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Abstract:
We presentanalytical andnumericalresultson the mechanismof excitation and ionization of hydrogenatomsunder microwavefields. In

particular we predict theexistenceof a critical valueof themicrowavefield, the quantum delocalizationborder, abovewhichthequantumpacket
delocalizesand strongexcitation and ionization takesplace.Below the quantumborder,thepacketis localized even thoughthe corresponding
classicalsystemcan be chaoticandobeysadiffusion equation.

Our studies reveal someother unexpectednew featuresof quantumdynamicswhich also could be observedin laboratoryexperimentsand
providesa quantumtheoryfor subthresholdionization.

1. Introduction

In the last yearssignificant interesthasbeendevotedto quantumsystemsthat arechaotic in the
classical limit [1—3].It has by now become clear that such systems display quantum dynamical
propertiesthat, even in the quasi-classicalregion, may be very different from theclassicalones.

In our opinion, the most interestingphenomenondiscoveredin this connectionis the quantum
limitation of the classicalchaoticdiffusion. This phenomenonwasfirst observedin numericalexperi-
mentson the periodically kicked quantumrotator [4]. The classical limit of this system exhibits a
“stochastictransition” for a certainvalueof theperturbationstrength[5]. Abovethis value,thesystem
behavesin a quite disorderedway, its motion being almost the sameas if the perturbationwere a
randomandnot a deterministicone. In particular,its energygrows indefinitely, accordingto a diffusive
law.

In the correspondingquantumsystem this chaotic diffusion is suppressed.Strictly speaking,the
quantumdynamicsof the rotatordependsin a sensitivewayon thearithmeticrelationshipbetweenthe
rotatorand the external frequency[12].Nevertheless,apartfor an exceptionalset of valuesof this
frequencyratio,quantuminterferenceeffectsleadto a completearrestofthediffusivegrowthof energy
aftera finite time. As a result,only a finite numberof unperturbedlevelsaresignificantly excitedduring
thewhole courseof quantumevolution[3,4, 6, 7].

This quantumlimitation of chaos may be consideredas a dynamicalversion of the Anderson
localizationin one-dimensionaldisorderedsolids [8]. For the rotatorproblem, the localization length
wasshownto be equalto the classicaldiffusion rate,up to somenumericalfactor[9—111,andthis by the
way, may help to solve somenewproblemsin solid statephysics too.

Even though the quantum suppressionof chaos was mainly investigatedon the very particular
rotatormodel, nonethelessthe natureof the argumentssupportingit, andespeciallythe localization
picture, indicatethat quantummechanicsshould indeedhavean inhibitory effect on classicalchaos
evenfor genericquantumsystemssubjectto time-periodicperturbations.This is in itself a remarkable
discovery, bringing into light once more the deep fundamentaldifference betweenquantum and
classicalmechanics.

However, thereare sound reasonsto believe that this quantumsuppressionof chaosmust suffer
significantexceptions.As a matterof fact, the existenceof a kind of quantummotion retainingsome
featuresof classicalchaotic diffusion is at the presenttime the only possibleexplanationfor available
experimentalresultson the ionizationof highly excitedH-atoms(principal quantumnumbern 60)in
microwavefields of frequencyo. /2ir — 10 GHz with peak intensity e 10 V/cm, in conditionswhere
ionization would requirethe absorptionof —400 photons[13,14].

In order to explain the surprisinghigh ionizationprobability observedin experiments,a diffusive
excitationmechanismwassuggestedin [15],while, in [16],it waspointedout that a classicaldescription
might be appropriatedueto the high quantumnumbersinvolved. Indeed,a numericalsolutionof the
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classicalequationsof motion [16]yields a satisfactoryagreementwith experimentaldata[13].In the
classicalsystemionization is broughtaboutby thechaoticmotionof theelectron,which causesdiffusive
excitation for field strengthabovesome critical value [17]. The conditions underwhich this chaotic
excitation occurs and the relateddiffusion rate were obtained[18,20] by meansof the resonance
overlapcriterion [5].At this point, a most importantquestionwashow quantumeffectswould modify
this classicalpictureof diffusive excitation,since, in view of the resultson thequantumrotator,hinted
to above,onemay expectsomequantumlimitation of classicaldiffusion to occurin the H-atom, too.

In order to answerthis question,a model for the hydrogenatom in a microwavefield, that can be
solved at least numerically, both classicallyand quantummechanicallyis needed.Onesuch model is
indeedavailable:it describesthe one-dimensionalmotion of an electronin a Coulomb field plus an
externalmonochromaticelectric field. As discussedin [19],and aswe will recall in the presentpaper,
this model convenientlydescribesan actualH-atompreparedin a so-calledextendedstate.The same
one-dimensionalmodel canbe usedin orderto describeexcitation of surfacestateelectronson liquid
helium [20,21].

The presentpaperis devotedto a detailedstudy of this one-dimensionalmodel, including a large
amountof numericaldataand the theoreticalframeworkdevelopedin order to interpretthem.Someof
theseresults we alreadypresentedin previous short papers[19, 22, 46, 47] and also much of the
theoreticalanalysispresentedhere, appearedbefore in a more or less fragmentedway. Here we
attemptat a systematicexposition,including detailsof thenumericaltechniques.Besidesthat, we also
presentmanyfreshnumericaldata,obtainedby anumericalmethodespeciallydevisedin order to take
into accountthecontinuouspartof the unperturbedspectrum.

Indicationsfrom theseand older resultsmergeinto a definite picture accordingto which quantum
effectsdo indeedproducea quantumlimitation of chaosin this problem,so thatit is possibleto observe
situationswhere the quantum packet is localized in contrastto the chaoticdiffusion that would be
predictedby classicalmechanics.Nevertheless,it waspossibleto identify a critical valuefor the field
strength,typically lying abovethe classicalchaoticthreshold,abovewhich a “diffusive” excitationtakes
place in the quantum atom, too. In this region the classically predictedionization rate is a good
approximationto the real quantumrate. An unexpectedconsequenceof this fact is theexistenceof a
frequency thresholdfor ionization, lying well below the conventionalphotoelectricthresholdfor
1-photon ionization, and leading to a much stronger ionization than predicted by the standard
perturbativetheoryof the photoeffect.

Anotherinterestingphenomenondiscussedin somedetail here is the appearanceof peaksin the
distribution connectedwith multiphotontransitionsover theunperturbedlevels.

On the theoreticalside, we give here conditions for the applicability of the one-dimensional
approximationbothin theclassicalandin thequantumcase,andwe explaintheestimatepresentedin
[22]for the two-dimensionaldelocalizationborder, which is muchlower than in the one-dimensional
case We also give a theoreticalpredictionfor the ionizationprobability overlong interactiontimes,and
for its dependenceon the field strength,for a giveninitial distributionof theatomsover the quantum
stateswith a given principal number.

Experimentaltechniquesarenowadaysavailable,that allow for laboratoryinvestigationson highly
excited atoms;see,e.g., [13,14, 23—27]. It is evenpossibleto prepareatomswith prescribedparabolic
quantum numbers;for instance,in [24]extendedstateswith parabolicnumbern1 = 0 and magnetic
numberm=0 were prepared,and it was shown that one-dimensionalityis preservedduring the
interaction time. Therefore,the one-dimensionalmodel is appropriate.On the otherhand, in these
experimentsthe perturbingmicrowavefield waswell below the thresholdfor the classically chaotic
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motion [28],and theydo not thereforeallow us to decidewhetherclassicalchaossurvivesin quantum
mechanics.

Recentexperiments[27]on three-dimensionalatomswith tun3 ~haveshown that the critical field
strength,requiredfor strongexcitation, is closeto the valuefor which chaoticexcitationtakesplacein
the classical atom. Theseexperimentsthereforedemonstratean agreementbetweenquantum and
classicalchaoticexcitation.Accordingto ournumericalcomputationstheseexperimentsweremadein
the delocalizationregime,so that this result is consistentwith our theoreticalpredictions,too.

In~orderto observein laboratory experimentsthe phenomenonof quantumlocalization,which is
predictedand explainedin this paperboth on numericaland on theoreticalgrounds,it is necessaryto
prepareatoms in extendedstatesand to go to the high frequencyregion (wn3> 1) in which this
phenomenonshould be particularly clear. Such experimental verification of the localization
phenomenonseemsto lie within the scopeof presentexperimentaltechniques.

The theorywe presenthereis certainlystill in a very primitive stage,and great improvementsare
neededin order that the role of classicalChaos in QuantumMechanicsbe completely clarified.
However, we believe that all the physically essentialtraits are already presentin our provisional
analysis.In particular,we believethat semiclassicalargumentscannotbe dispensedwith in any attempt
to exposediffusive-like excitation mechanismin the quantumH-atom.

2. Semiclassicaltheory of electronexcitation

2.1. Classicaldynamicsof electron excitation

In this sectionwe will developtheclassicaltheoryof theexcitationof a hydrogenatomin a linearly
polarizedmonochromaticelectric field.

Hereand in the following we will useatomicunits, in which theHamiltonian takesthe form:

H=p2/2—lIr+ezcoswt (la)

wheres and tu arethe field strengthandfrequencyrespectivelyand thez-coordinateis measuredalong
thedirectionof theexternalfield. The classicaldynamicsassociatedwith (la) is convenientlystudiedin
paraboliccoordinatessince theunperturbeddynamicsis separablein thesecoordinates.Accordingly,
action-anglevariables(n

1, n2, m, A1, A2, ç~)canbe introduced[31],in which theHamiltoniantakesthe
form:

H=—112n
2+rz(n

1,n2,m,A1,A2)coswt; n=n1+n2+ImI. (ib)

Owing to axial symmetry,m(which is thez-componentof theangularmomentum)is an integralof the
motion; therefore, (1) describesan essentiallytwo-dimensionalmodel.

The function z(n1, n2, m, A1, A2) canbe expandedin a doubleFourier seriesin the anglevariables
A1, A2:

z = ~ Zk~(fll, n2, m) exp{i(k1A1+ k2A2)} . (ic)

k1k2 -

The coefficientsZkk2 can be found as shown in appendixI, and aregiven by [19]:
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Zkk = [n21(k
1 + k2)J EP’2 ~k1(P~l(1~l + k2)) J~(p~2(k1+ k2))

— i~J~(p,1(k~+ k2))Jk2(~(kl+ k2))]; for k1 + k2 ~0
(id)

10 fork~0
Zk,_k_~3n(nn)/2 fork=0.

Here~k areBesselfunctionsofthefirst kind andJ~their derivatives.The dependenceof Zk1k on n1,

m is embodiedin the parameters~t1, p2, which aredefinedby

= (n~2)”
2(n

12 + ImI)
112/n . (le)

According to standardsemiclassicalapproximationtheory [29],Zk
1k2 give semiclassicalvaluesof

dipole matrix elementsfor the transitionsn12—*n~2= n12+ k12. The elementz00, which is just the
averageof z over theunperturbedtoruslabelledby n1, n,, m, yields thestandardquantummechanical
expressionfor the linear Stark effect.

If the electronis initially in an “almost one-dimensional”state,i.e., in astatewith n1 ~ n2, n1 ~ m,
then in (la—le) we can assume~ = 1, ~t2 =0. In that case,the dynamicswill be describedin first
approximationby the one-dimensionalHamiltonian

H=_1/2n2+gn2coswt[~_2~J~(k)k1coskA] (2)

which is just theHamiltonian, in action-anglevariables,for anelectronmoving alongthepositivez-axis
[18,21]:

H=p
2/2—1/z+ezcoswt, z>0. (2a)

We start our analysiswith this simplified Hamiltonian (2). Later in this sectionwe shall discussthe
validity of this one-dimensionalapproximation,i.e. weshall discussto whatextenttheone-dimensional
Hamiltonian (2) is adequatein order to describethe evolutionof quasi-one-dimensionalinitial states
under the full Hamiltonian (1).

Under appropriateconditions, the classicalsystemdescribedby the Hamiltonian (2) undergoesa
transition to chaoticdynamics.By this we meanthataprofoundchangeoccursin thenatureof orbits,
which, abovea certainperturbationstrength,becomeextremelysensitiveandcomplicatedandwander
erratically in phasespace.This irregular motion, if describedin the unperturbedaction—anglespace,
hasa diffusive characterand leadsto fast ionization. Quantitativeconditions for the onsetof chaotic
dynamicscan be obtainedby meansof the resonanceoverlappingcriterion[18,21]. The startingpoint
of this analysisis realizingthat theexternalfield will moreeffectively perturbtheundisturbedmotionat -:

first-order resonances,i.e., at valuesn of theunperturbedactionssuchthat theexternalfrequencytu -:

resonateswith some harmonicof the unperturbedelectronmotion. Thesevaluesof n are suchthat
s 12(n)= tu with s an integer and 11(n) the angularfrequency(Kepler frequency)of the unperturbed
motion:

11(n) =dH
0Idn = 1/n

3

First-orderresonancesare then given by n
5 = (sco~)’~ However, despitethe fact that for these
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valuesn~theperturbationis very effective,assoonas it managesto drivethemotion away from one
unperturbedresonantorbit its effect becomesweaker,and nonlinearstabilizationmay occur. In that
case,the motion remainsin a neighborhood(a “resonanceregion”) of the original unperturbedorbit.

