sum over the
different values of m; in doing this, however, we must remember that there is a classical value m,_,
above which there is no ionization (9). Replacmg the sum by an integral, we find that the fraction of
non-ionized atoms at time 7, for the given ¢, is given by:

int
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Mep

1— P, =(4/nl) j n(m, g,) dm .
0

The factor 4 in the above formula is due to symmetry with respect to exchanges ma—m, n,2n,.
The latter symmetry must be taken into account also in inserting the appropriate expression for n;' in
the integrand. Indeed, n;" cannot exceed (n, — |m|)/2; otherwise, since the argument is symmetric in
n,, n,, a supercritical value of n, would enforce a subcritical value of n, = n, — |m| — n,. Therefore, n*
in the above integral is actually the infimum between (17) and (n, — |m|)/2, i.e., it is given by (17) for
|m| < m, =n,(1- A*)'"? while, for m>m, it is equal to (n, — |m|)/2.

Then, assuming m_ = n, (which, as we have already remarked, is legitimate for w,~1), and
evaluating the integral, we finally get the dependence of P, on the field ¢, in the following form:

P=(1- A)" - AIn{[1 + (1 - AH)"?)/A%} (19)

where A is given by eq. (18).

Unfortunately, it would not be correct to use available experimental data as a check of (19), for the
following reasons.

In the first place, whereas experimental data concern the frequency region w,<1, the above
described theory of localization was derived in the frequency region @, > 1, where 1st order resonances
exist (the peculiarities of the excitation process for w, <1 will be discussed in section 3.2).

Second, according to numerical data [16], in experiments the condition P{' =1 was not fulfilled after
time 7,,,; indeed, by increasing 7, a further increase of P} was gotten. This fact makes impossible the
comparison of available experimental data with (19).

Finally, we remind that the above relations were derived under the assumption of independent
diffusion in both degrees of freedom, which is currently under study.

2.4. Comparison of diffusive and one-photon ionization

In the delocalization region ¢,> ¢, the quantum mechanism of suppression of classical diffusion is
not at work and therefore one expects that the quantum electron will diffuse and ionize like the classical
one. This fact has been numerically checked and will be discussed in section 3. The resulting diffusive
excitation can hardly be described within the framework of conventional multiphoton theory;
moreover, it usually takes place in a very different range of frequencies than considered there. In order
to appreciate the effectiveness of this new ionization process, it is interesting to compare it with the
familiar one-photon process.

To obtain a quantitative estimate for one-photon ionization, we shall first observe that any
normalized energy eigenfunction for the unperturbed one-dimensional hydrogen atom (i.e. for the
Hamiltonian (2) with & = 0) can be written as u(z) = z R(z), where R(z) is a radial eigenfunction for the
three-dimensional atom with orbital quantum number /=0. Therefore, the matrix element for the
photoelectric transition from the nth unperturbed level of the one-dimensional model (2) to the
continuum state having energy p/2= —1/2n’ +  is given by

RIS = [ 422 R(@) Ryu(2) @)
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where R, R, are radial eigenfunctions for the three-dimensional atom with orbital quantum number
I=0. (We assume R, to be normalized on the energy scale.)

For highly excited states n> 1 the integral (20) can be evaluated by semiclassical methods. In ref.
[34] the following semiclassical value of dipole matrix elements for transitions from states (n,/) to
(p, 1 %=1) was found for / < n, p <1 (notice the difference in normalization between (20) and ref. [34]):

RPM = —il[K, 5 (0!*I3) * K, 5(0l¥3)] /(3" mwn®"

where K (¢) are MacDonald functions. Considering that the 2nd term in square brackets is negligible
for small /, and that for £—0, K, ,(¢)~=0.459(37)"*(3¢/2) %", we find the following semiclassical
value for (20):

RZ) = RP; =0.459 x 22 (—i)n >0 > Iva |
Then the transition probability per unit time is:

I, = (m/2)&®|RE}|* =0.265¢ (0" ny (21)
and the ionization probability in one period of the external field is

Y, =(2nlo)l, =1.67c:n 0} (22)

(for w, = n,y/2). This value is 3/2 times larger than in ref. [34] due to averaging over the solid angle.
In order to compare the 1-photon ionization and the diffusive ionization we shall choose the optimal
regime of each process. Then for 1-photon ionization we take w =~ (2n2)”", so that Y, =~34¢ln; "
Instead, for diffusive ionization we take @ ~n;” (w,~1), and we estimate the ionization probability
per period as Y, =~ 7' with 7, as in (6): Y, ~2¢.
In this way we see that diffusive ionization, which takes place for a much lower frequency than
1-photon ionization, is a much more effective process than the latter:

Yp!Y, ~ny*/17. (23)

In real physical time this ratio changes as each I is multiplied by its own optimal frequency which
gives:

LT, ~ng”18. (24)

This ratio is still large for n,> 1.
A detailed analysis of the dependence of the ionization probability on frequency will be discussed in
section 3.4.

2.5. Ionization by tunneling and Keldysh parameter
We shall now discuss some peculiarities of the excitation and ionization for quasi-classical states in

the classically stable region ¢, < ¢, w, > 1. In this case the classical motion from one resonance to the
next one is forbidden by the presence of smooth invariant curves between them.
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Due to this fact, excitation and ionization can take place either via a multiphoton transition or due to
tunneling through the classically forbidden region. A distinction can then be made between the two
opposite cases, when the perturbation is £z,,. <1/’ small or large (see (15a)). In the former case, the
most effective mechanism of excitation is the chain of one-photon transition with 1/2n* —1/2n"* =
(see sec. 2.2) which leads to appearance of equidistant (in energy) peaks in the distribution f, (see fig.
14al). The ratio £z,,.n° ~ e~ >"> <1 does not depend on n and therefore the perturbation theory holds

for all chain of peaks. The probability of transition from one peak to the next one is small ~(sw ")
and the ionization rate depends algebraically on &;:
L~ (ele,)ny’ s &,= 0 ng (25)

where k = n,/2w, is the number of photons required for the transition into continuum. In the opposite
case when £,> ¢, but still ¢, <e,,, tunneling becomes dominant, and we can reasonably expect I; to
depend on ¢, according to

cr’

I = 7;1 exp[—cny(e, — &) /&) (26)

where ¢ is a numerical constant of the order of unity, 7, ' represents the ionization rate from the chaotic
component, and the exponential factor is assumed to describe tunneling into the classically forbidden
region, on account of its analogy with the formula describing tunneling in a static field. The condition
for applicability of (26) is

£, = w)’Ing<e,< e, ~1/(50w;">). (27)

In order that (27) holds, levels n,> 50w are required, e.g., for w,~1 levels with n,> 50 must be
considered.

It is interesting to compare these results with Keldysh’s theory for tunneling [35] in which an
“adiabatic parameter” Y = w/(en,)= wy/¢, is introduced, discriminating the perturbative regime
(Y >1) from the tunneling regime (Y <1). In the present case, (27) shows that in order that tunneling
ionization according to (26) can take place it is necessary that Y = w,/g, > 1. For instance, for o, =1,
g, =0.01, n,>100eq. (27) is satisfied but Y =100. Therefore, we see that here also, like in [35], the
multiphoton regime occurs for weak field in the perturbative region (g, < €,), whereas tunneling takes
place in the opposite case of strong field (g, > ¢,). So, the Keldysh parameter loses its usual meaning
and a new parameter Y}; must be introduced in order to discriminate between the perturbative regime
(Y;;>1) and the tunneling regime (Y}, <1). According to the previous discussion the new parameter Y,
will have the expression

Y,y =0 /(n,g,) = 0" le . (28)

The reason of this deviation from the results of [35] is the presence of a large number of intermediate
levels between the initial state and the continuum.



G. Casati et al., Relevance of classical chaos in quantum mechanics 93

3. Numerical results
3.1. Methods of numerical simulation

In this section we shall describe the numerical methods and the checking procedures we used in our
computer simulation of the classical and quantum dynamics of the one-dimensional model.

