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Results of theoretical and numerical studies of the quantum chaos are presented, and our current understanding of this 
phenomenon is discussed. The main attention is focused on the localization and ergodicity in classically fully chaotic quantum 
models, and on the related statistical properties of energy spectra as well as of eigenfunctions. 

1. Introduction 

The quantum chaos, a mysterious counterpart 
of the classical dynamical chaos is one of the most 
intriguing problems in physics currently under 
extensive studies by many researchers throughout 
the world. Professor Joseph Ford first addressed 
this difficult and exciting issue at the 1977 Como 
conference on Stochastic Behaviour in Classical 
and Quantum Hamiltonian Systems, organized by 
himself and Giulio Casati [1]. It was the first 
attempt to bring together various scientists who at 
that time worked separately in essentially the same 
direction. Joe Ford has greatly contributed to this 
field not only by studying and solving many par- 
titular problems but also by giving very interest- 
ing and original thoughts to the philosophy of 
dynamical chaos, both classical and quantal [2]. 
The present paper is a fragment in our current 
understanding of the phenomenon of quantum 
chaos which is gradually emerging, particularly 
from numerous discussions, and disputes, with Joe 
Ford. 

Our starting point is the dynamical chaos in 
classical mechanics, or in the classical limit of 
quantum mechanics, as we usually say. This phe- 
nomenon is well understood by now (see, e.g. refs. 
[3, 4]). We think of dynamical chaos as random 
motion (in the sense of Alekseev) of a purely 

dynamical system without any random parameters 
or any noise. According to the Alekseev-Brudno 
theorem (see ref. [5]) the necessary and sufficient 
condition for such a chaos is exponential local 
instability of motion on a set of initial conditions 
of dimension greater than one (to exclude the case 
of an isolated unstable periodic trajectory). Be- 
sides, the motion must be bounded, at least in 
some dynamical variables. The instability rate is 
characterized by the metric entropy h of 
Kolmogorov and Sinai (whose notation should not 
be confused with Planck's constant h). The ran- 
dom (chaotic) motion remains unpredictable after 
any number of preceding measurements with any 
finite accuracy, nor is it reproducible by any finite 
(cellular) automaton (in particular, by a digital 
computer). 

The ultimate origin of dynamical chaos lies in 
the continuity of the phase space in classical 
mechanics which implies an infinite amount of 
information related to almost any exactly fixed 
dynamical trajectory. The mechanism of local in- 
stability "unfolds" this information in time, so 
that asymptotically as t ~ o¢ the specific informa- 
tion per unit time approaches the limiting value 
J(t)/Itl ~ h [5]. The time interval tp, on which a 
partial prediction is still possible (" temporal de- 
terminism"), depends on the observation accuracy 
e, and it is determined by the randomness parame- 
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ter [61: 

hit[ Itl (1.1) 
R =  - ~ e l  tp " 

For  I tl < tp (R _< 1) a statistical description is also 
possible if e is small enough while for R >> 1 it is 
the only possibility ("asymptotic randomness"). 
Notice that randomness of the motion alone does 
not determine its statistical properties, which may 
happen to be rather unusual (see, e.g., ref. [7]). 

Turning now to the more profound quantum 
mechanics we, first, separate the problem into two 
unequal parts: (i) the proper quantum dynamics 
that is the time evolution, including stationary 
states, of the state vector q'(t), and (ii) the mea- 
surement with its unavoidable statistical effect of 
the irreversible g' collapse which is a sort of 
inevitable noise. In accordance with our dynami- 
cal approach, we shall restrict ourselves to the first 
problem only, as the other researchers in this field 
also do. To be more accurate, we assume that 
there are two measurements only: the first (com- 
plete) one fixes the initial state of a system while 
the second records the result of its evolution. 
Notice that unlike in classical mechanics, any in- 
termediate measurement would generally change 
the quantum motion considerably. 

In what follows we will discuss only Hamilto- 
nian (nondissipative) systems, considering them to 
be the more fundamental ones. Phenomenological 
friction is but a crude approximation of the 
molecular Hamiltonian chaos which is inevitably 
related to some noise according to the fluctua- 
t ion-dissipation theorem. 