However, if the perturbation is sufficiently strong, the motion can be driven so far away from the
original resonantvalue of theaction, that it canfall under the influenceof anothernearbyresonance.
There,thesameprocessmay repeat,so that theorbit may wanderin action—anglespacein a diffusive
way.

A quantitativeestimateoftheperturbationstrengthwhich is necessaryin order that this may happen
is determinedby evaluatingthe width of the various resonanceregions and then by requiring that
nearbyregionsoverlap[18].

The analysisjustoutlinedcanbe appliedto model (2); it is thenfoundthat for co~= wn~>1 (where
n0 is the initial value of the action) and for field strengthexceedinga critical value 8cr

= sn~>8cr 1/(50w~
3) (3)

all resonanceregionscorrespondingto ‘~� n
0 do overlap.Then an orbit leaving with actionn0 in a

region of phasespacewhere both w0> 1 and (3) are satisfiedwill diffuse indefinitely and eventually
ionize.

Notice that in (3) we haveintroducedresealedvaluess~= en~for field andw0 = tun~for frequency.
The usefulnessof this scalingis due to the fact that classicaldynamicsdependson n0 only via these
variablessince,ascanbereadilychecked,changingthe initial n0 by somefactorwill changethesolution
n(t) at anylater time by thesamefactor,providedr~and an0 arekeptconstant,andtime is measuredin
periodsof the field (seealso [16]).

We emphasizethat the estimate(3) is valid only for an0>1. Indeedfor an,~< 1, i.e. in that phase
spaceregionwherean is smallerthantheKeplerfrequency,thereareno first-orderresonantvaluesof n,
and themotion is thereforemore stable.A transitionto chaoticbehaviorcan still occur [18,21] dueto
the finite width of the resonance region associated with w~= 1, but, in order to compute the

8cr in this
region, also higher-orderresonancessf1 = pan, p > 1 must be taken into account. It is then found that
the critical field increases with decreasing an

0 however, for very low an0 static field ionization occurs
when e~~0.13.

Of course,higher-orderresonancesplaya role in thechaotictransition also for an0>1 and,indeed,
an approximateaccountof themwasalreadytakenin (3) via thechoice of thenumericalfactor 1/50
[18].A propersecond-orderanalysis[30]leadsto but a small increasein this numericalfactor.

In the chaotic regime, 80>

6cr’ ~ > 1 theprocessof diffusive excitationis convenientlydescribedin
statisticalterms. Indeed,an equationof theFokker—Plancktype canbe derived[18]:

of/aT ~OIDn(D of/on) (4)

where f(n, r) is the distribution and T is the dimensionless time, measured as the numberof periods

r = cot/2ir of the external field. The diffusion coefficient D in quasi-linear approximation is given by

D = d((~n)2)Idr 2e~n3I(an~3n
0) = 2r

2n3/w713 (5)

((4) and (5) were also derived in [21]).*

* The numericalcoefficient 2 in (5) correspondsto thefrequencyrange1 < <3. For w
0 1’ 3, the asymptoticvalueof this coefficient mustbe

used,which is nearto 3.
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SinceD increaseswith a according to a power law, it is possible to find an exact solution of (4). in
order to do this, we must take notice that the stochastic diffusion ruled by (4) can take place only in
that part of phasespacewhere the chaotic transition has occurred. Going down to lower and lower
action values, one will eventuallymeet an invariant curve which hasnot been destroyed;we must
thereforelook for a solutionof (4) satisfyingtheboundaryconditionof/On ,, = 0 of zeroflux across
the boundaryn = n* of theregion of stability. In order to do that, the changeof variablesy = n/n0,
T TE~W0

713is convenient.Then, as shown in appendixII, for ~ ~ 1 and letting ~ = n~K/n
0, the

solutionassumesa sufficiently simple form:

f(y, ~) {exp[—(1IVy — 2/\/ + 1)
2/fl + exp[—(1Iv3~— 1)2/9) /[2y3/4(ir~)U2] . (5a~

As will be seenin section3, this formulacomparesremarkablywell with the resultsof numerical
integrationof the equationsof motion.

The possibility of using this statistical descriptionwill play an important role in our subsequent
analysisof the ionizationprocess.Indeed,due to the rapid growthwith n of thediffusion coefficient,
stochasticorbitsdiffuse so fasttowardshigh valuesof n that in practicewecanassumethat they actually
ionize — i.e. n becomesinfinite — in a finite time. A roughestimateof the ionization time adequatefor
our presentpurposescan be gottenfrom eq. (5) (seealso eq. (12)):

r
1~n~/D.—.w~

3/(2e~). (6)

In later sectionswe’ll useexpression(6) in order to roughly estimatethe diffusive ionization rate

In the remainderof this sectionwe discussthe validity of the one-dimensionalapproximation(2).
Let’s considerfirst the casewhen n

1 ~ n2, a1 8~’m and therefore/~2c~1. Then,sinceZkk ~4!’2I for
large 1k21, themain contribution to the variation of a2 will be given by termsin (lc,d) with k2 = ±1.
(Noticethat Zk1k2give semiclassicalmatrix elementsfor transitionswith z~n2= ±k2.Thefastdecreaseof
thesematrix elementswith small ~ when k2 is large was alreadyremarkedin [32].)

For �~>~cr’ the phaseA1 begins to vary chaotically,and this leadsto a diffusive changein n2 also.
The diffusion rate for n2 in quasi-linearapproximationcanbe derived,asshownin [17],by retainingin
(ic) only termswith k2 = ±1.Onefinds that:

D2~n2(n2+Im~)D/n
2. (7)

This estimateshows that over the ionization time (6) the changein n
2: (L~n2)

2 n
2 (a2+ mi) ~

appearsto be small. This fact indicates that the onset of stochasticity doesn’t lead to significant
violationsof the one-dimensionalapproximation.

Along similar lines,wecanshow that a suitableone-dimensionalapproximationis valid also in cases
whenn1 —~ m ~‘ a2. Indeedfrom (le) it follows that,in suchcasesalso,p~‘~ 1. Then;uponneglecting
/L2 in (lc,d) we obtain the one-dimensionaldynamicsfor the variable n1 = n — ml, describedby the
Hamiltonian

H_1/2n2+encosant[3(n_Irni)/2-~2,~in~J~ik)k1coskAi] (8)
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with ~ (1 — mi/n)”2. We can now apply to this one-dimensionaldynamicsthe resonanceanalysis,
just aswasdonefor (2). From theasymptoticpropertiesof J~(k~

1)for k—* [33]it follows that high-k
harmonicsin (8) becomeexponentiallysmall assoonas k is so high that (3/k)

213 s rn/n. This means
that the resonancesof the field with such high harmonics (which take place when an

0 = k with
(3/ k)

213<rn/n), cannotsignificantly contributein the chaotizationprocess.Therefore,whenan
0 ~‘ 1 the

transitionto chaoticmotion is possibleonly for m~ mcr, with

mcr = n0(3la,0)
2t3 for an

0~> 1 . (9)

For an0 — 1 we maytakern~, n0. At this point wemight startafreshtheanalysisfor theHamiltonian
(8) in order to determinethe critical field and the diffusion rateundercondition (9). Howevera
comparisonof (8) with (2) suggeststhat the resultsof this analysisshouldn’tdeviatemorethana factor
2 from formulas(4) and (5).

Again, the one-dimensionalapproximation(8) is not significantly violatedover the ionization time;
this canbeseenat once,becausethediffusion ratefor n2 is still givenby (7), so that anestimatefor the
variation ~n2similar to the previouslyestablishedone for (2) holds for thepresentcase.

Furtherdetailson the classicaldynamicsof excitationfor themodel (2) will be given in section3.2,
where we shall also discussthe resultsof numericalsimulationsof this model.

2.2. Theory of quantumlocalization

The main resultof theclassicalanalysiscarriedout in theprevioussectionwasthat for sufficiently
strong fields the classicalmodel (2) exhibits a transition to chaoticmotion. After this, the classical
distributionf(n, r) spreadsdiffusively in actionspace,andionization takesplacein a finite time.

We will now tackle the basicquestion,of what modificationswould be imposedon this pictureby
quantummechanics.In particular,we will study the behaviorof the quantumprobability distribution
over the unperturbedlevels,which is thequantumanalogof f(n,r).

Previous studies on periodically perturbedquantum systemsthat becomechaotic in the classical
limit — in particular, on the kicked rotatormodel— brought to light the localizationphenomenonas a
typical occurrence.Thequasi-energyspectrumis typically a purepoint one,andquantumeffectsleadto
a limitation of the classicaldiffusion and to exponentiallocalization of the probability distribution
around the initially excited level n0 which meansthat in the average,and apartfrom fluctuations
(which can be large)the distribution looks like:

f ccexp(—2~n— n01!l). (10)

Heref~is the time-averagedpopulationover theunperturbedlevelswith thevaluesn for thequantized
actions,and 1 is the localizationlength.

In the light of thesepreviousfindings, it is naturalto assumethata similar pictureappliesalso in the
presentcase.Specifically,we will assumethat evenin the semiclassicalregion, andwhenthe classical
motion is chaotic,a mechanismof quantumlimitation of the chaoticdiffusion is working, and that,
undersuitableconditions,this mechanismwill producea situationanalogousto the rotatorcase.Under
suchconditions,the partof theq.e. spectrumrelevantto our analysiswill be quasi-discrete;the small
line breadthof its levelswill be negligible on a time scaleshort in comparisonwith• the very long one
associatedwith multiphotonionization. While it remainstrue that the quantumatomdescribedby (2)
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will eventuallyionize, no matterhow small s, neverthelesson the time scaleinvolved in the actual
experimentsthe localizationphenomenondiscussedherewill give it a remarkablestability in contrast
with the propertiesof chaoticmotion. The obvious premisethat localizationin the hydrogenatom is
relatedto a finite time scale, shouldnot be forgottenthroughoutthis paper.This assumptionwill be
fully supportedby the resultsof our numericalexperiments.

Undersuchassumptions,we shallpresentlydeterminethelocalizationlengthby the simplemethod
describedin [3]. In this way, we will be able also to determinethequantitativeconditionsunderwhich
the localizationpictureactuallyapplies.To this end,let us startwith thecaseof homogeneousclassical
diffusion, that is, we overlook the variationof D with n.

In thesemiclassicalregime,the evolutionof a quantumstateinitially coincidingwith one unpertur-
bed eigenstatea0 will initially follow to some extentthe classicaldevelopmentof f(n, r). Therefore,
overthe time scalein which this semiclassicalapproximationholds, thespreadof the wavepacketover
the unperturbedeigenstateswill grow in time accordingto L~n(’r) (Dr)

1 /2~

However,thediscretecharacterof thequasi-energyspectrumwill preventthis diffusive growthfrom
going on indefinitely, asit would in the classicalcase.The time TD afterwhich thediscretenessof the
quasi-energyspectrumwill becomemanifestcanbeestimatedby r~— N, whereN is thenumberof q.e.
eigenstatessignificantlyexcitedby the original unperturbedeigenstate;indeed2ir/N is just theaverage
spacingof q.e. eigenvaluessignificantly contributing to the packet evolution. Then, the numberof
unperturbedlevels excitedby thewave packetafter the time TD is z~n(rD) (DTD )1 /2 This meansthat
one unperturbedlevel contains N—~i~n(rD) q.e. levels and that, vice-versa, one q.e. eigenstate
“contains” —~l~n(rD)unperturbedlevels.The latter number,however,is the maximumspreadattain-
ableby the wavepacket,i.e., it coincideswith the localizationlength1. Thereforewe getan equation
for TD:

— a An(TD) — a (DTD)”2 — al

wherewehaveintroducedan undeterminednumericalfactora, to be foundby numericalexperiments
[10].For the rotator model, it was found a 1. The samechoice for a in the hydrogen atom case would
yield

(11)

whereD(n
0) is given by (5): D(n0) = 2e~n~an~

713.
Howeverthis resultwasobtainedundertheassumptionthat D const.,which is justifiedonly in that

region where 14 a
0. Instead,for 1 -~ a0, the dependenceof D on a may substantiallymodify the

localizationpicture, and, if the field strengthexceedssomecritical value, it may eventurn out that
localization is not possible at all. (A similar “delocalization” phenomenonwas investigatedand
explainedin a simple examplein refs. [3,10].)