Reducing to one the dimension of the problem sharply decreases the computation time in the
quantum case, and this allows for a more precise investigation of the excitation dynamics. The main
computations were carried out on the CRAY-XMP Computer.

The numerical solution of the classical equations was carried out in action-angle variables (n, A). As
in [19], in order to circumvent the singularity at z = 0 a change was made to new variables (n, £) and to
a new time 7, which allow us to write the equations in the following form:

dn/dn = —en® cos wt sin &
dé/dt=n">+2en cos wt (1 — cos ¢) (29)
dt/dn=1-cos ¢; A=§£&—sin £.

A similar method for avoiding the singularity at the origin was used in [30]. Equations (29) were then
numerically integrated by the Runge—Kutta method. The initial distribution of classical trajectories was
taken on a line in phase space with n = n, and uniformly distributed phases A; this choice corresponds
to the initial condition used in the quantum case (only one level excited with n = n;). The full number
of classical trajectories was taken 250 or 1000.

An absorption mechanism was introduced for trajectories being excited above n~4n,. A change in
the border of absorption only weakly affected the excitation probability.

The investigation of quantum dynamics described by the Hamiltonian (2) was carried out by two
distinct methods. In the first one, following [19], a base of discrete unperturbed eigenstates was used,
and the equations were solved for the amplitudes ¢, of the expansion of the state vector over these
eigenstates:

Pmax

ic,=—(1/2n’)c, + e(t) 2 z,.c, . (30)

.
R =Ryin

The value of n_;, was approximately 20-40 levels lower than the initially excited state n,. A further
decrease of n_,, did not apprec1ably influence the dynamics, owing to the exponential decrease of the
distribution f, = |c,|* in the region n < n, where the classical motion is stable. A typical value for the
full number of levels for which eqs. (30) were solved was ND=n_, —n_ . =192,

In order to numerically integrate (30) the time dependence of the field was approximated by
e(t)=Atecos wt L, 8(t — k At) with At=2m/wL, where L is the number of integration steps per
period. This scheme of integration is physically equivalent to mtroducmg supplementary fields with
frequencies w, = kLw, k=1,2, .. .. Since in our computations w ~ 1/n; and the number L of steps was
chosen between 100 and 500, then even the frequency o, = 100w was much larger than all frequencies
for transitions between intermediate levels. Therefore, the influence of the fictitious frequencies w, can
be considered to be small.
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The integration of the numerical scheme thus obtained can be carried out exactly; indeed, it reduces
to successive applications of a matrix to a vector ¢(t):

c(t+ At) =T exp[—ig,(cos wt, ) At z] ¢(t)
=TQZQ ' ¢(t)

where T and Z are unitary diagonal matrices, with T,k =exp(iAt/ (2n*)) and Z,,=
exp[—ig,(cos wt,) At z,], z, are the eigenvalues of the matrix z, ,, and @ is a unitary matrix that
transforms the matrix Z, , into diagonal form. With this procedure, the normalization W=
X pmex lc,|’=1 is conserved to a very high accuracy (~107"). In [19,22] the operator
exp(—i At g,z cos wt, ) was computed, by means of its expansion in powers of Az (up to the Sth order),
which led to an effective damping on higher levels and to a poorer conservation of normalization. The
new method used here appears significantly more efficient in that it permits to decrease the number of
steps per period.

The main inconvenience with the just described integration scheme is that the continuous spectrum is
completely neglected. Even though a number of arguments can be put forth [19, 22], suggesting that the
continuous spectrum would not essentially modify the dynamics of excitation over discrete levels,
nevertheless it is important to build a numerical model free of this shortcoming.

As far as we know, no numerical experiments were up to now performed, giving a precise account
for continuous spectrum [52]. A partial consideration of transitions into the continuum, has been given
in ref. [37]. However no account was there taken for continuum-continuum transitions, which,
generally speaking, do not appear negligible as compared with transitions to and from the continuum.
Moreover, the number of equations to be solved sharply increases with the level number n, and this
does not allow for investigation of excited states with n, = 60.

A more efficient account for continuum can be given by means of the so-called Sturm basis. This
basis is introduced by considering the following eigenvalue equation:

~1d’u/dz* - (B/z2)u=Eu, z>0,E<0,B8>0. (31)

For =1, (31) is just the Schrodinger equation for the stationary states of the unperturbed
one-dimensional hydrogen atom. By changing variables according to £ =2z, u(z) = (£/2)"%v(¢), eq.
(31) becomes

S,v=d/dg(£ dv/dg) + [(E/2)¢ - 1/(4€)v=~Buv . (32)

The Sturm basis is generated, by considering (32) as defining eigenvalues — B for the operator S,
where E <0 is an arbitrary fixed parameter.

Instead, considering in (32) B as parameter and E as the eigenvalues, one would recover to the usual
basis, including continuum eigenfunctions.

It is known [29] that S, is a sclf-adjoint operator with a purely discrete spectrum B, =(s+
1)(—2E)""? with s =0 an integer. Eigenfunctions for S, are given by

£(E)=[(s +1)(—2E)"""1"" F(=s,2, &—2E)"*) [£(-2E)"""]'"* exp[—(¢/2)(-2E)""]
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and are orthonormal:

[ae 1o f0r=0,

Here, and below, F with three variables will indicate the confluent hypergeometric function. In the
following, we shall choose E = —1/2ng, n, being the initially excited level. Then, z''* f, _,(22) is, apart
from a normalization constant, the n,th unperturbed eigenfunction.

We also need matrix elements for £ and ¢ For £ they are given in [29], where they are used in
order to calculate the 2nd-order Stark effect. Matrix elements for ¢ can be obtained by direct
computation.

Non-zero elements for ¢ and ¢ are then given by:

£ . =2ny(s+1)

£ 1s=Egr = —nls(s + 1]

(€°),,=6mp(s +1)° (33)
(6%)s0m0 = (£7)o1,0= —2mp(25 + D[s(s + 1]

(67)s5-2= (€)oo =mos(s* = 1)

Let now ¢(t) = lezill(t) be the solution of the Schrodinger equation with the Hamiltonian (2), and
z=¢/2. Then, § [ ¢|y|*dé=1. Since the f’s make up a complete orthonormal set, ¢ can be
expanded in the form

0= 3 4,0)expl-iEyD)

with E, = —1/2n? and ¢(0) = (2"*/n,) f,, _, corresponding to the initially excited level n,. By using the
orthonormahty of the f, and the expression (33) for matrix elements, from the Schrodinger equation we
obtain equations for the amplitudes A (¢):

2s + 1A, —[s(s + )]'?A,_, ~ [(s + 1)(s + 2)]*A,,,
= —i{[2(s + 1 — ny)/nl]A, + 3&(t) ny(s + 1)* A, = &(t) n[(2s + 1) (s(s + 1))'"* A, _
+(2s+3) (s +1)(s+2)* A,,,]+(n,/2) () [s(s* -1)""* A4, _,
+(s+2)(s+2)°-1)"" 4,0} (34)

This infinite system of equations is exact and, even though only a discrete base was used, it
completely takes into account the continuum. Indeed, each Sturm function is a superposition of several
eigenfunctions from the unperturbed base, including eigenfunctions belonging to the continuous
spectrum.
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Once eqs. (34) have been solved for A, the original amplitudes c,(¢) of the expansion of ¢(t) over
the unperturbed eigenstates

u (z)=2zn">"*e"*"F(-n+1,2,2z/n)

can be recovered by
c(t)=2 B, A,()

where the transformation matrix B, from the Sturm to the unperturbed base is given by

= %fdf(g/z)‘” £.(€) u,(£/2)

=4(s + 1 - ny) [2(s + )n]""? (g — n)* ™" 72 (ngn)* (=1)" [(n, + n)* "]
X F(—=s, —(n—1),2, —4n,n/(n — ny)?) .