Furthermore,  we are most interested in con- 
servative systems with the energy surfaces closed 
in phase space. In this case the principal peculiar- 
ity of quantum mechanics - the  phase space dis- 
c re teness-  manifests itself in a most explicit way 
which implies, in turn, the discreteness of the 
energy (and frequency) spectrum. The latter is not 
only incompatible with dynamical chaos but, in 
classical mechanics, is characteristic of the oppo- 
site limiting case, the regular motion. However, 

the fundamental correspondence principle re- 
quires some transition to chaos in the semi- 
classical region. How could it be possible? This 
question has been posed and answered in ref. [8] 
by means of introducing characteristic time scales 
of quantum evolution. 

The shortest (logarithmic) scale t E, which we 
will term Ehrenfest's scale, is of the order 

ht E - lnq,  (1.2) 

where h is the metric entropy (see above), 
and q -  h -1 is some characteristic quantum 
p a r a m e t e r - a  quantum number, for example (see 
also section 3 below). Apparently, this time scale 
was first discovered in ref. [9] (see also refs. [10, 
8]). It is explained by the fast spreading of a 
narrow wave packet because of the local instabil- 
ity of chaotic motion in the classical limit. Accord- 
ing to Ehrenfest's theorem, a narrow packet fol- 
lows the classical trajectory, hence its motion, on 
scale tE, is as random as in the classical limit. 
However, upon a complete quantum measurement 
the quantity e in eq. (1.I) reaches its minimal 
value, - l / q ,  hence R - 1, and the whole Ehren- 
lest scale falls into the domain of temporal de- 
terminism. 

Even though Ehrenfest's scale grows very slowly 
with q, it grows indefinitely as q ---, o¢ (h ~ 0). It 
is sufficient to provide transition to the classical 
chaos. However, it turns out that there exists a 
much longer (power law) scale t D of quantum 
dynamics which is obviously a more important 
one. It is given by 

In (COtD) - - lnq .  (1.3) 

Here co is a characteristic classical frequency. On 
this (longer) scale, some important features of the 
classical chaos still persist, such as diffusion and 
statistical relaxation. This "diffusion scale" has 
been discovered in numerical experiments [1], and 
was explained in ref. [8]. Just this scale is going to 
be considered below (sections 4 and 5). 
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As t ---> oo (t >> tD) the quantum nature of the 
evolution becomes decisive at any q ~ oo, and 
dynamical chaos manifests itself in a peculiar sta- 
tistics of energy levels as well as in the structure of 
eigenfunctions (sections 6 and 7). 

momenta (cf. eq. (2.2)) 

3gk 
h i = - - l l k  ~ 0  i " (2.5) 

2. An example of true quantum chaos 

The principal result of recent extensive studies 
in quantum chaos was the conclusion on its ab- 
sence as was first pointed out by Krylov [11] in the 
late forties. However, there are some special cases 
when the true dynamical chaos proves to be possi- 
ble in quantum mechanics as well. 

Consider a classical dynamical system on an 
N-dimensional torus with angle variables 01: 

4 = g i ( O k ) ,  i , k =  1 . . . . .  N. (2.1) 

Then, in the case of time-reversible dynamics, for 
example, the momenta also grow exponentially 
(2.3). 

Now, consider a quantum system with Hamilto- 
nian operator [12] 

I ~ = ½ ( g k h k + ~ k g k ) ,  ~k = - - ioe  k.  (2.6) 

Schr~Sdinger's equation implies 

~p 3 
~----f + -~k (ogl,) = 0, (2.7) 

Here the functions & are of period 2~r in all 0 k. 
The chaos is possible in such a system for N > 3 
(see, e.g., ref. [3]). It means that the equations of 
motion linearized about some trajectory O°(t) 

~,={k~-~k , (2.2) 

where ~i ~" Oi - -  07, are exponentially unstable, that 
is 

~ i -  ea ' t -  (2.3) 

Here A m is the maximal Lyapunov exponent of 
the linear system (2.2). 

The dynamics of system (2.1) can be described, 
for any functions gi, by the conserved Hamilto- 
nian 

where p = ff'~/,* is the probability density, which 
coincides with the continuity equation for the 
classical system (2.1). Hence, the quantum prob- 
ability would evolve exactly in the same way as 
the classical one, including the case of chaotic 
motion [12]. 