In order to clarify howdelocalizationoccurs,weneedto modify theabovemethodfor determiningI,
in sucha way that the dependenceof D on n is explicitly takeninto account.Therefore,in place of

(D(n0) r)
112 we must substitutethe dependenceof ~n on r that is enforcedby the Fokker—

Planckequation(4). In this way we find, asa resultof thecalculationsdevelopedin appendixIII, that
~in(r) is given by:

An(r) = [(1 — 3r~w~713r)2— 1]”2n
0l\I~. (12)
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By the same argument as above, we can now find TD and I from the localization condition
i~n(rD)= TD. However, if e~is large enough, the curve t~n(’r)will never intersect the straight line ar

before exploding at r = w~3I3e~.When this happens, no localization is possibleand this implies
unbounded diffusion for the electron.More specifically, in appendixIII we showthat thesolutionof
~n(rD) = a-rD gives the localization length 1 in the form:

—1 7/3 2l—~a ~ 1e
0)u/3 (13)

where u is the leastof the two solutionsof the equation*

3a
2(w~716n~2�

0)
4= g(u) u(1 — u)2l(2— u) (14)

suchthat 0< u< 1. Numerical data indicate that here too, like in the rotator case, a — 1 is to bechosen
(seee.g. fig. 10 and relatedcommentsin section3). Therefore,since the functiong(u) in the interval
(0, 1), hasa maximum~c1/11at u = (3— V3)12, it follows that for

~ e~= w~/\/~~ (15)

eq. (14) hasno solution.
Thus r~1)definesthe thresholdfor quantumdelocalization. Of course,in orderthat delocalization

may occur, it is also necessarythat e~exceedsthe thresholdfor classicalchaos (3), becausethe
semiclassicalestimate(12)holds undertheassumptionthat chaoticdiffusion takesplacein theclassical
system.Accordingto the argumentjust outlined,acrossthe threshold a qualitativechangeoccurs,
and thelocalizationpicture is no longerjustified. We shouldthenexpectthat abovethis thresholdthere
is no quantumlimitation to theclassicaldiffusion and, indeed,this will clearlyappearfrom numerical
results.

In deriving theaboveestimatewe implicitly assumedthat all unperturbedlevelsareinvolved in the
diffusion. However,this is true only underthe condition (see ref. [36])

> an/2

where n and n’ are such that the associated transition is the “most nonresonant” one, i.e.: w/2 =

1/2n2 — 1/2n’2.
Thensince [34]:

1.31[an513(nn’)312] . (15a)

Weget the following condition:

e~>w~3n3l3n~. (15b)

In particular, the delocalization estimate (15) holds if an
0 < n~

3(a a
0). Inequality (15b) is always

* The slight differencein numericalcoefficientsbetween(13) andtheanalogousformula of ref. [22]is due to thefact thatin [22]a valueof a

somewhatlesserthanI was introducedin I = aD.
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violatedfor sufficiently high n which results in arising a chainof sharppeaksrelatedto thesuccessive
one-photonresonanttransitionsboth in the localizationanddelocalizationregimes(seefigs. 7 and 14).
Particularly,behind the last peaka formal powerlaw ‘localization’ builds up [50] due to thedecayof
the matrix element~ However, the ionization is not at all suppressed,and doesproceedover the
region of ‘localization’ via a fast direct one-photontransition into continuum.

The aboveone-dimensionalanalysiscannow be modified, so as to apply also in the two-dimensional
case for quasi-one-dimensionalstates. Indeed, even though we know from section 2.1 that the
one-dimensional approximation is not violated for such states, still we cannot a priori excludethat the
presenceof an additionaldegreeoffreedomcandestroythe localizationofthesequasi,but not strictly,
one-dimensionalstates.However, we can answer this question by the samemethod usedin the
one-dimensional case. Assuming that the classical diffusion proceedsindependentlyin both n1 — n and
n2, thenumberof unperturbedlevels excitedat time r will be (i~n2>1)

N~~~n1(r)i~n2(r).

For An1(r) wewill nowtakeeq. (12); moreover,since~n2(r)4 n1 canbe assumed(seesection2.1),we
will take~n2(r) — (D2 ‘n-)”

2 with D
2 as in formula(7). ImposingnowthedelocalizationconditionN � r

[3, 6, 10, 11, 19, 22] one easilygetsthe estimatefor the two-dimensionaldelocalizationthreshold:

~ ~(2) = f3an~
6/{n

0[n2(n2+ Iml)]”
2}”2 (16)

where againan undeterminednumericalfactor f3 -= 1 wasintroduced.*
The estimate(16) clearly indicates that two-dimensionalitysharply decreasesthe delocalization

threshold.Nonetheless,for stateswith m-~ n
2 — 1 the two-dimensionalthresholdis almostthesameas

the one-dimensionalone. We are thereforejustified in assumingthat for suchquasi-one-dimensional
states,the localization—delocalizationpictureremainsvalid.

In closing this section,a coupleof remarksconcerningthe validity of consideringthe quantum
systemdescribedby the Hamiltonian (2) to be a physically realistic modelare in order. In the first
place, in the quantum theory discussedabove we~consideredthe electric field as classical. This
approximationholds if the full numberN of field quantainside the microwave cavity of volume V:

N Ve
2/(4irhan)— 1023r~/(n~w

0)

is sufficiently large. For instance,for c~= 0.05, an0 = 1, n0 = 100, V= 1 cm
3, which are typical for the

rangeexploredin our investigations,we getN— 10”.
Also the questionmaybe raisedwhetherthe diffusive excitationprocess,that is madepossibleby the

delocalizationphenomenon,should not be significantly reducedby the spontaneousdecay.However,
the rateI~of the latter processis much lessthanthe diffusion rate ~ Indeedevenfor orbital quantum
number 1—1 the rate 1 — (c3n~l2)’~ c3n~3[34]. Estimating T’D by the inverse of the classical
ionization time, i.e., by r~’an/2’nr,with r, given by (6), we obtain:

3w~’3/(c3r~)— i0~

* Actually a morerefined analysisshowsthat in thetwo-dimensionalcasehereconsideredonehaslocalizationon an exponentiallylargescale

(seeref. [451and eq. (4.4) of ref. [6]), so that delocalizationtakesplaceonly slightly above (16).
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wherethe numericalestimateis given for the typical valuesan0= 1, e~= 0.05; noticealso that the ratio
doesnot dependon n0. Actually, this ratio is evensmallerbecausetheextendedstatecontains1 up to
~fh~1.

2.3. Ionizationin thepresenceof localization

According to the theory developed in the previous section, as long as the one-dimensional
approximationis valid, the dependenceof ionizationon the field strengthshould havea moreor less
marked thresholdcharacter,defined by the quantum delocalizationborder (15). However, a mi-
crocanonicaldistribution of initial stateslooks fairly typical in many physicalsituations, so that it is
interestingto investigatewhat should be in that casethe dependenceof ionizationprobability on the
field intensity. Indeed,since the two-dimensionallocalizationborder (16) dependson both quantum
numbersa1, a2, in that casewe should expect that for any (not too “high”) field, a fraction of the
states,dependingon the field strength,will be delocalized,while otherswill be localized and will
thereforegive no contributionto the ionization rate.

We will derivethis dependence,undertheassumptionthat the interactiontime —mt of theatom with
the field is largeenoughfor the classicalsystemto undergocompleteionization, i.e., that the classical
ionization probability P,~’= 1. Besides that, however, ‘n,,, must not be so large that multiphoton
quantum ionization from the stationary distribution (10) into the continuous spectrum becomes
effective (seethe commentsin section2.2).

Let’s first assumethat wehaveinitially a homogeneousdistributionof stateswith a fixed valueof a0
and of the magneticquantumnumberm. Then,after the time ~ all atomsinitially in stateswith
r~>s~(n2, m) will be ionized. Theseare preciselytheatomsinitially in stateswith n2 > n~givenby
theequatione~= s~(a~,m). Then,recallingthat a1 + n2 = a0 — ml, weseethat the fraction of atoms
in theensemblewhich will not be ionizedat time ~ is equalto 2n~7(n0— Iml) (the factor2 is dueto
symmetryfor exchangesn,±~n2). Computing~ from eq. (16), we get:

~cr = [(m
2+ n~A2)”2— lmi]12 . (17)

The ionization probabilityis thereforegiven by:

P
1 = 1 — 2n~

1/(n
0— ml) = 1 — {[m

2 + n~A2]”2— ImI} l(n
0 — ml)

where

A = 2~
2an3�~2n~2. (18)

Now let’s assumethat the initial distribution is microcanonical,i.e., that all quantumstateswith a
fixed n

0 areequallyrepresentedin it. The full numberof suchstatesis n~.For anygivenvalueofm, the
numberof non-ionizedstatesat time r~for thegiven e,, is justn~(m,re). We must thensumover the
different valuesof m; in doing this, however,we must rememberthat thereis a classical value~
abovewhich thereis no ionization (9). Replacingthe sum by anintegral, we find that the fraction of
non-ionizedatomsat time r~,for the given s, is given by:
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mcr

1— P1 (4/at) J n~(m,r~)dm.

The factor4 in the aboveformulais dueto symmetrywith respectto exchangesm~ — m, a1 ~± a2.
The lattersymmetrymustbe takeninto accountalsoin insertingtheappropriateexpressionfor n~in
the integrand.Indeed,~ cannot exceed (a0 — iml)l2; otherwise,sincethe argumentis symmetricin
n,, n2, a supercriticalvalueof n2 would enforcea subcriticalvalueofn, = a0 — Iml — a2. Therefore,a~~t
in the aboveintegralis actually the infimum between(17) and (n0 — ml) /2, i.e., it is givenby (17)for
Iml <m, = n0(1 — A

2)1~,while, for m > m, it is equalto (n
0 — mi)/2.

Then, assumingm~5 a0 (which, as we have already remarked, is legitimate for an0 1), and
evaluatingthe integral, we finally get the dependenceof P, on the field e~in the following form:

I~I= (1 — A
2)”2 — A2 ln{[1 + (1 — A2)”2] /A2} (19)

whereA is given by eq. (18).
Unfortunately,it would not be correctto useavailableexperimentaldataasa checkof (19),for the

following reasons.
In the first place, whereasexperimentaldata concernthe frequencyregion an

0 < 1, the above
describedtheoryoflocalizationwasderivedin the frequencyregionan0>1, where1st orderresonances
exist (the peculiaritiesof the excitationprocessfor an0 < 1 will be discussedin section3.2).

Second,accordingto numericaldata[161,in experimentstheconditionP~
1= 1 wasnot fulfilled after

time -rmnt; indeed,by increasingr~a further increaseof P~’wasgotten. This fact makesimpossiblethe
comparisonof availableexperimentaldatawith (19).

Finally, we remind that the above relations were derived under the assumptionof independent
diffusion in both degreesof freedom,which is currentlyunderstudy.

2.4. Comparisonof diffusiveand one-photonionization

In the delocalizationregion �~>Eq the quantummechanismof suppressionof classicaldiffusion is
notat work and thereforeoneexpectsthat thequantumelectronwill diffuse and ionizelike theclassical
one. This fact hasbeennumericallycheckedandwill be discussedin section3. The resultingdiffusive
excitation can hardly be described within the framework of conventional multiphoton theory;
moreover,it usually takesplacein a very different rangeof frequenciesthanconsideredthere.In order
to appreciatethe effectivenessof this newionization process,it is interestingto compareit with the
familiar one-photonprocess.

To obtain a quantitative estimate for one-photonionization, we shall first observe that any
normalizedenergy eigenfunctionfor the unperturbedone-dimensionalhydrogenatom (i.e. for the
Hamiltonian(2) with r = 0) canbe writtenasu(z)= zR(z),whereR(z) is a radialeigenfunctionfor the
three-dimensionalatom with orbital quantumnumber1 =0. Therefore,the matrix elementfor the
photoelectrictransition from the nth unperturbedlevel of the one-dimensionalmodel (2) to the
continuumstatehavingenergyp2/2= —1 12n2 + an is given by

R~’= Jdz z3 R~
0(z)R~0(z) (20)
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whereR~0,R~0areradial eigenfunctionsfor the three-dimensionalatomwith orbital quantumnumber
1 = 0. (We assumeR~0to be normalizedon the energyscale.)

For highly excitedstatesn ~ 1 the integral (20) canbe evaluatedby semiclassicalmethods.In ref.
[34]the following semiclassicalvalue of dipole matrix elementsfor transitionsfrom states(n,1) to
(p, I ±1) wasfoundfor 14 a, p 4 1 (notice thedifferencein normalizationbetween(20) andref. [34]):

R’~
1 —i12[K

2,3(col
3/3) ±K

1,3(an1
313)]/(31’2’nrann312)

whereK~(~) areMacDonaldfunctions. Consideringthat the2nd termin squarebracketsis negligible
for small I, and that for ~ K

2j3(~)~0.459(3ir)
1’2(3~I2)213,we find the following semiclassical

valuefor (20):

~ — R~,’J’ ~0.459 X 2213(—i)n3’2an513IV~.

Then the transitionprobability per unit time is:

= (irI2)e2lR~I2— 0.265e2/(an’°’3a~) (21)

and the ionizationprobability in one periodof the externalfield is

= (21T/an)I~, 1.67g~n~/an~313 (22)

(for an
0 � n0/2). This valueis 3/2 times largerthan in ref. [34]dueto averagingover thesolid angle.

In order to comparethe 1-photonionizationand thediffusive ionizationwe shallchoosetheoptimal
regime of eachprocess.Then for 1-photon ionization we take an (2n~1, so that Y~ 34s~n~

7’3.
Instead,for diffusive ionization we take an n~~3(an

0 1), andwe estimatethe ionizationprobability
per periodas 1 with r~asin (6): I’D —2e~.

In this way we see that diffusive ionization, which takesplace for a much lower frequencythan
1-photonionization, is a muchmore effectiveprocessthanthe latter:

— n~’
3I17. (23)

In real physicaltime this ratio changesas eachI’ is multiplied by its own optimal frequencywhich
gives:

FD/F~— n~/3/8. (24)

This ratio is still large for n
0 ~ 1.