Here F is Gauss’ hypergeometric function. A similar computation, for continuous spectrum
unperturbed eigenfunctions can be made, by simply substituting i/p in place of n, p being the electron
momentum (an analogous method was used, e.g., in [34]). A method for computing F with large s, n is
given in appendix IV.

The numerical integration of eqs. (34) was performed as follows. One level s, = n, — 1 was initially
excited, so that A (0)=(2"%/n,) snp—1- 1hen egs. (34) were solved for s, <s<s_,.. As a rule,

Smin = 10-30, and the full number NS of Sturm levels ranged from 256 to 576. The dependence of the
field on time was taken in the same way as in the previously decribed method, with approximately the
same number of steps per period: 100 < L <500. Just as in the 1st method, the introduction of delta
functions into the numerical scheme made it possible to exactly integrate the truncated set of equations
(34) by repeated applications of matrices. For the same reason, the loss of normalization was very small
(~1077). Unlike the 1st method, here the presence of high frequencies w, = kLo led to direct
transitions into the continuum; however, for the chosen values of L the probability of such transitions
was negligibly small. For instance, for n, = 60, w, =1, g,=0.1, L = 100 we get w,n; = 100 and the ratio
of one-photon ionization (21) to the diffusive one (6) is of the order 5 X 10™*, Therefore the small
o-function kicks introduced by the numerical simulation of the monochromatic perturbation do not
have any effect on the physics of the problem; moreover, their influence can be kept under control by
varying the integration step.

In our opinion, monochromaticity of the perturbation is important for this problem, and substituting
a 8-like perturbation £, 6( — 27k/w) in place of € cos wt [38, 39] can lead to a significant modification
of the physical picture of multiphotonic excitation. The role of multiphoton transition in the two-
dimensional model with a §-like perturbation was studied in ref. [38].

The values of A (7) obtained by integrating (34) were used to find the amplitudes c,(r) over the
unperturbed discrete base by means of the transformation matrix B, . In this way c,(7) were found for
approximately 200 levels. Since the total probability was conserved with high accuracy, it was then
possible to determine the probability of excitation above a given level, and also the probability of
transition into the continuum, which is included in the former.
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Several characteristics of the excitation were computed by the described numerical method. Among
them, the most important were the distribution over unperturbed levels f, =|c,|> the 1st moment
M, =({n) — n,)/n,, the 2nd moment M, = ((An)*) = ((n — (n))*)/n}, and the probability of excita-
tion to high levels. In order to describe the latter we considered the probability W, . of excitation to
states with n=[1.5n,], where [ ] means the integral part. For computations in Sturm base, this
probability included also the probability of ionization, namely W, ; is the total probability in states
n=1.5n, plus the probability in the continuous part of the spectrum. In order to eliminate fluctuations,
we also determined the distribution f, averaged over A7 periods of the field; as a rule, At was chosen 40
or 60. Finally, we determined the average distance of the electron from the nucleus, (z).

The accuracy of the numerical results was checked as follows. First, in order to check that continuous
spectrum was being properly taken into account, we performed a series of experiments with frequencies
larger than the 1-photon ionization threshold, w,>n,/2. In the absence of resonances within the
discrete spectrum, the probability on discrete levels with n = 1.5n, was then negligibly small, so that the
probability of ionization W, ~ W, ,. An example of dependence of W, on time is shown in fig. 1. In fig. 2
we show a comparison of the theoretical ionization rate with the numerically obtained one. As can be
seen, there is an excellent agreement with the theory of 1-photon ionization (22), which indicates that
computations in the Sturm basis efficiently reproduce continuum effects.
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Fig. 1. Ionization probability W, as a function of time 7 (number of
microwave periods) for the case n, = 30, @, = 30, &, = 0.075. The solid
line is drawn according to the analytical expression (22) while the
circles are the results of our quantum numerical computations. The
excellent agreement with the theory even for very large frequencies is
a check of our numerical computations and shows that the Sturm basis
efficiently takes into account the continuous spectrum.

Fig. 2. Ionization rate versus field strength for the case n, =30,
w,=30. Like in fig. 1, the straight line is drawn according to the
theoretical expression (22) and the circles are results of quantum
numerical computations. Here also notice the very good agreement
between theory and numerical results.
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A different type of check was gotten by increasing the number L of integration steps per period. The
relative changes of the characteristics of excitation produced in this way were very small. For instance,
in the 1st method (unperturbed base, UB) with n, = 66, w, = 1.5, &, =0.04, a change of L from 200 to
300 for =120 led to a relative change AW, ,/W, ,=107>, A(z)/{z) =5 x 107" Of the same orders
were also the changes in the Sturm basis (SB), even for rather small values of W, ;. For instance, for
n, =66, o =2, g,=0.03, r =120, W, s =4 x 10", upon changing L from 100 to 200 the relative change
in probability and in (z) were A{z)/{z) =AW, /W, ;=5x 107", We can therefore assume that for
sufficiently large L the effects of numerical discretization in the integration of (30) and (34) become
negligibly small, and have no influence on the physics of the problem.

A further check consisted in changing the total number of levels both in the Sturm and in the
unperturbed base, and also in matching the excitation characteristics obtained by the two different
methods. One such comparison is shown in fig. 3a, where it can be seen that there is a good agreement
between results of computations in UB and in SB, and also that an increase in the number of Sturm
levels does not change significantly the excitation probability (which includes continuum). Such an
agreement not only takes place for integrated characteristics, but also for the distribution over
unperturbed levels (fig. 4). It is then possible to conclude that continuum effects do not lead to
substantial modifications of the excitation dynamics, at least for not too strong fields and high
frequencies. Moreover, the Sturm basis used in our computations appears large enough to provide a
satisfactory model for quantum dynamics, including continuum.

Finally, the agreement we found between classical and quantum computations in the delocalization
regime, as we shall discuss in the next section, provides, in our opinion, the most convincing element in
support of our methods.

We also checked that the localization of the extended states in a more realistic two-dimensional
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Fig. 3a. Excitation probability W, ; as a function of time 7 for the case n, =66, ¢,=0.04, w,=2.5. The quantum numerical computations are
performed by using: i) the unperturbed base with ND = 192 eigenstates (- - -); ii) the Sturm basis with NS =384 (-- - -); iii) the Sturm basis with
NS =576 (—--). The fairly good agreement of the three curves is a check of the numerical computations. The classical ionization curve is also
shown (solid line).
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Fig. 3b. Classical (1) and quantum (2) excitation probability W, 5 as a function of time for the same case as in fig. 3a.

model is very close to that in our one-dimensional model as shown in fig. 7c. This is in no contradiction
with recent results [53] on the instability of classical extended orbits in the resonant electric field
(w, = 1). First, we mainly use nonresonant fields (e.g. fig. 7c). Second in the chaotic component of the
motion even for w; =1 only a slow diffusion in n, takes place according to eq. (7).

The dynamics of quantum excitation was investigated for n, = 30, 45, 66, 100, and the field ranged in
the interval 0.01 < ¢, <0.34. In order to facilitate conversion to physical units, we note that for n, = 100

log f(n)
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Fig. 4. Quantum probability distributions f(n) over the unperturbed states averaged over 60 values of 7 = wt/27 within the interval 60 <7 <120.
Here n,=66, £,=0.04, w,=1.5. Three different curves are plotted in the Sturm basis with NS =384 and NS =576 and integration in the
unperturbed basis with ND = 192. The three curves are so close that they are not resolved in the graph and this is an additional check on the
accuracy of numerical computations.
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the frequency w/27 = 10 GHz corresponds to w, = wn, = 1.51998, and &, = enj = 0.1 corresponds to
£=15.14485 V/cm.

For clarity’s sake we have grouped our numerical results following the order of the previous
theoretical analysis. Therefore we shall now discuss, in turn, the results on the classical model, the
results demonstrating the localization phenomenon, and the results illustrating the dependence of the
excitation probability on the field frequency.