This simple example clearly demonstrates how 
extraordinary chaotic quantum dynamics has to 
be. Besides unbounded motion in momenta the 
latter are to grow exponentially fast. This is be- 
cause the fine-grained (exact) probability density 
does not become homogeneous in time, as the 
coarse-grained density does; on the contrary, the 
former becomes more and more "scarred" by 
the mechanism of local instability of trajectories. 
This implies a fast growth of wave numbers, and, 
in quantum mechanics, of momenta. 

H = nkgk(Oi), (2.4) 

which implies the equations for the conjugate 

3. The quantum rotator model 

For studying the dynamics of classically chaotic 
quantum systems we have chosen the model of a 
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quantum rotator specified by the Hamiltonian [1] 

~2 
/ - I= -~- + k cos 0 . 8 r ( t ) .  (3.1) 

Here the momentum is ~ = - i ~ / 3 0 ;  0 is the 
conjugate phase; V=  k cos 0 is the perturbation 
function; 8 r ( t )  is the delta-function of period T, 
and we have set h = 1. The dynamics of the corre- 
sponding classical system is described by the 

standard map [13] 

f i = p + K s i n O '  0 = 0 + f i ,  (3.2) 

where p = Tn, and K= kT. The classical limit 
here corresponds to k ---, oo, T ---, 0 while K = kT 
= const. 

The dynamics of the quantum model (3.1) is 

also specified by a unitary mapping 

g , = e x p  i ~ - - ~  e x p ( - i k c o s 0 ) q "  (3.3) 

and, unlike the classical model, essentially de- 
pends on both parameters k and T. In this model 
the perturbation is periodic in time. We mention 
that many particular physical problems can be 
reduced to such a model (see, e.g., ef. [14]). 

Studying a map (especially numerically) is much 
simpler than a continuous model. This was pre- 
cisely the main reason to choose model (3.1) from 

the beginning. 
As we shall see fight now the potential richness 

of this "simple" model is still far from being 
exhausted (see also ref. [7]). Particularly, system 
(3.1) may be thought of as a model of conservative 
dynamics, too. Indeed, in the classical limit a 
two-dimensional map of type (3.2) is related to 
some conservative system of two degrees of free- 
dom (see, e.g., ref. [3]). Thus, such a map describes 
the local dynamics on the energy surface. To some 
extent, this should be true for the quantum map 
(3,3) as well. 

Moreover, the model (3.1) can be modified to 
represent the global dynamics of a conservative 
system [16]. To this end we "close up" the 

momentum axis p of the classical model (3.2) over 
some period P0, so that the infinite phase cylinder 
of map (3.2) is converted into a finite torus. The 
map remains smooth if Po = 2~rrn0, with m 0 an 
integer. Then the period in n is N =  2~rmo/T, 
which is also the full number of quantum states 
for model (3.1) on a toms. Hence the quantity 
T/2~r = mo/N is bound to be rational. For in- 
finite quantum map (3.3) on a cylinder this would 
imply a very peculiar dynamics, the so-called 
quantum resonance [1, 15]. In the theory of this 
quantum phenomenon [15] the quantum map (3.3) 
is represented by a finite-dimensional unitary ma- 
trix U,,, of some dimension N. 

To apply this theory to the finite quantum model 
on a torus, we may simply pick out only the 
solutions '/ '(n, "r) that are periodic in n in the 
momentum representation, and understand them 
as a finite Fourier series: 

NI 
• (0,  ~') = Y'. g ' (n ,  ~') e i"°, (3.4)  

n =  -- N 1 

where N = 2N 1 + 1 is odd, and ~- is the number of 
map iterations. 

The corresponding unitary matrix is conveni- 
ently represented in the following symmetric form: 

v , . .  = (3.5) 

where the diagonal matrix 

Gu, = 8,,,exp ( ~ l  2 ) (3.6) 

describes a free rotation over time 7"/2, while the 
matrix 

( B , , , = ~  Y'~ exp - i k c o s  l 
I= -- N 1 

× e x p ( - i ~ l ( m - n ) ) .  (3.7) 

represents the effect of the perturbation (a "kick"). 
In the semi-classical limit, the additional condi- 
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tion N T = 2 ~ m  o = c o n s t  ( N ~ )  should be 
satisfied. "Energy"  levels t0q of this model are 
always within the interval (0, 2¢r), and are related 
to the eigenvalues hq of  the unitary matrix Umn by 
the expression X = exp (ito). 

Similar models on a sphere, rather than on a 
torus, were also studied (see, e.g., ref. [17]). 