A detailedanalysisof thedependenceof the ionizationprobability on frequencywill be discussedin
section3.4.

2.5. Ionization by tunnelingand Keldyshparameter

We shall now discusssomepeculiaritiesof theexcitation and ionization for quasi-classicalstatesin
theclassicallystableregion�~< �c~~an0> 1. In this casetheclassicalmotion from one resonanceto the
next oneis forbidden by the presenceof smooth invariantcurvesbetweenthem.
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Dueto this fact, excitation andionizationcantakeplaceeithervia a multiphotontransitionordueto
tunneling through the classicallyforbidden region. A distinction can then be madebetweenthe two
oppositecases,whentheperturbationis ez~~4 1/n3 smallor large(see (15a)).In the formercase,the
most effectivemechanismof excitation is the, chain of one-photontransition with 1 /2a2— 1 /2n’2 = an
(seesec. 2.2) which leadsto appearanceof equidistant(in energy)peaksin thedistributionf~(seefig.
14a1). Theratiosz~~n3— ran 4 1 doesnot dependon aand thereforetheperturbationtheoryholds
for all chainof peaks.The probability of transition from onepeakto thenext oneis small —(ran -5/3)2

and the ionizationratedependsalgebraicallyon

— (60/Ep)2”11~3; e~= an5’3a~ (25)

wherek= a
0/2an0is the numberof photonsrequiredfor the transition into continuum.In theopposite

casewhen r~,~ but still s~< Scr~tunnelingbecomesdominant, andwe can reasonablyexpectF~to
dependon r~accordingto

F exp[—ca0(r~1— ~ (26)

wherec is a numericalconstantof the orderof unity, ~ representsthe ionization ratefrom the chaotic
component,and the exponentialfactor is assumedto describetunnelinginto the classicallyforbidden
region,on accountof its analogywith the formuladescribingtunnelingin a static field. The condition
for applicability of (26) is

= an~’
3/a

0~ <�cr _ 1/(50an~’
3). (27)

In orderthat (27) holds, levels n
0 ~ 50an~are required, e.g., for an0 — 1 levels with a0~ 50 must be

considered.
It is interestingto compare theseresults with Keldysh’s theory for tunneling [35] in which an

“adiabatic parameter” I’ = an/(ra0)= w0/s0 is introduced, discriminating the perturbativeregime
(I’ ~- 1) from the tunnelingregime (I’ 4 1). In thepresentcase,(27) shows that in order that tunneling
ionizationaccordingto (26) can takeplace it is necessarythat I’ = an0/r0~- 1. For instance,for an0 1,

0.01, no ~ 100eq. (27) is satisfiedbut Y—~100. Therefore,we seethat herealso,like in [35],the
multiphotonregime occursfor weak field in the perturbativeregion (s~4 sr), whereastunnelingtakes
placein the oppositecaseof strongfield (s~~ ri,). So, the Keldyshparameterlosesits usualmeaning
and anewparameterI’H mustbe introducedin order to discriminatebetweentheperturbativeregime
(I’H ~ 1) and the tunnelingregime(I’H 41). Accordingto thepreviousdiscussionthenewparameterI’H
will havethe expression

5/3 5/3YH=wO /(a0s0)=an /r. (28)

The reasonof this deviationfrom the resultsof [35]is the presenceof a largenumberof intermediate
levelsbetweenthe initial stateand thecontinuum.
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3. Numericalresults

3.1. Methods of numerical simulation

In this sectionweshall describethe numericalmethodsandthecheckingprocedureswe usedin our
computersimulationof the classicalandquantumdynamicsof the one-dimensionalmodel.

Reducingto one the dimension of the problem sharply decreasesthe computation time in the
quantumcase,andthis allows for a more preciseinvestigationof the excitation dynamics.The main
computationswerecarriedout on the CRAY-XMP Computer.

The numericalsolutionof the classicalequationswascarriedout in action-anglevariables(a, A). As
in [19],in orderto circumventthesingularityatz = 0 a changewasmadeto newvariables(n, ~) andto
a new time ‘q, which allow us to write theequationsin the following form:

dn/d~=—en2 cosantsin ~

de/dt= n3 + 2sncosant (1 — cos~) (29)

dt/d~=1—cos~ A=~—sin~.

A similarmethodfor avoidingthesingularityat theorigin wasusedin [30].Equations(29) were then
numericallyintegratedby theRunge—Kuttamethod.The initial distributionof classicaltrajectorieswas
takenon a line in phasespacewith a = a

0anduniformly distributedphasesA; this choicecorresponds
to the initial conditionusedin thequantumcase(only one level excitedwith a= a0). The full number
of classicaltrajectorieswastaken250 or 1000.

An absorptionmechanismwasintroducedfor trajectoriesbeingexcitedabovea 4n0. A changein
theborderof absorptiononly weakly affectedthe excitationprobability.

The investigationof quantumdynamicsdescribedby the Hamiltonian (2) wascarried out by two
distinct methods.In the first one,following [19],a baseof discreteunperturbedeigenstateswasused,
and the equationswere solved for the amplitudesc,, of the expansionof thestatevectorover these
eigenstates:

“max

ié~= —(1/2n
2)c~+ e(t) ~ ~ (30)

= ~min

The valueof ~mjn wasapproximately20—40 levelslower thanthe initially excitedstaten
0.A further

decreaseof amin did not appreciablyinfluencethe dynamics,owing to the exponentialdecreaseof the
distributionf~= Ic,, 2 in the regionn <a0 where the classicalmotion is stable.A typical valuefor the
full numberof levels for which eqs.(30) were solvedwasND = nmax —

1tmin = 192.
In order to numerically integrate (30) the time dependenceof the field was approximatedby

s(t)= ~t ecosantEk ~(t — k~t) with t~t= 2irIanL, where L is the numberof integrationsteps per
period. This schemeof integrationis physically equivalentto introducing supplementaryfields with
frequencies~0k= kLan,k = 1, 2 Sincein ourcomputationsan — 1 /n~andthenumberL of stepswas
chosenbetween100 and500, theneventhefrequencyan

1 100wwasmuchlarger thanall frequencies
for transitionsbetweenintermediatelevels.Therefore,the influenceof the fictitious frequenciesank can
be consideredto be small.



94 G. Casatiet a!., Relevanceof classicalchaosin quantummechanics

The integrationof thenumericalschemethus obtainedcanbe carriedout exactly;indeed,it reduces
to successiveapplicationsof a matrix to a vectorc(t):

c(t+ itt) = T exp[—ir0(cos antk) L~tz]c(t)

= TQZQ
1c(t)

where T and Z are unitary diagonal matrices, with T,,,, = exp(i~t/(2n2)) and Z,,,, =

exp[—ir
0(cos wtk) t~tz,,], z~are the eigenvaluesof the matrix Znm~and Q is a unitary matrix that

transforms the matrix Znm into diagonal form. With this procedure, the normalization W=

: lc,,1
2 = 1 is conserved to a very high accuracy (—10~).In [19,22] the operator

exp(—i i~te
0zcosantk) wascomputed,by meansof its expansionin powersof i~t(upto the5th order),

which led to an effectivedamping on higherlevelsand to a poorerconservationof normalization.The
newmethodusedhereappearssignificantly moreefficientin that it permitsto decreasethenumberof
stepsper period.

The main inconveniencewith the justdescribedintegrationschemeis that thecontinuousspectrumis
completelyneglected.Eventhougha numberof argumentscanbeput forth [19,22], suggestingthat the
continuous spectrumwould not essentiallymodify the dynamicsof excitation over discrete levels,
neverthelessit is importantto build a numericalmodel free of this shortcoming.

As far aswe know, no numericalexperimentswereup to now performed,giving apreciseaccount
for continuousspectrum[52].A partial considerationof transitionsinto thecontinuum,hasbeengiven
in ref. [371.However no account was there taken for continuum—continuumtransitions, which,
generallyspeaking,do not appearnegligibleascomparedwith transitionsto and from thecontinuum.
Moreover, the numberof equationsto be solvedsharply increaseswith the level numbera0 andthis
doesnot allow for investigationof excitedstateswith a0 60.

A more efficient accountfor continuumcan be given by meansof the so-calledSturm basis.This
basisis introducedby consideringthe following eigenvalueequation:

—~ d
2u/dz2—(/3/z)u=Eu, z>0, E<0, f3>0. (31)

For /3 = 1, (31) is just the Schrödingerequation for the stationary statesof the unperturbed
one-dimensionalhydrogenatom. By changingvariables accordingto ~= 2z, u(z)= (~/2)~/2v( ~), eq.
(31) becomes

SEU d/d~(~dvId~) + [(E/2)~ — 1/(4~)]v= —/3u. (32)

The Sturmbasisis generated,by considering(32) as definingeigenvalues— /3 for theoperatorSE,

whereE<0 is an arbitrary fixed parameter.
Instead,consideringin (32) /3 asparameterandE astheeigenvalues,onewould recoverto theusual

basis,including continuumeigenfunctions.
It is known [29] that S~is a self-adjoint operatorwith a purely discrete spectrum ~ = (s +

1)(—2E)’/2, with s � 0 an integer.Eigenfunctionsfor SE aregiven by

f

5(~) [(s+ 1)(—2E)”
2]1’2 F(—s,2, ~(—2E)1’2)[~(—2E)”2]1’2exp[—(~I2)(—2E)”2]
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andare orthonormal:

f d~J~)f5,(~)=

Here, and below,F with threevariableswill indicatetheconfluenthypergeometricfunction. In the
following, we shallchooseE = —1 I2n~,a0beingtheinitially excitedlevel. Then,z”

2 f,,
0_1(2z) is, apart

from a normalizationconstant,then0th unperturbedeigenfunction.
We also needmatrix elementsfor ~and e. For e2 they are given in [29],where they are usedin

order to calculate the 2nd-order Stark effect. Matrix elementsfor ~ can be obtained by direct
computation.

Non-zeroelementsfor ~and e2 arethen given by:

~
5,5=2n0(s+1)

~s—1,s = ~s,s—1 = —n0[s(s + 1)11/2

(e
2) = 6n~(s+ 1)2 (33)

= (~2)~_i~= —2n~(2s+ 1)[s(s + 1)]h/2

2 2 2 2 1/2(~)~—~= (~)s—2,s = n
0s(5 — 1)

Let now 4(t) = z
1‘2~i(t) be the solution of the Schrodingerequation with the Hamiltonian (2), and

z= ~I2. Then, ~f~°’~I~IiI2d~= 1. Since the f
5’s make up a complete orthonormalset, ‘I, can be

expandedin the form

= ~ A5(t) exp(—iE0t)f5

with E0 = —1 /2n~and nfr(0) = (21‘
21n

0) f,,0_1correspondingto the initially excitedlevel n0. By using the
orthonormalityof thef5 and theexpression(33) for matrix elements,from the Schrödingerequationwe
obtain equationsfor the amplitudesA5(t):

2(s + 1)A5 — [s(s+ 1)]”
2A

5..1 — [(s + 1)(s+ 2)J
112A

5~1

= —i{[2(s + 1 — n0)In~]A5 + 3s(t) n0(s + 1)2A, — s(t) n0[(2s + 1) (s(s+ 1))h/2 A,_,

+ (2s + 3) ((s+ 1)(s+ 2))1~’2A,÷1]+ (n0/2) s(t) [~(~2 — 1)1/2A,_2

+ (s + 2)((s+ 2)2 — 1)~2A,~2]} (34)

This infinite system of equationsis exact and, even though only a discrete base was used,it
completelytakesinto accountthecontinuum.Indeed,eachSturmfunction is a superpositionof several
eigenfunctionsfrom the unperturbedbase, including eigenfunctionsbelonging to the continuous
spectrum.
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Onceeqs.(34) havebeensolvedfor A,, theoriginal amplitudesc,,(t) of theexpansionof 4(t) over

theunperturbedeigenstates
u,,(z)= 2zn3’2e_z/~~F(_a+ 1, 2, 2z/n)

canbe recoveredby

c,,(t)~B,,
5A,(t)

where the transformationmatrix B,,, from the Sturmto the unperturbedbaseis given by

B,,, = Jd~ (~/2)1/2f,(~)u,,(~/2)

= 4(s + 1 — a0) [2(s+ 1)a]”
2 (n

0 — a)’~~
2(n

0n)
2(—1)” [(n

0+

x F(—s, —(n — 1), 2, —4n0a/(n— a0)
2).

Here F is Gauss’ hypergeometricfunction. A similar computation, for continuous spectrum
unperturbedeigenfunctionscanbe made,by simply substitutingi/p in placeof a,p beingtheelectron
momentum(an analogousmethodwasused,e.g.,in [34]).A methodfor computingF with larges, n is
given in appendixIV.