3.2. Numerical results on the classical model

The dependence of the excitation probability of the classical system on the frequency w, and strength
g, of the field is shown in fig. 5. Here the excitation probability W, . is computed after 7 = 40w, periods
of the external field. We recall that the initial value #n, is irrelevant due to the scaling property of the
classical motion. The characteristic oscillations with minima near integer values of w, are connected
with the presence of nonlinear resonances, the strongest of which correspond to integer w,. In fact, the
destruction of the centers of resonance regions occurs for larger fields than the critical field for
resonance overlap, eq. (3).* '

Then, for not too strong fields, only a fraction of the trajectories from the initial distribution, which
is uniform in space, diffuse to higher values of n, but the rest fall into the central stable region of
resonance, where they remain giving no contribution to W, ;.

The characteristic dip for w,=0.5, which was also observed in numerical experiments on two-
dimensional atoms [41] corresponds to a 2nd order (half-integer) resonance. The sharp maximum of
W,  for w, =0.7 (weakly depending on ¢,) is due to the fact that for this frequency most trajectories fall
into the stochastic layer of the separatrix.of the big fundamental resonance w, = 1. Already after half a
turn around the resonance they pass into the high-n region, where excitation is significantly stronger.

A
0 O . r P ifiom. P

0 " 1 hd 2 3 we

Fig. 5. Classical ionization probability W, , after 7 = 40w, as a function of the microwave frequency for different microwave fields. Here W, ; is the
total probability above the action value n = 1.5n,. (C) ¢, = 0.02; (@) &,=0.03; (A) 5, =0.04; (A) £, = 0.05; (W) &, =0.06.

* The values of the field at which the centers of resonance regions are destroyed were numerically determined in [30].
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An analogous excitation mechanism, connected with the 2nd order resonance at w, = 0.5, explains also
the maximum at o, = 0.43.

In the classical system diffusive excitation takes place only when the field strength exceeds the critical
value for which the last KAM invariant curve is destroyed and there is a transition to global
stochasticity (see e.g., [5]). From fig. 5 we see that the actual value of ¢, for @, =1 is close to 0.02,
which satisfactorily agrees with the theoretical value (3) obtained by the resonance overlap criterion [5].
Figure 5 gives an overall idea of the classical behavior. Other numerical results such as the comparison
with the solution of the diffusion equation or with the quantum distribution on the unperturbed levels
will be given in the following sections.

3.3. The distribution over the unperturbed levels

Here we shall describe the features of the numerically computed quantum distribution over the
unperturbed levels in the various parameter regions which have been discussed in our previous
theoretical analysis. In this way we shall show that numerical results support the theoretical estimates
given above.

For high levels (e.g. n,~100) and ¢, ~ &, ~0.02 the perturbation strength V= 3n’¢ is larger than
the level separation: V/AE =~ 3g,n>1, so that the field would be expected to connect a number of
unperturbed levels. Yet, even for gn>1 no diffusive excitation will be observed if ¢<e¢,. (The
opposite case g,n <1 corresponds to the region below the “quantum stability border” [36].) This is
illustrated in fig. 6, where an example of stationary distribution in the region of stability e <e_, is
shown. This distribution remains essentially unchanged upon further increasing the computation time.
Classically, this fact is due to the stability of the motion, and quantum mechanically to the very small
probability of tunneling into regions classically forbidden by the smooth invariant curve (section 2.5).
However, for a reliable detection of the tunneling described in section 2.5 particularly accurate
investigations are required. It is also desirable to increase n,, because even for n, = 100 the tunneling
region appears rather narrow (see eq. (27)). Nevertheless, we think that tunneling excitation can be

tog f (n)

1 1 A L 1 AL
60 70 80 90 100 W0 120 130 140 150 160 n

Fig. 6. Classical (dashed lin€) and quantum (full line) probability distribution f(n) averaged over 40 values of  within the interval 80 < 7 < 120.
Here n, =100, g,=0.01, w, = 1.5. For these parameter values, £, < &, < ¢, and therefore both classical and quantum packets are localized. Notice
the small tunneling through the classical KAM invariant curves.




102 G. Casati et al., Relevance of classical chaos in quantum mechanics

investigated both in numerical and in laboratory experiments, where at the present time it is possible to °
prepare states with n,==300 [26]. We also note, that clear experimental observations of tunneling
excitation in alternating fields are still lacking.

For field strength exceeding the critical value (3), diffusive excitation takes place in the classical
system. However, in the quantum case, for field strength less than the delocalization border (15) the
phenomenon of quantum localization is observed, in consequence of which the distribution over the
unperturbed levels reaches the stationary form (10) and then does not change upon increasing the time
of interaction with the field. In this situation, the ionization probability is very small, and can be
neglected for the given interaction time. A typical example of quantum localization is shown in fig. 7.
Here we see that classically there is a diffusive excitation, so that the classical distribution obtained by
the numerical simulation satisfactorily agrees with the theoretical formula (5a) (the classical border of
stability was here chosen at n* =55 according to numerical results). The quantum distribution was
obtained by the Sturm basis method with NS = 576; here, as well as in fig. 4, there is a good agreement
with the resuits of computations by the unperturbed basis method. In contrast with the classical result,
in the quantum case an exponential drop followed by a multiphoton plateau is observed, almost
unchanged under a change of 7 from 120 to 600. The quantum limitation of chaos also led to a
significantly lesser excitation probability in the quantum than in the classical case (see also fig. 3). We
mention here that in a recent paper [51] results of different quantum computations were reported with
ionization probability 10% (to be compared to ours less than 7%) for w, =1, ¢,=0.03, n, =63 and

T =320 periods.
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Fig. 7. Classical {dashed curve) and quantum (solid curve) probability distribution f(n) averaged over 40 periods of 7 for the case n, = 66, w,=2.5,
£,=0.04. In (a) the average within the interval 80 < r <120 and in (b} within the interval 560 < 7 < 600 are given. The dotted lines in both figures
represent the analytical solution (5a) of the Fokker—Planck equation which fairly agrees with the classical numerical results. On the contrary, the
quantum distribution is localized and does not change significantly by increasing the interaction time with the microwave from 120 to 600. The only
difference between the quantum distributions is the slight increase of the peaks on the low multiphoton plateau. The arrows with integers show the

position and the principal quantum numbers of the peaks.
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Fig. 7c. Comparison of one-dimensional (*) and two-dimensional (full curve) models for extended states; parameters as in fig. 7a,b and initial
condition n, = 0(two-dimensional). Instant distributions £, are given at 7=60. The circles show values of logAf,] where Af, is the difference
between the two models.

Another convincing manifestation of localization was the saturation of the diffusive growth of the
second moment of the quantum distribution (fig. 8). The agreement between quantum and classical
dynamics here holds only over a small initial time interval 7, =5. The smallness of 7, is due to the
smallness of the classical diffusion rate. Notice that the agreement observed for 7 <7, provides still
another check of the numerical procedure used.

In fig. 9 it is shown how the normalized average distance RL = {z(¢))/n} of the electron from the

0.03 -
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Fig. 8. Second moment M, = {({n — (n))*) /n; of the classical (dashed line) and quantum (full line) distribution as function of time 7 = wt/27 for
the parameters of fig. 7. The localization of the quantum packet shown in that figure leads here to the suppression of the diffusive growth of the
moment M,.



104 G. Casati et al., Relevance of classical chaos in quantum mechanics

RL 26
241 e
22+ P

20+ e

T
U
N

18

16}
1o \53 N/ 00 T \ fsot
¥ W

Fig. 9. Normalized average distance RL = {z(r)) /n’ of the electron from the nucleus as a function of 7 for the same case as in fig. 7: (full line)
quantum case; (dashed line) classical case. Also here the quantum suppression of diffusion is clearly manifested.

12-

nucleus depends on time. In the classical system this distance grows and the electron moves far away
from the nucleus. Instead, in the quantum case, owing to quantum localization, the electron keeps
oscillating around its initial position.