The dynamics of the classical infinite model 
(3.2) is completely determined by a single parame- 
ter K. Depending on its value there are two dif- 
ferent regimes of motion: (i) bounded (IAnl 
< v/-k/T), and (ii) unbounded. The critical K 
value separating them is most likely to be Kcr = 
0.9716.. .  - -1  [18]. Notice that in both regimes 
regular and chaotic components of motion coexist, 
the measure of the former vanishing as K grows 
[13]. 

At K > Kcr the motion in the connected chaotic 
component  may be described as a diffusion in n 
with the rate 

<(An) 2) Do(K ) 
D = ~" T2 , (3.8) 

where Do(K ) is the diffusion rate in p for the 
map (3.2); ~" the number of iterations. 

In the semiclassical region, the classical diffu- 
sion persists within the diffusion time scale which 
is of the order z t~-  D -  k 2 [8]. For ~" << "i'D the 
quantum dependence Dq(K) mimics all the details 
of the classical diffusion [19] in accordance with 
the correspondence principle. 

The quantum diffusion stops for z >> ZD, and 
turns into a stationary oscillation which was ob- 
served up to ~" = 5 × 104 [20]. This would imply a 
discrete quasienergy spectrum for model (3.1) [8]. 
Hence, the "quantum chaos" is not true chaos as 
in the classical limit. Notice that deviations from 
the latter already begin on a much shorter scale 
(1.2) where q = k. Particularly, the local instability 
of quantum motion disappears at ~" > zE [21, 22] 
while residual correlations persist [21, 23] (see also 
ref. [4]). 

A striking illustration of dynamical stability in 
quantum chaos is afforded by a numerical experi- 

ment with time reversal [23]. From the Hamilto- 
nian (3.1) it follows that upon reversal t--* - t  at 
any instant t = (m + ½)T, with integer m, the sys- 
tem comes back to the initial state. In the classical 
limit the chaos results in the practical irreversibil- 
ity of motion due to computation errors. Indeed, 
even at the accuracy e -  10 -12 the instability de- 
stroys reversibility in just a few iterations ~'R- 
I l n e l / h -  10 where h - - l n ( K / 2 ) .  In a quantum 
system the instability is absent, and the reversibil- 
ity accuracy is comparable, in order of magnitude, 
with e [23]. Comparison of the initial probability 
distribution I xr,(O)l 2 with that at the reversal in- 
stant of time, ~-= 150, and that of return to the 
initial state, ~" = 300, is shown in fig. 1. The dif- 
ference in I q[  2 at • = 0, and ~- = 300 is - 10-10. 

At "r = 150 the wave function xo(8) is a set of 
most narrow peaks whose width A0 is determined 
by the number of excited states: A0 ~ l /An ,  where 
roughly An - (D,rD) 1/2. The splitting into peaks in 
the diffusion process is the quantum counterpart 
of classical "scarring" of the distribution function 
for a chaotic motion. However, unlike exponen- 
tiaUy fast splitting in a classical system, the quan- 
tum process goes on much slower, as a power law 
only, and even completely stops, as does the dif- 
fusion, for z >> rD- 

4. Quantum localization principle for chaos 

Following ref. [8] we first consider qualitatively 
the mechanism of diffusion limitation in model 
(3.1) using simple physical arguments. According 
to the correspondence principle, the quantum mo- 
tion in the semiclassical region must be close, in 
some sense, to the classical one. This is obviously 
true on the shortest time scale ~'E until a wave 
packet is spread. At ~- > '/'E the quantum dynamics 
differs, of course, from the classical one [4], yet the 
classical diffusion still persists as the numerical 
simulation testifies [1, 8, 23]. 

For a continuous quasienergy spectrum the dif- 
fusion might go unbounded. The important point 
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is that  in case of  a discrete spectrum, with mean 

level densi ty Po, the diffusion can still go on during 

a finite t ime interval 

- ~D - Po- (4.1) 

It is directly inferred f rom the uncertainty princi- 

ple that  for  ~-<< P0 the system does not  resolve 
("does not  feel") the spectrum discreteness pro- 

vided the transitions between unper turbed states 

are efficient enough, that  is, the per turbat ion ex- 

ceeds Shuryak's  quan tum border  of  stability [29]. 