The numericalintegrationof eqs. (34) wasperformedas follows. Onelevel s~,= a
0 — 1 wasinitially

excited, so that A,(0) = (2”
2/n

0)
6s,n

0—1~Then eqs. (34) were solved for Smin S S ~
5max~ As a rule,

Smjn 10—30, and the full numberNS of Sturmlevelsrangedfrom 256 to 576. The dependenceof the
field on time wastakenin thesameway asin the previouslydecribedmethod,with approximatelythe
samenumberof stepsper period:100<L <500. Justas in the 1st method,the introductionof delta
functionsinto thenumericalschememadeit possibleto exactly integratethe truncatedsetof equations
(34) by repeatedapplicationsof matrices.Forthesamereason,thelossof normalizationwasvery small
(—10~).Unlike the 1st method, here the presenceof high frequenciesank = kLan led to direct
transitionsinto thecontinuum;however,for thechosenvaluesof L theprobability of suchtransitions
wasnegligiblysmall. For instance,for a

0= 60, an0= 1, s0 = 0.1,L = 100 weget an1n~= 100and the ratio
of one-photonionization (21) to the diffusive one (6) is of the order 5 x i0

4. Thereforethe small
6-function kicks introduced by the numericalsimulation of the monochromaticperturbationdo not
haveany effect on thephysicsof the problem;moreover,their influencecanbe keptundercontrol by
varying the integrationstep.

In our opinion,monochromaticityof theperturbationis importantfor this problem,andsubstituting
a 6-like perturbationEk 6(t — 2lTk/an) in placeof e cosant [38,39] canleadto a significantmodification
of the physical picture of multiphotonic excitation. The role of multiphoton transition in the two-
dimensionalmodel with a 5-like perturbationwasstudiedin ref. [38].

The valuesof A,(r) obtainedby integrating(34) wereusedto find the amplitudesc,,(-r) over the
unperturbeddiscretebaseby meansof the transformationmatrix B,,,. In this way c,,(r) were foundfor
approximately200 levels. Since the total probability was conservedwith high accuracy,it was then
possible to determinethe probability of excitation abovea given level, and also the probability of
transition into the continuum,which is includedin the former.
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Severalcharacteristicsof theexcitationwerecomputedby thedescribednumericalmethod.Among
them, the most importantwere the distribution over unperturbedlevels f,, = c,, I~ the 1st moment

= ((n) — n0)1n0, the 2nd momentM2 = ((~a)
2)= ((a — (n))2) In~,and the probability of excita-

tion to high levels. In orderto describethe latterwe consideredthe probability W
15 of excitationto

stateswith a � [1.5n0],where [ ] means the integral part. For computationsin Sturm base, this
probability included also the probability of ionization, namely W~ is the total probability in states
n � 1.5n0plus theprobability in thecontinuouspartof the.spectrum.In orderto eliminatefluctuations,
wealso determinedthedistributionf,, averagedovert~rperiodsof thefield; asa rule, z~Twaschosen40
or 60. Finally, we determinedthe averagedistanceof the electronfrom thenucleus, (z).

The accuracyofthenumericalresultswascheckedasfollows. First, in order to checkthatcontinuous
spectrumwasbeingproperlytakeninto account,weperformeda seriesof experimentswith frequencies
larger than the 1-photon ionization threshold, an0 > n0/2. In the absenceof resonanceswithin the
discretespectrum,theprobabilityon discretelevelswith a � 1 .5a0wasthennegligiblysmall, so that the
probability ofionizationW~ W~5.An exampleof dependenceof W, on time is shownin fig. 1. In fig. 2
we showa comparisonof the theoreticalionization rate with the numericallyobtainedone. As canbe
seen,thereis an excellentagreementwith the theoryof 1-photonionization (22), which indicatesthat
computationsin the Sturmbasisefficiently reproducecontinuumeffects.

WI

10 logy,

—3
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U,

—5

10 20 30 t -1 -0.5 0 Log c~

Fig. 1. Ionizationprobability W asa function of time r (number of Fig. 2. Ionization rate versus field strength for the case n0 = 30,
microwave periods) for thecasen, = 30, am,= 30,e, = 0.075. Thesolid am0= 30. Like in fig. 1, the straight line is drawn accordingto the
line is drawn accordingto the analytical expression(22) while the theoreticalexpression(22) and the circles are resultsof quantum
circlesare theresultsof our quantum numericalcomputations.The numericalcomputations.Here also noticethe very good agreement
excellentagreementwith thetheoryevenfor very largefrequenciesis betweentheoryandnumericalresults.
acheckof ournumericalcomputationsandshowsthat theSturmbasis
efficiently takesinto accountthecontinuousspectrum.
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A different type of checkwasgottenby increasingthenumberL ofintegrationstepsper period.The
relativechangesof thecharacteristicsof excitationproducedin this way werevery small. For instance,
in the 1st method(unperturbedbase,UB) with a0 = 66, an0 = 1.5, e0 = 0.04,a changeof L from 200 to
300 for r = 120 led to a relative changei~W15/W15 i0~,IX(z)/(z) —5 x 10~.Of the sameorders
werealso thechangesin the Sturm basis (SB), evenfor rathersmall valuesof W1 ~. Forinstance,for
a0 = 66, an =2, e0 = 0.03, T = 120, Wi.5 4 x 10~uponchangingL from 100 to 200 therelativechange
in probability andin (z) were i~(z)/(z)—AW15/W15~5 X i0~.We can thereforeassumethat for
sufficiently large L theeffectsof numericaldiscretizationin the integrationof (30) and (34) become
negligibly small, andhaveno influenceon the physicsof the problem.

A further checkconsistedin changingthe total numberof levels both in the Sturm and in the
unperturbedbase,and also in matchingthe excitation characteristicsobtainedby the two different
methods.Onesuchcomparisonis shownin fig. 3a, whereit can beseenthat thereis a good agreement
betweenresultsof computationsin UB and in SB, and also that an increasein the numberof Sturm
levels does not changesignificantly the excitation probability (which includescontinuum). Such an
agreementnot only takes place for integratedcharacteristics,but also for the distribution over
unperturbedlevels (fig. 4). It is then possible to concludethat continuum effects do not lead to
substantialmodifications of the excitation dynamics,at least for not too strong fields and high
frequencies.Moreover, the Sturmbasisusedin our computationsappearslarge enoughto provide a
satisfactorymodel for quantumdynamics,including continuum.

Finally, theagreementwe foundbetweeticlassicalandquantumcomputationsin the delocalization
regime,aswe shall discussin thenext section,provides,in our opinion, themost convincingelementin
supportof our methods.

We also checkedthat the localizationof the extendedstatesin a more realistic two-dimensional
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Fig. 3a. Excitationprobability W,, asa function of time i~for the casen, = 66, e~= 0.04, am,= 2.5. The quantum numericalcomputationsare
performedby using: i) theunperturbedbasewith ND = 192eigenstates(— . —); ii) the Sturmbasiswith NS= 384 (....); iii) theSturni basiswith
NS= 576 (———). The fairly good agreementof the threecurvesis a checkof thenumericalcomputations.Theclassical ionization curveis also
shown(solid line).
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Fig. 3b. Classical(1) and quantum(2) excitationprobability W
1, asa function of time for the samecaseasin fig. 3a.

modelis very closeto that in our one-dimensionalmodel asshownin fig. 7c. This is in no contradiction
with recentresults [53]on the instability of classicalextendedorbits in the resonantelectric field
(an0 = 1). First, we mainly usenonresonantfields (e.g. fig. 7c). Secondin the chaoticcomponentof the
motion evenfor an0 = 1 only a slow diffusion in a2 takesplace accordingto eq. (7).

Thedynamicsof quantumexcitationwas investigatedfor a0= 30, 45, 66, 100, andthe field rangedin
the interval0.01< s,~<0.34. In order to facilitateconversionto physicalunits,we notethat for a0 = 100

log

~IIII~”T
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Fig. 4. Quantumprobability distributionsJ(n) over the unperturbedstatesaveragedover 60 valuesof r = wt/2i~within the interval 60< r < 120.
Here n, = 66, s~= 0.04, am0= 1.5. Threedifferent curvesare plotted in the Stun basis with NS= 384 and NS= 576 and integrationin the
unperturbedbasis with ND — 192. The threecurvesare so close that they are not resolved in the graphandthis is an additionalcheck on the
accuracyof numericalcomputations.
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the frequencyw/2ir = 10 GHz correspondsto an0 wn~= 1.51998, and e~= rn~= 0.1 correspondsto
5.14485V/cm.

For clarity’s sake we have grouped our numerical results following the order of the previous
theoreticalanalysis.Therefore we shall now discuss,in turn, the results on the classicalmodel, the
resultsdemonstratingthe localizationphenomenon,and the resultsillustrating thedependenceof the
excitationprobability on the field frequency.

3.2. Numericalresultson the classicalmodel

The dependenceof the excitationprobability of theclassicalsystemon the frequencyan0 andstrength
~ of the field is shownin fig. 5. Heretheexcitationprobability W1~is computedafterr = 40an0periods
of the externalfield. We recall that the initial value a0 is irrelevantdueto the scalingpropertyof the
classicalmotion. The characteristicoscillationswith minima near integer valuesof an0 are connected
with thepresenceofnonlinearresonances,thestrongestof which correspondto integerw~.In fact, the
destructionof the centersof resonanceregions occurs for larger fields than the critical field for
resonanceoverlap,eq. (3)•*

Then,for not toostrongfields, only a fraction of the trajectoriesfrom the initial distribution,which
is uniform in space,diffuse to higher valuesof n, but the rest fall into the centralstableregion of
resonance,where they remain giving no contributionto W15.

The characteristicdip for an~= 0.5, which was also observedin numerical experimentson two-
dimensionalatoms [41]correspondsto a 2nd order (half-integer)resonance.The sharpmaximumof
W1 ~for an~ 0.7 (weakly dependingon e~)is dueto the factthatfor this frequencymosttrajectoriesfall
into the stochasticlayerof theseparatrix.of thebig fundamentalresonance = 1. Already afterhalf a
turn aroundthe resonancethey passinto the high-n region, where excitationis significantly stronger.
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Fig. 5. Classicalionization probability W,,afterr = 40w0 asa functionof themicrowavefrequencyfor different microwavefields. HereW,,is the
total probability above the action value n = 1.5n0. (0) a,, = 0.02; (•) a~= 0.03; (no) s~= 0.04; (A) a~= 0.05; (I) a~= 0.06.

* The values of the field at which the centers of resonanceregionsare destroyed were numerically determined in [30J.
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An analogousexcitationmechanism,connectedwith the2nd orderresonanceat 00 = 0.5, explainsalso

the maximumat 00 = 0.43.
In the classicalsystemdiffusive excitationtakesplaceonly whenthefield strengthexceedsthecritical

value for which the last KAM invariant curve is destroyed and there is a transition to global
stochasticity(seee.g., [5]). From fig. 5 we seethat the actual valueof 8cr for an0 1 is close to 0.02,
which satisfactorilyagreeswith thetheoreticalvalue(3) obtainedby the resonanceoverlapcriterion[5].
Figure 5 gives anoverall ideaof the classicalbehavior.Othernumericalresultssuchasthecomparison
with the solutionof thediffusion equationor with the quantumdistributionon the unperturbedlevels
will be given in the following sections.

3.3. The distribution overthe unperturbedlevels

Here we shall describethe featuresof the numerically computedquantumdistribution over the
unperturbedlevels in the various parameterregions which have been discussedin our previous
theoreticalanalysis.In this way we shall showthat numericalresultssupportthe theoreticalestimates
given above.

For high levels (e.g. a0 100)and
8o 8cr 0.02 the perturbationstrengthV= ~a2eis larger than

the level separation:V/i~E ~s~n> 1, so that the field would be expectedto connecta numberof
unperturbedlevels. Yet, even for ~

0n~ 1 no diffusive excitation will be observedif e < Ecr~(The
oppositecasee0n~ 1 correspondsto the region below the “quantumstability border” [36].)This is
illustrated in fig. 6, where an exampleof stationary distribution in the region of stability r < 8cr is
shown. This distributionremainsessentiallyunchangedupon further increasingthe computationtime.
Classically,this fact is dueto thestability of themotion, and quantummechanicallyto thevery small
probability of tunnelinginto regionsclassicallyforbiddenby thesmoothinvariantcurve (section2.5).
However, for a reliable detection of the tunneling describedin section 2.5 particularly accurate
investigationsarerequired.It is also desirableto increasea0, becauseevenfor a0= 100 the tunneling
region appearsrathernarrow(seeeq. (27)). Nevertheless,we think that tunnelingexcitation can be

log 1(n)

I I-
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Fig. 6. Classical(dashedline) andquantum(full line) probability distributionJ(n) averagedover 40 valuesof s~within the interval 80< r < 120.
Heren0 = 100,a,~= 0.01, am0 = 1.5. For theseparametervalues,a,,< a,,, < a~andthereforebothclassicalandquantumpacketsarelocalized.Notice
thesmall tunnelingthroughtheclassicalKAM invariantcurves.
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investigatedboth in numericalandin laboratoryexperiments,whereatthepresenttime it is possibleto
preparestateswith a0 300 [26]. We also note, that clear experimentalobservationsof tunneling
excitationin alternatingfields arestill lacking.