The regime of quantum localization was investigated for initial levels n, =30, 45, 66, 100, for
frequencies 1= w, =<3, fields 0.03 < ¢, =0.12, and localization length /> 1 (which is the condition for
applicability of the estimate (11)). Numerical values for the localization length were determined directly
from the stationary quantum distribution. Comparison of these numerical data with the theoretical
values (egs. (13), (14)) yields good agreement (fig. 10). The observed dispersion of points is apparently
connected with the presence of islands of stability in the classical system. Also, the presence of a
typically quantum resonance structure may play a role in this respect.
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Fig. 10. Localization length as a function of the model parameters. The dots correspond to numerically measured values of / which are in good
agreement with the solid curve given by the analytical estimate (13).
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Fig. 11a. Classical (dashed curve) and quantum (full curve) distribution function f(n) for n, =100, ¢, = 0.08, w, = 1.5 at = = 60. Notice the fairly
good agreement between classical and quantum numerical results and the analytical solution given by eq. (5a) (dotted curve).

If the field exceeds the quantum delocalization border (15) then the quasi-classical diffusion over the
levels is sufficiently fast and no localization takes place. In this regime the evolution of the distribution
function can be approximately described by the diffusion equation (4). An example of a distribution in
the delocalization regime is shown in fig. 11a, where it can be seen that the quantum distribution agrees
with the solution (5a) of the Fokker-Planck equation.

In order to check the validity of the estimate (15) for the delocalization border, we investigated the
dependence of the excitation probability on ¢, for different values of n, and of w,. This dependence on
the rescaled field &, = &,/e."’ is shown in fig. 13. For each value of n,, @,, the excitation probability W,
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Fig. 11b. Probability distribution over the unperturbed states at 7 = 120 for the case of fig. 11a, after reversal of velocities at 7 = 60. Notice that the
quantum system (full curve) recovers its initial state to seventeen digits which corresponds to numerical errors. In contrast, the classical motion
(dashed curve) proceeds according to the diffusion equation (5a) (dotted curve).



106 G. Casati et al., Relevance of classical chaos in quantum mechanics

07 T
W ( : 1 A '1"‘{/
06~ : =
0s 427 '/,LJ}‘/N A A »',4 B
. e e
04 L AN ' gavups 3
03 2 i
AV | ™
02 A |
k : \
o1 L
o i LN
0 20 40 60 80 00 20

Fig. 12. Classical (dashed curve) and quantum (full curve) ionization probability (excitation above the unperturbed level 1 = 150) as a function of
time for the case of fig. 11. Notice the perfect specular symmetry of the quantum curve about the time of reversal = 60.
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Fig. 13. Excitation probability at time 7 =60 as a function of the field intensity for different values of 1, and w,. Wi(Z,) = Wi(go)/Wi'(e(") is the
quantum excitation probability at &, rescaled to the corresponding classical excitation probability computed at &, = ef]”; £y = eolegl) is the rescaled
field: (A) 1,=30, w, =3; (W) #,=45, w,=1; (A) ny =45, w,=3; (@) n, =66, w, = 1; (1) 1, =66, 0, =2; (*) 1, =66, &, =3; (O) n, =100,
w, = 3. The fact that all points corresponding to different n, and w, meet at the value W= 1 for & =1 is a numerical verification of our estimate
(15); it also verifies that, in the delocalized regime, the quantum excitation probability is close to the classical value.
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was also rescaled to the corresponding classical value taken for ¢, = ¢\"; in other words, in fig. 13 we
actually plotted W, ((£,) = W3 ,(g,)/W? 5(€9)|.,=c- If delocalization takes place for g, ~ ef]l), and if in
the delocalization regime the excitation probability keeps close to its classical value, then all the lines
showing the dependence of W, ;(¢,) for different values of n,, w, would be expected to meet for &, =1
at the value W, ;=1. As can be seen from fig. 13, this is just what happens.

An interesting feature of fig. 13 is that the dependence of the ionization probability on the field
strength at fixed n, and o, is not always monotonic. For example, the data corresponding to n, = 66,
w, = 3 clearly indicate a “bump” occurring in the ionization curve. The existence of similar “bumps” in
experimentally obtained ionization curves was recently pointed out in [48] and a theoretical explanation
was put forth in [49].

In the localization regime, the dependence of the excitation probability on field can be approximately
described by W, ;x £2. Figure 13 also clearly indicates that the experimental value of k changes
substantially with n,, @,, so that joining of all lines at a single point for £, = 1 is not a trivial occurrence,
and can be considered as a confirmation for our estimate (15). This diversity in the values of k is
connected with the different number of photons which are required for excitation into states with
n=[1.5n,]. However, the experimentally determined value & is typically, substantially less than the
number k; of photons theoretically required for direct transition from n, to n=1.5n,, which is
ky =1+[5n,/18w,}. For example, for n, =66 and w,=1, one has k; =7, k, =19.

In our opinion this difference is due to two effects. The first is that multiphoton transitions do not
necessarily start from the initial unperturbed state, but may start from anywhere inside the stationary
distribution (10) which sets up after a while. In other words, when / > 1 excitation may start from levels
n~ny+1, and this reduces the multiphotonic degree k. The other reason is the appearance, for high
levels n>n,, of a multiphoton plateau of equidistant resonances [22]. Examples of distributions f,
which clearly exhibit this multiphoton plateau are given in fig. 14a,b (see, also fig. 7). The differences in
unperturbed energies E, = —1/2n” between consecutive peaks of the distribution are equal to the field
frequency; therefore, the sequence of peaks can be naturally explained as the result of a chain of
one-photon transitions.

In the cases illustrated by fig. 14a,b these transitions start directly from the initial state n,, and the
peaks can be enumerated simply by the number of photons. However, the situation is not always that
simple; in a series of cases, the chain of peaks does not start from n,, but rather from somewhere inside
the localized distribution (see fig. 2 in ref. [22]), and it is even possible to observe two or three distinct
chains within the same distribution.

For the high-lying levels the heights of the peaks become roughly the same and they build up an
equidistant (in energy) plateau. If we increase n still further, the peak heights do not decrease: this
seems to be due to the fact that on high levels the field is strong enough for the probability of transitions
between nearby peaks to be significant (saturated transitions). This is the second reason why kg < k.

Upon increasing the field, the multiphoton plateau rises as a whole (fig. 14). The resonant peaks
become broader, but in a number of cases they do not disappear, even in very strong fields and in the
delocalization region. However, this usually takes place only for large w, (compare delocalization in
figs. 11a and 14b, for n, = 100, w, =1.5 and 3, respectively).

In our opinion, the appearance of the multiphoton plateau below the ionization threshold is in its
substance akin to the appearance of peaks in the energy distribution of photoelectrons which is
observed above the ionization threshold [42, 43]. Indeed, for large n the distance between nearby levels
is very small: AE < w, and the spectrum in this region behaves like a quasi-continuum. It is then
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Fig. 14a. Quantum probability distribution f{n) averaged over 60 periods of 7 within the interval 60 < < 120. Here n, = 66, w, =2 and &, =0.03
(al); & = 0.08 (a2); g, =0.14 (a3); the dotted line is the solution of the Fokker—Planck equation. The arrows with integers are the positions and
principal quantum npumbers of the peaks on the muitiphoton plateau. -
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reasonable to expect that the peak structure observed in the discrete part of the spectrum will persist
also in the continuum.

It is possible that a theoretical explanation of the multiphotonic plateau in the underthreshold
distribution may be given, along similar lines as in [44].