For field strengthexceedingthe critical value (3), diffusive excitation takes place in the classical
system.However,in the quantumcase,for field strengthless thanthe delocalizationborder (15) the
phenomenonof quantumlocalizationis observed,in consequenceof which the distributionover the
unperturbedlevelsreachesthestationaryform (10) andthendoesnotchangeuponincreasingthe time
of interaction with the field. In this situation, the ionization probability is very small, and can be
neglectedfor the given interactiontime. A typical exampleof quantumlocalizationis shownin fig. 7.
Herewe seethat classicallythereis a diffusiveexcitation,so that the classicaldistributionobtainedby
the numericalsimulationsatisfactorilyagreeswith the theoreticalformula (5a) (the classicalborderof
stability was herechosenat n~’= 55 accordingto numerical results). The quantumdistribution was
obtainedby the Sturmbasismethodwith NS= 576; here,aswell asin fig. 4, thereis a good agreement
with theresultsof computationsby theunperturbedbasismethod.In contrastwith the classicalresult,
in the quantum case an exponentialdrop followed by a multiphotonplateauis observed,almost
unchangedunder a changeof r from 120 to 600. The quantumlimitation of chaos also led to a
significantly lesserexcitation probabilityin the quantumthanin the classicalcase(seealso fig. 3). We
mentionherethat in a recentpaper[51]resultsof differentquantumcomputationswere reportedwith
ionization probability 10% (to be comparedto ours less than7%) for an0 = 1, r~= 0.03, a0= 63 and
T = 320 periods.
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0 0 -

(a) (b)
-1 -i~

—2 ‘,J~ ‘I K ~ —2 —

:1 ~II V\, 00 ;~‘_~_‘~~ ~,=,,

~ ‘~I ~ ‘°~ ,,. ~‘ ~

V V -3 1

4 ..4.

I I I I I I I I I
40 60 80 100 120 140 160 180 n 40 60 80 100 120 140 160 180 n

Fig. 7. Classical(dashedcurve) andquantum(solidcurve)probability distributionf(n) averagedover 40 periodsof r for thecasen0 = 66, am0= 2.5,
= 0.04. In (a) theaveragewithin the interval 80<r <120 andin (b) within the interval 560<r<600aregiven.The dotted linesin bothfigures

representtheanalyticalsolution (5a)of theFokker—Planckequationwhichfairly agreeswith theclassicalnumericalresults.On thecontrary,the
quantumdistributionis localizedanddoesnotchangesignificantlyby increasingthe interactiontime with themicrowavefrom 120 to 600. The only
differencebetweenthequantum distributionsis theslight increaseof thepeakson the low multiphotonplateau.The arrowswith integersshowthe
positionandtheprincipal quantumnumbersof thepeaks.
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Fig. 7c. Comparisonof one-dimensional(*) and two-dimensional(full curve) models for extendedstates;parametersasin fig. 7a,bandinitial
condition n

2 = 0(two-dimensional).Instantdistributionsf, are given at r = 60. The circles show valuesof logji~f~where i~f,is the difference
betweenthe two models.

Anotherconvincingmanifestationof localizationwas the saturationof thediffusive growth of the
secondmoment of the quantumdistribution (fig. 8). The agreementbetweenquantum andclassical
dynamicshereholds only over a small initial time interval TD 5. The smallnessof TD is due to the
smallnessof the classicaldiffusion rate.Notice that the agreementobservedfor r < TD providesstill
anothercheckof the numericalprocedureused.

In fig. 9 it is shownhow the normalizedaveragedistanceRL = ~z(t)) /n~of the electronfrom the

0.03 - -

M2

0.02

0.01

Fig. 8. Secondmoment M5 = ((n — (n) )2) In
2, of theclassical(dashedline) and quantum (full line) distributionasfunction of time ~= amt/2ir for

theparametersof fig. 7. The localization of thequantumpacketshownin that figure leadshereto thesuppressionof the diffusive growthof the
momentM

2.
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Fig. 9. NormalizedaveragedistanceRL= (z(r)) /n~of theelectronfrom the nucleusas afunction of r for thesamecaseasin fig. 7: (full line)
quantumcase;(dashedline) classical case.Also herethequantumsuppressionof diffusionis clearlymanifested.

nucleusdependson time. In theclassicalsystemthis distancegrowsandtheelectronmovesfar away
from the nucleus.Instead,in the quantumcase,owing to quantum localization,the electronkeeps
oscillating aroundits initial position.

The regime of quantumlocalization was investigatedfor initial levels n0 = 30, 45, 66, 100, for
frequencies1 s an0 � 3, fields 0.03� s0.12, and localizationlength 1 ~ 1 (which is the conditionfor
applicabilityof theestimate(11)). Numericalvaluesfor thelocalizationlengthweredetermineddirectly
from the stationaryquantumdistribution. Comparisonof thesenumericaldata with the theoretical
values(eqs.(13), (14)) yieldsgood agreement(fig. 10). The observeddispersionof points is apparently
connectedwith the presenceof islands of stability in the classicalsystem. Also, the presenceof a
typically quantumresonancestructuremay play a role in this respect.
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Fig 10 Localizationlength asa function of themodel parametersThe dots correspondto numerically measuredvaluesof I which arein good
agreementwith thesolid curve given by the analyticalestimate(13)
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Fig. ha. Classical(dashedcurve)and quantum(full curve)distributionfunctionf(n) for n, = 100,a, = 0.08, am

0 = 1.5 at r = 60. Notice thefairly
good agreementbetweenclassical andquantumnumericalresultsand theanalyticalsolutiongiven by eq. (5a)(dottedcurve).

If the field exceedsthequantumdelocalizationborder(15) thenthequasi-classicaldiffusion overthe
levelsis sufficiently fast andno localizationtakesplace. In this regimetheevolutionof thedistribution
functioncan be approximatelydescribedby thediffusion equation(4). An exampleof a distribution in
thedelocalizationregimeis shownin fig. ha,whereit canbe seenthat thequantumdistributionagrees
with the solution (5a) of the Fokker—Planckequation.

In order to checkthevalidity of theestimate(15) for the delocalizationborder,we investigatedthe
dependenceof theexcitationprobability on E~for different valuesof n0 and of to0. This dependenceon
the rescaledfield i~= s~Je~1)is shownin fig. 13. Foreachvalueofn0, an0, theexcitationprobabilityW1 ~
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Fig. lib. Probabilitydistributionovertheunperturbedstatesat r = 120 for thecaseof fig. ha,afterreversalof velocitiesat r = 60. Notice thatthe
quantumsystem(full curve)recoversits initial stateto seventeendigits which correspondsto numericalerrors. In contrast,theclassicalmotion
(dashedcurve)proceedsaccordingto thediffusion equation(Sa) (dottedcurve).
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Fig. 12. Classical(dashedcurve)andquantum(full curve)ionization probability (excitationabove theunperturbedlevel ii = 150) asa functionof
time for the caseof fig. 11. Noticethe perfectspecularsymmetryof thequantumcurve aboutthetime of reversalr = 60.
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Fig. 13. Excitationprobability at time r = 60 asa function of the field intensityfor differentvalues of n, andam0. W~(~)= W~(e0)/Wr(a~’~)is the
quantumexcitationprobability ata~resealedto thecorrespondingclassicalexcitationprobability computedat a0 = a~~ = is theresealed
field: (L~)n0=30,w0=3; (~)n,=45,w,=1; (A),n,=45, am,=3; (•) n0=66,w0~’1;(D)n066, am,=2;(*) n066,w,3; (0) n0100,

=3. The fact thatall points correspondingto different n, andam0 meetatthevalue W= 1 for 1, =1 is a numericalverification of our estimate
(15); it alsoverifiesthat, in the delocalizedregime,thequantumexcitationprobability is closeto theclassicalvalue.
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wasalso rescaledto thecorrespondlngclasslcalvaluetakenfor e0= lfl otherwords,in fig 13 we
actuallyplottedW15(~0)= W~5(rO)/W~5(EU)I,0=~l).If delocalizationtakesplacefor r~ g~, and if in
the delocalizationregime the excitationprobability keepsclose to its classicalvalue,then all the lines
showingthedependenceof W15(~)for different valuesofn0, an0 would beexpectedto meetfor ~ = h

at the value W1.~ = 1. As canbe seenfrom fig. 13, this is just what happens.
An interestingfeatureof fig. 13 is that the dependenceof the ionization probability on the field

strengthat fixed n0 andan~is not always monotonic.For example,the datacorrespondingto n0 = 66,
to0 = 3 clearlyindicatea “bump” occurringin the ionizationcurve.The existenceof similar “bumps” in
experimentallyobtainedionizationcurveswasrecentlypointedout in [48]anda theoreticalexplanation
wasput forth in [49].

In the localization regime, the dependenceof the excitation probability on field can be approximately
describedby W15 e~.Figure 13 also clearly indicates that the experimentalvalue of k changes
substantiallywith n0, an0, so that joining of all lines ata singlepoint for ~ = 1 is not a trivial occurrence,
and can be consideredas a confirmationfor our estimate(15). This diversity in the values of k is

connectedwith the different numberof photonswhich are requiredfor excitation into stateswith
n � [1.5n9].However,the experimentallydeterminedvalue kE is typically, substantiallyless thanthe
number kD of photons theoretically requiredfor direct transition from n0 to n 1.5n0, which is
kD = 1 + [5n0118an0].For example,for n0 = 66 and an0 = 1, one haskE=7, kD = 19.

In our opinion this differenceis due to two effects. The first is that multiphoton transitionsdo not
necessarilystartfrom the initial unperturbedstate,but may startfrom anywhereinside the stationary
distribution(10) which setsup aftera while. In otherwords,when1> 1 excitationmaystartfrom levels
n -~ n0 + 1, and this reducesthemultiphotonic degreek. Theotherreasonis the appearance,for high
levels n> n0, of a multiphoton plateauof equidistantresonances[22].Examplesof distributionsf~
which clearlyexhibit this multiphotonplateauaregiven in fig. h4a,b(see,also fig. 7). The differencesin
unperturbedenergiesE~= —1 12n

2 betweenconsecutivepeaksof thedistributionareequalto the field
frequency;therefore, the sequenceof peakscan be naturally explainedas the result of a chain of
one-photontransitions.

In the casesillustratedby fig. h4a,bthesetransitionsstartdirectly from the initial staten
0, andthe

peakscanbe enumeratedsimply by the numberof photons.However,thesituationis not alwaysthat
simple;in a seriesof cases,thechainof peaksdoesnotstartfrom n0, but ratherfrom somewhereinside
the localizeddistribution (seefig. 2 in ref. [22]),and it is evenpossibleto observetwo or threedistinct
chainswithin the samedistribution.

For the high-lying levels the heightsof the peaksbecomeroughly the sameand they build up an
equidistant(in energy)plateau.If we increasen still further, the peakheightsdo not decrease:this
seemsto be due to the fact thaton high levelsthe field is strongenoughfor theprobabilityof transitions
betweennearbypeaksto be significant(saturatedtransitions).This is thesecondreasonwhy kE< kD.

Upon increasingthe field, the multiphotonplateaurisesas a whole (fig. 14). The resonantpeaks
becomebroader,but in a numberof casesthey do not disappear,evenin very strongfields andin the
delocalizationregion. However, this usually takesplace only for large an0 (comparedelocalizationin
figs. hia and 14b, for n0 = 100, o~= 1.5 and3, respectively).

In our opinion, the appearanceof the multiphoton plateaubelow the ionization thresholdis in its
substanceakin to the appearanceof peaks in the energy distribution of photoelectronswhich is
observedabovethe ionization threshold[42,43]. Indeed,for largen thedistancebetweennearbylevels
is very small: L~E‘~ an, and the spectrumin this region behaveslike a quasi-continuum.It is then
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Fig. 14a. Quantumprobability distributionf(n) averagedover 60 periodsof r within theinterval60< T <120. Heren

0 = 66, am, = 2 anda, = 0.03
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reasonableto expectthat the peakstructureobservedin the discretepartof the spectrumwill persist
also in the continuum.

It is possible that a theoretical explanationof the multiphotonicplateauin the underthreshold
distributionmay be given, along similar linesas in [44].

3.4. Dependenceof the excitationprobability on frequency

An exampleof thedependenceof W1.~ on an0 for fixed e0 = 0.04 anddifferent n0 is shownin fig. 15. It
is hereapparentthat for high frequenciesan0> 1 theexcitation probability is significantly lessthanthe
correspondingclassical one. The reasonis that the delocalizationthreshold (15) increaseswith the
frequencyan0, so that a majority of points in fig. 15 belongto the region of localization.We recall,
however,that theestimate(15) is only valid for an0>1. lndeed,for an0 < 1 adynamicalamplificationin
the classicalexcitation takesplace, as describedin section3.2 (see fig. 5). From figs. 5, 15 it appears
that for e0= 0.04 the maximumclassicalexcitationis gottenfor an0 0.7. Now, asis seenfrom fig. 15,
thequantumprobabilityof excitationfor n0 = 30, 45, 66, 100 is closeto the classicalvalue,andeventhe
correspondingdistributionson levels(fig. 16) look rathercloseto classicalresults.Weinterpretthis fast

log W15

Fig. 15. Excitationprobability W0, asa functionof frequency~0 at r = 40w, for fixed a, 0.04andfor differentn,. (•) n,= 30; (A) n0 = 45; (~)
n~= 66; (I) n, = 100. The solid line, with open circles, gives the classical excitation probability. Notice that, by increasing~0’ the quantum
excitationprobability becomesmuchlessthanthecorrespondingclassicalonedueto thefactthatthedelocalizationborder(eq. (15)) increaseswith
am,.