3.4. Dependence of the excitation probability on frequency

An example of the dependence of W, ; on w, for fixed &, = 0.04 and different n, is shown in fig. 15. It
is here apparent that for high frequencies w,> 1 the excitation probability is significantly less than the
corresponding classical one. The reason is that the delocalization threshold (15) increases with the
frequency w,, so that a majority of points in fig. 15 belong to the region of localization. We recall,
however, that the estimate (15) is only valid for w,> 1. Indeed, for w, <1 a dynamical amplification in
the classical excitation takes place, as described in section 3.2 (see fig. 5). From figs. 5, 15 it appears
that for £, =0.04 the maximum classical excitation is gotten for w,=0.7. Now, as is seen from fig. 15,
the quantum probability of excitation for n, = 30, 45, 66, 100 is close to the classical value, and even the
corresponding distributions on levels (fig. 16) look rather close to classical results. We interpret this fast
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Fig. 15. Excitation probability W,  as a function of frequency w, at 7 = 40w, for fixed &, = 0.04 and for different n,. (@) n, = 30; (A) n, = 45; (A)
ny,=66; (M) n,=100. The solid line, with open circles, gives the classical excitation probability. Notice that, by increasing w;, the quantum
excitation probability becomes much less than the corresponding classical one due to the fact that the delocalization border (eq. (15)) increases with
.
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Fig. 16. Quantum probability distribution J(i) averaged over 40 periods of 7 in the interval 40 <7 < 80 for fixed ¢, = 0.04, w, = 0.7, and different
n,. (a) ny = 100 (dotted curve), n, = 66 (full curve); (b) n, =45 (dotted curve), n, = 30 (full curve); (c) n, = 20 (dotted curve) n, = 10 (full curve).
The classical probability distribution is also shown (dashed line). In order to compare the quantum distributions with different n,, with the classical
one, we have introduced rescaled quantities f = (n,/66)f and # = (66/n,)n. The scaling property of the quantum distribution and the fairly good
agreement with the classical motion is due to the delocalization phenomenon.
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excitation in the sense that in the quantum system for this frequency there is a delocalization. Thus
numerical experiments show that even for a rather weak field ¢, = 0.04 delocalization can take place,
nevertheless, at frequency w,=0.7, lower than the Kepler frequency.

The fine structure of the dependence of excitation on frequency is shown in fig. 17. In the
localization region w,=~1 one observes an essentially resonant dependence on frequency. For low
frequencies w, <0.7 most resonances disappear and the dependence on w, becomes smoother. An
analogous smoothing occurs in the region w,= 1, upon increasing n, from 30 to 100.

For still lower frequency, o, <0.6, one falls into the region of classical stability; therefore, excitation
ceases for the classical system. Then, the quantum excitation sharply diminishes, too. Thus, the
dependence of the excitation probability on frequency has a threshold character, in that ionization takes
place for

w,>w,~1. (36)

This estimate for the chaotic threshold w, is justified by the fact that for w, <1 there are no 1st-order
resonances between the frequency of the external field and the harmonics of the frequencies of the
motion of the classical electron [18]; therefore, chaotic excitation for frequency w, <1 can take place
only for fields strong enough that higher-order resonances overlap. On the other hand, for very low
frequency w,<1 the value of the critical field & coincides with that for the classical static field
ionization. Notice that the threshold (36) holds only if £, > 1/50. Otherwise, the chaotic threshold has
to be determined from eq. (3), and is equal to w, = 1/(50¢,)’

According to the theoretical estimate (24), the diffusive ionization is more effective than direct
one-photon ionization. In order to check this prediction we performed a series of numerical experi-
ments, in which the ionization probability from states with n, =30 or n, = 66 was investigated over a
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Fig. 17. Fine structure of the dependence of excitation probability W, ; on frequency w, at 7= 40 for fixed £, =0.04. n, = 45 (full curve); classical
results (dashed curve).
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broad range of frequencies. The field intensity was so chosen, that direct two-photon ionization was
considerably less than 1-photon ionization except for intermediate resonances; moreover, g, < ¢, where
g, is the critical intensity for static field ionization. In this situation, the photoeffect is expected to
display a threshold dependence on frequency, with negligibly small ionization probability for w, < w, =
ny/2.

Such a picture of the photoeffect proved to be incorrect. In figs. 18, 19 we show the dependence on
frequency of the probability of “ionization” W, which we define as the excitation above a level n after a
dimensionless time 7 = 40w, that corresponds to the same physical time for all w,’s. Computations were
made in the Sturm basis, so that W, includes the probability of transition into the continuous spectrum.
For ny, =30, we took n=90; and for n, =66, n=99. Notice that W; included some probability on
discrete unperturbed levels, too. In figs. 18, 19 the most effective excitation is observed at frequencies
well below the one-photon threshold. The new threshold value w ~1 is close to the corresponding
classical value and, as explained above, is determined by the condition of overlapping of 2nd-order

W
60 -
Wy
100 -
50 R
;l| go -
1y
1y
\ 80|
|‘| T
40+ ) $ %
i 0 P
i b
) ' !
1 ! !
. o o
30} H I 0
\ | \I
i 50} ' 1
| .
40 ¢ hp
20 ? ! |
1 | |
:| I 'I
" 30 ) t
114 1
t . |
[N} 1
1| [}
0 ' 20
]
!
10
0 0 &4
IR 0 { 1 2 log We
log We log W, log Wy log W, log W log Wy
Fig. 18. Ionization probability W, = I, |c,|* versus field frequency Fig. 19. Same as fig. 18 with n, =30, ¢, = 0.075; n=90.

w, after a time 7 = 40w, which corresponds to the same physical time ¢
for all frequencies. We have set n, = 66, ¢, = 0.05, 7 = 99. Moreover,
quantum theory (*); classical theory (O). Notice that w, is here
somewhat less than n,/2 because, in our definition of the ionization
probability, the contribution of states with n > 7 is also included.
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resonances. For sufficiently strong field, w_ appears to be significantly less than 1; for &, =0.075,
n, =30, the experimental value for w, is =0.2, and for ¢, =0.05, n, =66 the threshold is w, ~0.35.

In the quantum case, however, there is still a small probability of excitation even from the region
w, < @,, due to tunneling into the classically forbidden region. In the interval o, < w, < @, = (6n,2)>"
delocalization takes place, so that W, is close to its classical value. For w, < w, < w; quantum effects
lead to the localization of diffusion; therefore, in that region one observes an essentially different
excitation picture than in the classical system. A decrease of W, with w, is observed also in the classical
case, due to the decrease of the diffusion rate with w, (see eq. (5)). Indeed, even in the presence of
diffusion, the excitation probability above a given level n is nearly zero if at the given observation time
7 the diffusion has not yet reached this n (i.e. if 7<(n — n,)/D). However, in the quantum case,
isolated ionization spikes survive in this frequency region (see figs. 18, 19) due to transition into the
continuum via intermediate resonant levels (compare with the multiphoton plateau in fig. 14al).

In the frequency region w, = w, the probability W, sharply increases, because of the possibility of
direct one-photon transitions. However, W, in this region is significantly less than for w,~ 0.7 when
diffusive ionization occurs. In the region w, > w, numerical data agree satisfactorily with the theoretical
formula (22). This agreement is another indication that the Sturm basis method of integration efficiently
describes continuous spectrum effects.

In fig. 18 we see that for w,~0.43 the quantum probability of excitation is comparable with the
classical one; again, this means that in this frequency region, for n, = 66, £, =0.05, there is quantum
delocalization.

Numerical experiments indicate that the threshold value ¢, for diffusive excitation in this frequency
region lies between 0.04 and 0.05 (fig. 5). In the quantum case, upon varying &, from 0.04 to 0.05 the
excitation probability changes by about two orders of magnitude. This means that delocalization occurs
already at g, = ¢,,, so that the field strength yielding 10% ionization (which was studied in ref. [26]) will
be found to agree with classical predictions. In other words, these numerical experiments of ours show
that laboratory experiments [13,27] were performed in that parameter region where one-dimensional
delocalization (and a fortiori two-dimensional delocalization) takes place, and this explains the observed
agreement with predictions from the classical model.

3.5. Stability of quantum diffusion

Even though the diffusive ionization, taking place in the delocalization regime, is to some extent
similar to the classical diffusion which occurs in the chaotic regime, the quantum system is still short of
exhibiting all the statistical properties that would be expected of classical chaos.

The most striking difference is the absence, in quantum dynamics, of the strong instability and of the
rapid loss of memory associated with classical chaos. In computer experiments this effect leads to
irreversibility. Indeed, even though the exact equations of motion are reversible, nevertheless any,
however small, imprecision in solving them, such as computer round-off errors, is magnified by the
exponential instability of orbits to the extent that initial conditions are effaced and reversibility is
therefore destroyed.

Investigations aimed at verifying whether an analogous irreversibility would also be displayed by the
numerically computed quantum evolution were described in [6] for the kicked rotator. Here we will
present numerical results for time-reversal experiments on the one-dimensional H-atom (figs. 11, 12).
The chosen parameter values lie in the region of delocalization; therefore, up to the moment of
time-reversal (r = 60) diffusive excitation is going on, both in the quantum and in the classical system.
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Indeed, the distribution on the quantum levels at =60 is close to the classical one, and is well
described by formula (5a). Then, at 7 =60 we reversed the velocities of all particles (N = 1000) in the
classical ensemble, and changed the wave function of the quantum atom to its complex conjugate. In
both classical and quantum mechanics, the H-atom would be expected to find its way back to the initial
state. However, due to the finite computer precision, in the classical case such a return is not observed.
The system retraces backward its history just for a few periods of the field, and then, again, diffusive
excitation occurs.

Instead, in the quantum case an almost exact reversion of motion is gotten; at time 7= 120 the
electron comes back to the initial level. This is even more remarkable on account of the fact that, in
order to restore the initial state, some of the total probability had to be called back from the
continuum.

The conclusion must be drawn from this exact reversibility, that even though the quantum diffusion
which occurs in the delocalization regime of the H-atom is by now the most chaotic example of
quantum motion hitherto investigated, nevertheless this quantum ‘““chaos” is essentially different from
the real chaos of classical dynamics.

4, Experimental results

A large number of laboratory experiments on hydrogen and alkali atoms in highly excited states have
been performed up to now [13, 14,23-27]. Additional interest for such experiments has recently arisen
in connection with the possibility of chaotic motion in quantum mechanics. It is now possible to perform
experiments on microwave ionization on atoms prepared in extended quasi-one-dimensional states [24].
Here it is possible to measure the ionization probability identified with the population of levels higher
than some sufficiently large n, including the continuum; this definition is particularly convenient for
comparison with numerical experiments. Also, it is possible to measure the probability distribution on
unperturbed levels. This allows, in principle, for a careful comparison of experimental and numerical
data.

In particular, very accurate experiments on one-dimensional H-atoms were carried through as
described in [24]. Also extensive experimental data on extended atoms in combined static and
microwave fields are presented in [54]. The range of parameters for these experiments lies inside the
region of low frequency (w, =~ 0.2) and of classical stability (see also [28]), so that the results can not be
used as a test for the theory presented in this paper. ,

A different series of experiments [27] was performed on two-dimensional H-atoms. The conditions of
these experiments not only lie above the two-dimensional delocalization border, but even above the
one-dimensional one. For this reason, our results predict an agreement with classical computations, as
indeed was found in [27]. One possible explanation for the not complete agreement obtained is that the
experimental values in [27] might be above but close to the delocalization border, when one should not
eXxpect a better agreement than within a factor 2. To clarify this point we show in fig. 20 the comparison
of numerical one-dimensional quantum and classical ionization probability slightly above the border:
there is a strong excitation in both cases, but, unlike strongly delocalized cases (see, €.g., fig. 12) here
the two results only agree within a 50%.

Since experimental techniques allow for very accurate measurements, it is highly desirable that the
conditions of the experiments be defined as precisely as possible; for example it is more convenient to
choose a single excited state than a microcanonical distribution. From our point of view, a most
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important goal for future experiments is to observe and to study the new and unexpected localization
phenomenon in classically chaotic situations. For this it is necessary that the frequency w, be increased
above w, = 1, since in the region w, > 1 a large separation between the classical chaotic threshold »_ and
the quantum delocalization border w, is expected. In the high frequency region it is also possible, by
varying the field strength, to observe the transition to delocalization as well as the other phenomena
described in the present paper.

Also, in order to give experimental evidence for the “freezing” of the wave packet in localization, it
would be desirable to vary the interaction time. This latter possibility lies within the capabilities of
present day technique [25].

We would like also to stress that all the phenomena described in this paper should be observable not
only in H-atoms, but also in different alkali atoms. In order to produce hydrogen-like states in such
atoms, one should take into account that, the unperturbed spectrum for highly-excited alkali atoms is
slightly different than in H-atoms, due to the quantum defect. However, for values of />3 this
quantum defect is negligible. Since in linearly polarized fields the magnetic quantum number m is a
constant of the motion, by exciting states with m =3 it is possible to excite states with /=3, which
correspond very well to the hydrogenic situation. It is then possible to consider also one-dimensional
problems for levels with m=3, n,=0, n,=n—|m|—1 and this excitation can be achieved via
light-induced resonant transitions. One would then get a situation in which localization and other effects
of quantum chaos might be studied.

5. Conclusions

The study of the one-dimensional H-atom in a monochromatic field that we have described in the
- present paper brings to light a number of facts — some of which were rather unexpected.

These facts concern both the actual physics of atoms in microwave fields, and the general problem of
quantum dynamics in the region of classically chaotic motion. Even though the unperturbed eigenfunc-
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tions, as well as the matrix elements of the perturbation, can be well approximated by their
semiclassical expressions, it may well happen that quantum and classical time evolutions are essentially
different, due to the phenomenon of quantum localization of chaos. It is interesting to note that
investigations of this phenomenon were prompted by studies on the rotator model [4]. It is a
remarkable fact that this phenomenon, originally detected in a somewhat artificial model, has now been
shown to exist in a physical system, so that there is a real possibility to observe it in laboratory
experiments.

On the other hand, for the H-atom a delocalization regime also exists, and our theory allows
determination of the threshold for this regime. Above this threshold, the excitation of the quantum
system can be approximately described by the classical diffusive excitation. This regime of excitation is
much more efficient than the direct 1-photon ionization; therefore a new frequency threshold for the
photoelectric effect appears, which is determined by the classical border for frequency, w,> w..
Actually there are two different frequency thresholds o, and w,, so that strong ionization occurs only for
o, < w, < w,. The latter threshold w, is due to quantum localization of classical chaos.

The delocalization phenomenon explains the partial success of classical computations in reproducing
experimental results on microwave ionization. At the same time, however, the localization
phenomenon sets definite limits to the applicability of classical models, which are due to quantum
localization.

Although a discussion of the two-dimensional case was given in section 2.2, the bulk of the results
presented in this paper were related to the one-dimensional case. While this fact does not affect the
conceptual importance of these results, it enforces some caution when comparing them with experi-
ments hitherto performed. Indeed, an analysis of the experiments described in [48] shows that a
two-freedoms theory is required to model them properly.

Delocalization is also a challenging subject for future theoretical analysis. This phenomenon has
been predicted on the grounds of semiclassical arguments, which are best suited to make contact with
classical chaotic behavior. Nevertheless, it should be possible to understand it in purely quantum terms.