G. Casatiet a!., Relevanceof classical chaosin quantum mechanics 111

tog?(~) togf(~)

-6

—8— I I I I I I I 1(a) I I I I I I I
60 70 80 90 100 110 120 130 140 ~ 60 70 80 90 100 110 120 130 140 ~

tog~(~)

-6

(c)

—8 I I I I I I
60 70 80 90 100 110 120 130 140 ~

Fig. 16. Quantumprobability distribution7(u) averagedover40 periodsof rin the interval40<7<80for fixed a, = 0.04, am0 = 0.7, anddifferent
n,. (a) n0 = 100 (dottedcurve),n0 = 66 (full curve); (b) n0 = 45 (dottedcurve), n, = 30 (full curve); (c) n0 = 20 (dottedcurve)n, = 10 (full curve).
The classicalprobability distributionis alsoshown(dashedline). In orderto comparethequantumdistributionswith different n0, with theclassical
one,we have introducedresealedquantitiesf= (n,/66)fandff = (66/n,)n.The scaling propertyof thequantumdistribution andthefairly good
agreementwith the classicalmotion is due to the delocalizationphenomenon.
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excitation in the sensethat in the quantumsystemfor this frequencythereis a delocalization.Thus
numerical experimentsshowthat evenfor a ratherweak field r~= 0.04 delocalizationcan takeplace,
nevertheless,at frequencyan0 0.7, lower thanthe Kepler frequency.

The fine structureof the dependenceof excitation on frequency is shown in fig. 17. In the
localizationregion an0 1 one observesan essentiallyresonantdependenceon frequency.For low
frequenciesan~<0.7 most resonancesdisappearand the dependenceon an0 becomessmoother.An
analogoussmoothingoccurs in the region an0 1, upon increasingn0 from 30 to 100.

For still lower frequency,an0<0.6,onefalls into the regionof classicalstability; therefore,excitation
ceasesfor the classical system. Then, the quantum excitation sharply diminishes, too. Thus, the
dependenceof theexcitationprobabilityon frequencyhasa thresholdcharacter,in that ionizationtakes
place for

an0>an~—.1. (36)

This estimatefor thechaoticthresholdan~is justified by the fact that for an0 < 1 thereareno 1st-order
resonancesbetweenthe frequencyof the externalfield and the harmonicsof the frequenciesof the
motion of theclassicalelectron[18]; therefore,chaoticexcitation for frequencyan0< 1 can takeplace
only for fields strongenoughthat higher-orderresonancesoverlap. On the otherhand, for very low
frequency to0 ~I the value of the critical field r, coincides with that for the classical static field
ionization. Notice that the threshold(36) holds only if e~>1150. Otherwise,thechaoticthresholdhas
to be determinedfrom eq. (3), and is equalto an~ 1/(50e0)

3.
According to the theoreticalestimate(24), the diffusive ionization is more effective than direct

one-photonionization. In orderto check this predictionwe performeda seriesof numericalexperi-
ments,in which the ionizationprobability from stateswith n

0 = 30 or n0 = 66 wasinvestigatedover a

WI.5

.4

Fig. 17. Fine structureof thedependenceof excitationprobability W,,on frequencyam0 at r = 40 for fixed a0= 0.04. n, = 45 (full curve);classical
results(dashedcurve).
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broadrangeof frequencies The field intensity wasso chosen,that direct two-photonionization was
considerablylessthan1-photonionizationexceptfor intermediateresonances;moreover,s~< s~,where
E, is the critical intensity for static field ionization. In this situation, the photoeffect is expectedto
displaya thresholddependenceon frequency,with negligiblysmall ionizationprobability for an0 < an~=
n012.

Sucha pictureof thephotoeffectprovedto be incorrect. In figs. 18, 19 we showthedependenceon
frequencyof theprobabilityof “ionization” W1which we defineastheexcitationabovea level ii after a
dimensionlesstime r = 40an0thatcorrespondsto thesamephysicaltime for all an0’s. Computationswere
madein theSturmbasis,so that W1 includestheprobability of transitioninto thecontinuousspectrum.
For n0 = 30, we took ii 90; and for n0 = 66, ~i= 99. Notice that W~included someprobability on
discreteunperturbedlevels,too. In figs. 18, 19 themost effectiveexcitationis observedat frequencies
well below the one-photonthreshold.The new thresholdvalue an~~—1 is close to the corresponding
classicalvalue and, as explainedabove,is determinedby the condition of overlappingof 2nd-order

WI

60-

w(
too

50- q
ii 9~.

80-

40 - I
I 70- I

60-

30-

50

20- ~ 40~

-_ ___ __ _ U Log

log w, log WI log (0~ log W~ Log U)1 Log U),

Fig. 18. Ionizationprobability i4~= E,~cj
2versusfield frequency Fig. 19. Sameasfig. 18 with n

0 = 30, a~= 0.075, it 90.
am0aftera time r = 40w,whichcorrespondsto thesamephysicaltime
for all frequencies.We haveset n0 = 66,a, = 0.05, it = 99. Moreover,
quantum theory (*); classical theory (0). Notice that am5 is here
somewhat less than n,12 because,in our definition of the ionization
probability, thecontribution of stateswith n > otis alsoincluded.
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resonances.For sufficiently strong field, an~appearsto be significantly less than 1; for 60 = 0.075,

n0 = 30, the experimentalvaluefor an~is =0.2, andfor s~= 0.05, n0 = 66 the thresholdis w~ 0.35.

In the quantumcase,however,thereis still a small probability of excitation evenfrom the region
an0 < Wc~due to tunnelinginto theclassicallyforbiddenregion.In the intervaltoc < an0 < an~= (6n0s~)

317
delocalizationtakesplace, so that W

1 is close to its classicalvalue. For an1 < an0 < an~quantumeffects
lead to the localizationof diffusion; therefore, in that region one observesan essentiallydifferent
excitationpicturethanin theclassicalsystem.A decreaseof W1 with an0 is observedalso in theclassical
case,due to the decreaseof the diffusion ratewith an0 (seeeq. (5)). Indeed,evenin thepresenceof
diffusion, theexcitationprobability abovea given level n is nearlyzeroif at thegiven observationtime
r the diffusion has not yet reachedthis n (i.e. if r ~ (n — n0)

21D). However,in the quantum case,
isolated ionization spikessurvive in this frequencyregion (see figs. 18, 19) due to transition into the
continuumvia intermediateresonantlevels (comparewith themultiphotonplateauin fig. 14a1).

In the frequencyregionan
0 an~the probability W1 sharplyincreases,becauseof the possibility of

direct one-photontransitions.However, W1 in this region is significantly less than for an0 -=0.7 when
diffusive ionizationoccurs.In the region an0>an~numericaldataagreesatisfactorilywith the theoretical
formula(22). This agreementis anotherindicationthat the Sturmbasismethodofintegrationefficiently
describescontinuousspectrumeffects.

In fig. 18 we seethat for an0 0.43 the quantumprobability of excitation is comparablewith the
classicalone; again,this meansthat in this frequencyregion, for n0 = 66, 60 = 0.05, thereis quantum
delocalization.

Numericalexperimentsindicatethat the thresholdvalue 6cr for diffusiveexcitationin this frequency
regionlies between0.04 and0.05 (fig. 5). In thequantumcase,uponvarying e~from 0.04 to 0.05the
excitationprobability changesby abouttwo ordersof magnitude.This meansthatdelocalizationoccurs
alreadyat ~ so that the field strengthyielding 10% ionization (which wasstudiedin ref. [26])will
be foundto agreewith classicalpredictions.In otherwords,thesenumericalexperimentsof ours show
that laboratoryexperiments[13,27] wereperformedin that parameterregionwhere one-dimensional
delocalization(and a fortiori two-dimensionaldelocalization)takesplace,and this explainstheobserved
agreementwith predictionsfrom the classicalmodel.

3.5. Stabilityof quantumdiffusion

Even though the diffusive ionization, taking place in the delocalizationregime, is to someextent
similar to the classicaldiffusion which occursin thechaoticregime,thequantumsystemis still shortof
exhibiting all the statisticalpropertiesthat would be expectedof classicalchaos.

The moststriking difference is the absence,in quantum dynamics, of the strong instability and of the
rapid loss of memory associatedwith classicalchaos. In computerexperimentsthis effect leads to
irreversibility. Indeed,eventhough the exact equationsof motion are reversible,neverthelessany,
howeversmall, imprecisionin solving them, suchas computerround-off errors,is magnified by the
exponentialinstability of orbits to the extent that initial conditions are effaced and reversibility is
thereforedestroyed.

Investigationsaimedat verifying whetheran analogousirreversibility would also be displayedby the
numerically computed quantum evolution were described in [6] for the kicked rotator. Here we will
presentnumericalresultsfor time-reversalexperimentson the one-dimensionalH-atom(figs. 11, 12).
The chosenparametervalueslie in the region of delocalization;therefore,up to the moment of
time-reversal(T = 60) diffusiveexcitation is going on,both in thequantumand in theclassicalsystem.
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Indeed,the distribution on the quantum levels at r = 60 is close to the classicalone, and is well
describedby formula (5a). Then, at r = .60 we reversedthevelocitiesof all particles(N = 1000) in the
classicalensemble,and changedthe wave functionof the quantumatomto its complex conjugate.In
bothclassicalandquantummechanics,theH-atomwould be expectedto find its waybackto the initial
state.However,dueto thefinite computerprecision,in theclassicalcasesucha returnis notobserved.
The systemretracesbackwardits history just for a few periodsof the field, andthen,again,diffusive
excitationoccurs.

Instead,in the quantum casean almost exact reversionof motion is gotten; at time ‘r = 120 the
electroncomesback to the initial level. This is evenmore remarkableon accountof the fact that, in
order to restore the initial state, some of the total probability had to be called back from the
continuum.

The conclusionmust be drawnfrom this exactreversibility, that eventhough thequantumdiffusion
which occurs in the delocalizationregime of the H-atom is by now the most chaotic exampleof
quantummotion hitherto investigated,neverthelessthis quantum“chaos” is essentiallydifferentfrom
the real chaosof classicaldynamics.

4. Experimentalresults

A largenumberoflaboratoryexperimentson hydrogenandalkali atomsin highly excitedstateshave
beenperformedup to now [13,14, 23—271. Additional interestfor suchexperimentshasrecently arisen
in connectionwith thepossibilityofchaoticmotion in quantummechanics.It is nowpossibleto perform
experimentson microwaveionizationon atomspreparedin extendedquasi-one-dimensionalstates[24].
Hereit is possibleto measurethe ionizationprobability identifiedwith thepopulationof levelshigher
than somesufficiently large n, including the continuum; this definition is particularly convenientfor
comparisonwith numericalexperiments.Also, it is possibleto measurethe probabilitydistributionon
unperturbedlevels. This allows, in principle, for a carefulcomparisonof experimentalandnumerical
data.

In particular, very accurateexperimentson one-dimensionalH-atoms were carried through as
describedin [24]. Also extensive experimentaldata on extendedatoms in combined static and
microwavefields arepresentedin [54]. The rangeof parametersfor theseexperimentslies inside the
regionof low frequency(an0 0.2)andof classicalstability (seealso [28]),so that the resultscan notbe
usedas a testfor the theorypresentedin this paper.

A different seriesofexperiments[27]wasperformedon two-dimensionalH-atoms.The conditionsof
theseexperimentsnot only lie abovethe two-dimensionaldelocalizationborder,but even abovethe
one-dimensionalone. For this reason,our resultspredictan agreementwith classicalcomputations,as
indeedwasfoundin [27].Onepossibleexplanationfor thenotcompleteagreementobtainedis that the
experimentalvaluesin [27]might be abovebut closeto thedelocalizationborder,whenoneshouldnot
elpecta betteragreementthanwithin a factor2. To clarify this pointwe showin fig. 20 thecomparison
of numericalone-dimensionalquantumand classical ionization probability slightly abovethe border:
thereis astrongexcitationin both cases,but, unlike stronglydelocalizedcases(see,e.g.,fig. 12) here
the two resultsonly agreewithin a 50%.

Since experimentaltechniquesallow for very accuratemeasurements,it is highly desirablethat the
conditionsof theexperimentsbe definedaspreciselyaspossible;for exampleit is moreconvenientto
choosea single excited state than a microcanonicaldistribution. From our point of view, a most
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Fig. 20. Classical(•) and quantum() excitation probability asa function of time for n, = 66, a, = 0.06, co,= 0.43. The quantum system is
delocalizedbut sincewe areonly slightly over theborder,the quantumexcitationis less thanthe classicalone.

importantgoal for futureexperimentsis to observeand to study the new andunexpectedlocalization
phenomenonin classicallychaoticsituations.For this it is necessarythat the frequencyan0be increased
abovean0 1, sincein the regionann> 1 a largeseparationbetweenthe classicalchaoticthresholdan~and
thequantumdelocalizationborderan1 is expected.In the high frequencyregionit is also possible,by
varying the field strength,to observethe transition to delocalizationaswell as theotherphenomena
describedin thepresentpaper.

Also, in order to giveexperimentalevidencefor the“freezing” of thewavepacketin localization,it
would be desirableto vary the interaction time. This latter possibility lies within the capabilitiesof
presentday technique[251.

Wewould like alsoto stressthat all thephenomenadescribedin this papershouldbe observablenot
only in H-atoms, but also in different alkali atoms.In orderto producehydrogen-likestatesin such
atoms,oneshouldtake into accountthat, theunperturbedspectrumfor highly-excitedalkali atomsis
slightly different than in H-atoms, due to the quantum defect. However, for values of 1>3 this
quantumdefect is negligible. Since in linearly polarizedfields the magneticquantumnumberm is a
constantof the motion, by exciting stateswith m~ 3 it is possibleto excite stateswith 1 � 3, which
correspondvery well to the hydrogenicsituation. It is thenpossibleto consideralso one-dimensional
problemsfor levels with m� 3, n2 = 0, n1 = n — ImI — 1 and this excitation can be achievedvia
light-inducedresonanttransitions.Onewould thenget a situationin which localizationandothereffects
of quantumchaosmight be studied.

5. ConcLusions

The study of the one-dimensionalH-atom in a monochromaticfield that we havedescribedin the
- presentpaperbrings to light a numberof facts — someof which were ratherunexpected.

Thesefactsconcernboth theactualphysicsof atomsin microwavefields, andthegeneralproblemof
quantumdynamicsin the region ofclassicallychaoticmotion. Eventhoughtheunperturbedeigenfunc-
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tions, as well as the matrix elementsof the perturbation,can be well approximatedby their
semiclassicalexpressions,it may well happenthat quantumandclassicaltime evolutionsareessentially
different, due to the phenomenonof quantum localizationof chaos. It is interestingto note that
investigationsof this phenomenonwere prompted by studieson the rotator model [4]. It is a
remarkablefactthat this phenomenon,originally detectedin a somewhatartificial model,hasnowbeen
shown to exist in a physical system, so that thereis a real possibility to observeit in laboratory

• experiments.
On the other hand, for the H-atom a delocalizationregime also exists, and our theory allows

determinationof the thresholdfor this regime. Abovethis threshold,the excitation of the quantum
systemcanbe approximatelydescribedby theclassicaldiffusive excitation.This regime of excitationis
much more efficient than the direct 1-photonionization; thereforea newfrequencythresholdfor the
photoelectriceffect appears,which is determinedby the classical border for frequency, to

0> ant.
Actually therearetwo differentfrequencythresholdsan~andan,, so thatstrongionizationoccursonly for
an~< an0 < an1. The latter thresholdan1 is dueto quantumlocalizationof classicalchaos.

The delocalizationphenomenonexplainsthepartialsuccessof classicalcomputationsin reproducing
experimental results on microwave ionization. At the same time, however, the localization
phenomenonsetsdefinite limits to the applicability of classicalmodels,which are due to quantum
localization.

Although a discussionof the two-dimensionalcasewas givenin section2.2, the bulk of the results
presentedin this paperwererelatedto the one-dimensionalcase.While this fact doesnot affect the
conceptualimportanceof theseresults,it enforcessomecaution when comparingthemwith experi-
ments hitherto performed. Indeed, an analysisof the experimentsdescribedin [48] shows that a
two-freedomstheoryis requiredto model themproperly.

Delocalizationis also a challengingsubjectfor future theoreticalanalysis.This phenomenonhas
beenpredictedon the groundsof semiclassicalarguments,which are bestsuitedto makecontactwith
classicalchaoticbehavior.Nevertheless,it should bepossibleto understandit in purely quantumterms.

A few concludingremarksarein orderconcerningthe relationshipof resultsdescribedin this paper
to the generalthemesof quantum chaos.As we haveseen,diffusive excitation and ionization are
brought about in the classicalhydrogenatomby the onsetof dynamicalchaos,which is a regime of
extremeinstability of trajectoriesof theelectron.A physically relevantquestionthat wehaveanswered
above, is whether the physically observablemanifestationsof chaos— enhancedionization and so
on — survive also in the quantumdomain. However, the more speculativequestionmay be posed,
whetheralso anything of the conceptualsetupof classical chaos— instability, irreversibility, and so
on — canbe translatedin a quantumcontext.An illustration wasgiven in this paper(section3.5) that
this is not thecase.Howeversimilar the quantumevolutionmayappearto theclassicalone(insofaras
the population of levels is concerned)it remainsstrongly stable, in sharpcontrastto the latter.
Therefore, even though classicalchaos was shown to be relevant in predictingthe responseof a
quantumhydrogenatom to anexternalmicrowavefield, it must bestressedagainthat, strictly speaking,
no true chaosis possiblein quantummechanics.
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Appendix I: Quasi-classicalmatrix elementsin paraboliccoordinates

We shall hereget theexpressionfor thezcoordinatein parabolicaction—anglevariables(n1, n2, m,

A1, A2, ~‘). To this endwe introducethe paraboliccoordinates~, ~, ~:
x = (e)

112 cos~

= (~)1/2 sin q’ (1.1)

In thesecoordinatesthe unperturbedHamiltoniantakesthe form:

H = 2~P~/(~+ ~) + 2r~P~I(~+ ~) + P~/(2~)— 2I(~+ ~). (1.2)

The transformationto action—anglevariables(n
1, n2, m, A1, A2, q’) is achievedby separationof

variablesin the Hamilton—Jacobiequationfor which we refer to standardtextbooks(seee.g. [31]).
Herewejust recall that the generatingfunctionof this transformationis found to be:

S(n1,n2,m, ~, ~, c)=f Pf d~’+JP~d~’+ mc (1.3)

where the canonicalmomentaP~,P~,P~aregiven by [29,31]:

P~= [E12+ f3~J~6— m
2J4e2]~2

P~= [E12+ ~
21~— m

214
7,

2]UZ

= m

1
2=(n12+ImI/2)In, n=n1+ImI, E=—112n

2.

Thenthe anglevariablesA
1, A2

A12 9S/~n12 (1.4)

canbe obtainedby differentiating(1.3) andcomputingthe integrals.Theprocedureis greatlysimplified
by the introductionof the auxiliary anglesx1~x2 definedby

= —2n
2p

1sin x1 + 2n(n1+ mt/2)
(1.5)

i~ —2n
2~sin x

2+2n(n2+1m112),

wherethe parametersp~,jL2 are given by:
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= [n12(n— n21)1n
2]V2

In this way we get thefollowing result:

(1.6)
A

2=—j.t1cos~1—p2cos~2—~2+~/2.

From (1.5) we get the following expressionfor z:

z = — ~) = n
2(~sin x

2 — /L1 sin x1) + n(n1 — n2). (1.7)

The coordinatez can be expandedin a doubleFourierseriesin the anglesA1, A2 with coefficients

Zk1k2given by:

= fdA1fdA2zexp{—i(k1A1+ k2A2)}.

We now substitute(1.7) for z in this integral,and changeintegrationvariablesto ~, x2 by using (1.6).
Thus we find:

Zk1k2= n
2 Jdxi fdx

2 D(~1~2)(~ sin x2 — ~ sin x1)exp{—i(k1A1+ k2A2)} + n(n1 —

0 (1.8)

where D(~1,x2)= ~( A1, A2) /~(x1~x2) 1 — ~ sin ~ — p2 sin x2 is the Jacobiandeterminantfor the
transformation(A1, A2)—~ (x1~x2).

Evaluatingthe double integralin (1.8) yields formulas (ld) in the text.

Appendix II: Solutionof theFokker—Planckequation

In order to solve eq. (4) with the boundarycondition af/onI~~.=0, we shall first perform some
changeof variables.First of all, putting ~= ~rIan~

3, y = n/n
0, the Fokker—Planckequationtakesthe

form:

of(y, ~)/a~=dIdy(y
3 9flo3y).

Now let’s changeagainvariablesto z y 1/2 andlet’s introducea new functiong(z, ‘~) accordingto
f = z2g. This functiong must then satisfy:

ôgIt9~=~ o2gIdz2 + (114z) gIaz — (11z2)g

and its Laplacetransform1(z, s) mustsatisfy theequation:
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~92jIöz2+ (liz) t~jI8z— (41z2 + 4s)j-= —4g(z, 0).

A furtherchangeof variablesto x = 2zvi~yields:

o92g1i9x2 + (lIx) ögItx —(1 + 41x2)j= —(us) g(x, 0). (11.1)

By the samechangesof variableswe find that, in order that f satisfies the boundarycondition
dfh9nj~~. = 0, j mustsatisfy:

ôj(x, s)iaxI~
1 = —(21x) ~(i, s), where i=2(sno/n*)u

12. (11.2)

The generalintegralof eq. (11.1)can be written as

j=A1
2(x)+BK,(x)+j

where‘2’ K2 aremodified Besselfunctions;A, B arenumericalconstantsandj is a particularintegral

that canbe determined,e.g. by Lagrange’smethod:

j= I~(x)[A —(1Is) Jx’ g(x’, 0) K2(x’) dx’] + K2(x) [B + (1is) Jx’ g(x’, 0) 12(x’) dx’]. (11.3)

TheconstantsA, B can thenbe chosenso that theboundarycondition(11.2) is satisfied.Indeed,upon
substituting(11.3) into (11.2) we get:

j(x,s)=[K1(i)12(x)/Ii(i)](lIs)Jg(x’,0)12(x’)x’dx’

+12(x)(1/s)Jg(x’,0) K2(x’)x’ dx’ + K2(x)(1/s)Jg(x’,0)12(x’)x’ dx’. (11.4)

Sincef(n, 0) = ô(n — n0), we must chooseg(x, 0) in the form ö(4sfx
2 — 1). Thenthe asymptoticsof

(11.4)for s—~ andfixed y hasthe form:

g(x,s)—(4s/x2)~4(1/2V~){exp[2v’~(1+ xi2-vT~—~l2’~/.~)}+exp[2v’~(x/2v’3~—1)]}

whenceit follows

f(y, s)—(1 I2y314’./~){exp[2v’~ (1 + 1 /“./y — 2/\1~)]+ exp[2V~(1 i-~r~’— 1)]) .

Equation(5a) in the text easilyfollows from the last formula
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Appendix Ill: Estimate for the delocalization border

Let’s evaluatethe 2nd momentof thedistribution over the levels: M2 = ((~n)
2)= ((n — (ii) )2 ~.

From the diffusion equationwe getapproximately

dIdr((~n)2)~(D) =an~((nin
0)

3) (111.1)

where a= 2r~an~713.The equationfor the 1st momentgives

d(n)idr—(3an
0/2)((n/n0)

2.) . (111.2)

In order to solve(111.1) and (111.2)wewill usea roughapproximation,namely,wewill substitutefor
n its meanvalue (n) which is justified if the localizationlength 1 ~ n

0. Doing so, andperformingthe
integration,we obtain

(n) = n0[1 — 3ar/2]~

((iXn)
2) = n~[(1— 3aT/2)2— 1]/3

The localization condition r2 = a2((~n)2)= a2!2 gives an equationfor r, the leastroot of which

determinesthe localizationlength 1:

(n~i3)[(1 — 3rai2)2 — = 2,2

(111.3)
1= TIa.

A straightforwardmanipulationgives then formulas (13), (14) with u 3ra/2.

Appendix IV: A method for computing hypergeometric functions

The numericalcomputationsof matrix elementsin (35) presentssometechnical difficulty sincea
direct expansionof hypergeometricfunctions in powerseriesof —4nn

0/(n— n0)
2 doesn’t give correct

valuesof B~,for n -= s 100 dueto strongcancellationsofdifferent termsandfinite computerprecision.
Thereforein orderto computethehypergeometricfunction Fweuseda different methodbasedon the
recursionformulasbetweenvaluesof F for threeconsecutivevaluess — 1, s, s + 1 (see,e.g. [40]).The
methodis essentiallyasfollows:

We take two exactvaluesof F(—s,—(n—1),2,z)fors=0,s=1(F(s=0)=1, F(s=1)=1+(n—
1)z/2) and thenwe recurrentlydetermineall F, up to s= n

5 n. SinceF, increasesfrom s = 0 up to
s = n, n and thendecaysup to s ~, theaboveproceduregives correctvaluesof F, only up to s = n,.
In orderto computeF, for greatervaluesof s in a rangen, <s <Smaxwe taketwo arbitraryvaluesfor
Fm and Fm+i where m~‘ Smax (for examplem SSmax)and recurrentlydeterminevalues of F for

— 10 < s< m. This latterproceduregives correct valuesof F up to an unknownconstantCF. The
valueof this constantis obtainedby comparisonwith oneof thepreviouslycomputedF~for s< n,. The
differencein the valuesof CF thus obtainedis less than 10 10 which guaranteethecorrectnessof the
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method. After taking into accountthis constantfactor we obtain very precisevaluesfor all 1~,with
0< S <Sma~(which obviously do not dependon theabritraryvaluesFm~Fm+~). An additionalcheckis
obtainedby comparingtherecurrentandtheexpansionmethodin regionswherethey work both (for
examplefor n 30).
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