A few concluding remarks are in order concerning the relationship of results described in this paper
to the general themes of quantum chaos. As we have seen, diffusive excitation and ionization are
brought about in the classical hydrogen atom by the onset of dynamical chaos, which is a regime of
extreme instability of trajectories of the electron. A physically relevant question that we have answered
above, is whether the physically observable manifestations of chaos-enhanced ionization and so
on - survive also in the quantum domain. However, the more speculative question may be posed,
whether also anything of the conceptual setup of classical chaos - instability, irreversibility, and so
on - can be translated in a quantum context. An illustration was given in this paper (section 3.5) that
this is not the case. However similar the quantum evolution may appear to the classical one (insofar as
the population of levels is concerned) it remains strongly stable, in sharp contrast to the latter.
Therefore, even though classical chaos was shown to be relevant in predicting the response of a
quantum hydrogen atom to an external microwave field, it must be stressed again that, strictly speaking,
no true chaos is possible in quantum mechanics.
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Appendix I: Quasi-classical matrix elements in parabelic coordinates

We shall here get the expression for the z coordinate in parabolic action—angle variables (n,, n,, m,
Ay, A,, ¢). To this end we introduce the parabolic coordinates &, 7, ¢:

x=(én)"" cos ¢
y=(én)"*sin ¢ 1.1)
z=(€-1)/2.
In these coordinates the unperturbed Hamiltonian takes the form:
H=2¢P3/(&+m)+2P2(£+n)+ P2IQ2én) —2/(£ + 7). (1.2)
The transformation to action—angle variables (n,, n,, m, A;, A,, ¢) is achieved by separation of

variables in the Hamilton-Jacobi equation for which we refer to standard textbooks (see e.g. [31}).
Here we just recall that the generating function of this transformation is found to be:

é n
S, o m, £,m,9)= | Pt + | P, dn 4 me 13)

where the canonical momenta P,, P, P, are given by [29, 31]:
P, =[E/2+ B¢ - m4£’)'"
P,=[E/2+ B,ln—m’l4n’]'"?
P, =m
Bi,=(,+ml/2)/n, n=n+|m|, E=-1/12n".
Then the angle variables A, A,

A, =aS/on,, (1.4)

can be obtained by differentiating (I.3) and computing the integrals. The procedure is greatly simplified
by the introduction of the auxiliary angles x;, x, defined by

&= —2n’p, sin x, +2n(n, + |m|/2)
1 1 1
(L5)
n=—2nw,sin y, + 2n(n, + [m|/2),

where the parameters u,, u, are given by:
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291/2
Mo = ["1,2(” - n2,1)/" 1.

In this way we get the following result:

A==, C08 X; — M, COS X, — X; T /2

(1.6)
A== COS Xy — o COS X, — X, + 7/2.
From (I.5) we get the following expression for z:
z= %(f"’?)=n2(l~"25in X2~ My sin x;) + n(n, —n,). (L.7)

The coordinate z can be expanded in a double Fourier series in the angles A,, A, with coefficients
2y, given by:

Zik, =fd/\l jd/\2 zexp{—i(k;A, + kyAy)} .

We now substitute (1.7) for z in this integral, and change integration variables to y,, x, by using (1.6).
Thus we find:

2 27
Lk, n’ f dx, f dx, D(x1x,) (1, sin x, — py sin x,) exp{—i(k,A; + k,A,)} + n(n, — n2)80k160k2
°© 0 (1.8)
where D(x;, x,) = d(A;, A,)/d(x1, x,) =1— py sin x;, — w1, sin x, is the Jacobian determinant for the
transformation (A,, A,)—= (xy, X2)-
Evaluating the double integral in (1.8) yields formulas (1d) in the text.
Appendix II: Solution of the Fokker—Planck equation
In order to solve eq. (4) with the boundary condition df/dn|,_,. =0, we shall first perform some

change of variables. First of all, putting 7 = e27/w'*, y = n/n,, the Fokker~Planck equation takes the
form:

f(y, T)1at = alay(y’ dfldy).

Now let’s change again variables to z=y™"'? and let’s introduce a new function g(z, 7) according to
f=z%g. This function g must then satisfy:

dgloT =1 9°glaz’ + (1/4z) agloz — (1/2%)g

and its Laplace transform g(z, s) must satisfy the equation:
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3°g10z* + (1/2) 6§19z — (412" + 4s)g = ~4g(z,0) .
A further change of variables to x = 2zVs yields:
3°glax* + (1/x) oglox — (1 +4/x%)g = —(1/s) g(x, 0). (11.1)

By the same changes of variables we find that, in order that f satisfies the boundary condition
aflon|,_,. =0, ¢ must satisfy:

og(x, s)/ox| _, = —(2/x) §(x,s),  where X =2(sn,/n*)""*. (11.2)
The general integral of eq. (I1.1) can be written as
§=AL(x)+BK(x)+g

where 1,, K, are modified Bessel functions; A, B are numerical constants and g is a particular integral
that can be determined, e.g. by Lagrange’s method:

g=L(x) [A - (l/s)fx’ g(x',0) K,(x") dx'] + K, (x) [B +(1/s) f x' g(x',0) L(x") dx'] . (IL3)

The constants A, B can then be chosen so that the boundary condition (I1.2) is satisfied. Indeed, upon
substituting (II.3) into (I1.2) we get:

5,9 =[K,(8) L&) L) (1) [ g(x',0) L) x' e

+L(x) (1/s) f g(x',0) K,(x') x" dx' + K,(x) (1/s) f g(x',0) L(x") x" dx’ . (11.4)

Since f(n,0) = 8(n — n,), we must choose g(x,0) in the form 8(4s/x> —1). Then the asymptotics of
(11.4) for s— o and fixed y has the form:

g(x, 8) ~ (4s/x*)"* (1/2v3) {exp[2v5(1 + x/2v5 — X/2v3)] + exp[2vF (x/2v5 ~ 1)]}
whence it follows
3,9~ (172y**V3) {exp[2vs (1 + 1VY = 21V 7)) + exp[2vs (LVY ~ 1]} -

Equation (5a) in the text easily follows from the last formula.
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Appendix III: Estimate for the delocalization border

Let’s evaluate the 2nd moment of the distribution over the levels: M, = ((An)*) = ((n — (n))*).
From the diffusion equation we get approximately

d/dr{(An)*) = (D) = ani{(nin,)’) (I11.1)
where a =2¢clw, . The equation for the 1st moment gives
d(n)/dr = 3any,/2){(n/ny)*) . (I11.2)

In order to solve (III.1) and (I11.2) we will use a rough approximation, namely, we will substitute for
n its mean value {(n) which is justified if the localization length / < n,. Doing so, and performing the
integration, we obtain

(n) = n,[1-3ar/2]™"
{((An)*) = nl[(1 - 3ar/2)"*-1)/3.

The localization condition 7° = a®((An)’) = a’* gives an equation for 7, the least root of which
determines the localization length /:

(R213)[(1 - 37a/2) 7 — 1] = 7%a’
(I11.3)

[=1/a.

A straightforward manipulation gives then formulas (13), (14) with ¥ =3ra/2.

Appendix IV: A method for computing hypergeometric functions

The numerical computations of matrix elements in (35) presents some technical difficulty since a
direct expansion of hypergeometric functions in power series of —4nn,/(n — n,)* doesn’t give correct
values of B, for n ~ s ~ 100 due to strong cancellations of different terms and finite computer precision.
Therefore in order to compute the hypergeometric function F we used a different method based on the
recursion formulas between values of F for three consecutive values s — 1, s, s + 1 (see, e.g. (40]). The
method is essentially as follows:

We take two exact values of F(—s, —(n~1),2,z) fors=0,s=1(F(s=0)=1, F(s=1)=1+(n-
1)z/2) and then we recurrently determine all F, up to s = n, = n. Since F, increases from s =0 up to
s = n, = n and then decays up to s = =, the above procedure gives correct values of F, only up to s = n,.
In order to compute F, for greater values of s in a range n, <s <s,, we take two arbitrary values for
F, and F, ., where m>s_,_ (for example m=S5s_, ) and recurrently determine values of F for
n, — 10 <s <m. This latter procedure gives correct values of F up to an unknown constant C,. The
value of this constant is obtained by comparison with one of the previously computed F, for s <n_. The
difference in the values of C; thus obtained is less than 10™"°, which guarantee the correctness of the
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method. After taking into account this constant factor we obtain very precise values for all F, with
0<s<s,_,, (Which obviously do not depend on the abritrary values F,_, F, ;). An additional check is

max

obtained by comparing the recurrent and the expansion method in regions where they work both (for
example for n = 30).
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