In model  (3.1) the latter is at k - 1 [1, 8]. Estimate 

(4.1) gives the diffusion time scale ~'D for model  

(3.1). It is impor tant  that the density Po in eq. (4.1) 

is determined by those eigenfunctions only which 
are actually present in a given quan tum state, their 

effective number  being always finite. 

~0 

a 

M 

-I.0 -0,o 1.0 

~.8 IY IO)I~ 

oo 0 

• i . . . . . . . . .  I '  . . . . . . . .  I . . . . . . .  " ' ' i : : : : : : I : : ~ : : : ~ : I : : : : : : : : : I  ~ : :  = 
-~.14 -2.14 -LI4 -OJ~ 0.86 1.86 2.g6 

Fig. 1. Probability distribution in model (3.1) at different instances of time (k = 20; K = 5): (a) ~" = 0, initial Gaussian distribution 
(lower curve); ~" = 300, final distribution (upper curve, shifted upwards); (b) ~" = 150, time reversal. 
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Consider, first, the evolution of a single unper- 
turbed state. The number of neighbouring unper- 
turbed states excited due to diffusion during time 
~'D would be An - Dv/-D-~n. It implies that the eigen- 
functions are superpositions of many ( - A n )  un- 
perturbed states, and vice versa, any unperturbed 
state is represented by the same number of eigen- 
functions. Assuming that quasienergies are homo- 
geneously distributed within the interval (0,2~r) 

we obtain Po - A n - ~'o, a n d  

~'D -- D - A n -- l, (4.2) 

where l is the effective number of unperturbed 
states finally excited after the diffusion is over. In 
other words, l is the localization length of eigen- 
functions in n. Remarkably, estimate (4.2) relates 
essentially quantum characteristics, the diffusion 
scale ro  and the localization length l, to the 
diffusion rate D in the classical limit. 

The estimate (4.2) for ~'D apparently does not 
depend on the initial state apart from very un- 
likely states close to the eigenfunctions. As to the 
localization length l for the final state of a sta- 
tionary distribution, eq. (4.2) holds only if the size 
of initial state l 0 < l. In the opposite case (10 >_ l) 
the size does not change at all. 

5. Localization of quasienergy eigenfunctions, and 
of the stationary distribution 

In ref. [24] a similarity was pointed out between 
the above-mentioned localization in momentum 
space (in n) and the well-known Anderson locali- 
zation in a one-dimensional random potential (for 
the latter see, e.g., ref. [25]). The most important 
distinction between the two phenomena is that our 
model (3.1) has no random parameters. Also, the 
mechanism of localization in our model is, gener- 
ally, completely different in various domains of 
the parameters. If K >_ 1 and k >_ 1 the localiza- 
tion is due to the hold-up of classical diffusion 
because of quantum interference effects. On the 
other hand, for K < 1 and k >_ 1 it is related to the 

quantum tunnelling in a classically inaccessible 
region. 

Borrowing an idea from solid state physics 
[25, 26], one can calculate the quantum localiza- 
tion length via Lyapunov exponents in an aux- 
iliary classical Hamiltonian system [27]. An im- 
portant advantage of this approach is in that one 
does not need to calculate the eigenfunctions, thus 
simplifying much of the numerical procedure. In 
the problem under consideration this method was 
also used in ref. [28]. 

For model (3.1) the equation for an eigenfunc- 
tion % with quasienergy to can be written as [27] 

(k) (o 
~on+~J~ -~ sin 2 4 2 = 0 '  (5.1) 

where Jr is the Bessel function. Because of sharp 
drop of Jr at Jr I > N - k / 2  one can leave a finite 
number 2N + 1 - k of terms in the sum. Then, the 
recursion, eq. (5.1), determines a 2N-dimensional 
dynamic system which turns out to be the Ham- 
iltonian [27]. Hence, it has N positive (-/i +) and N 
negative (Yi-) Lyapunov exponents, and for each 
pair 7i++ V /=  0. Asymptotically, the localization 
length 1 is determined by the minimal Lyapunov 
exponent Y1 = 1 /1 ,  and the eigenfunctions behave 
like c p n ~ e x p ( - I n l / l )  as Inl---' oo. Hence, the 
quasienergy spectrum is purely discrete. 

According to the theoretical estimate (4.2) the 
localization length is given by 

l =  a D  = D ° ( K )  
2T 2 (5.2) 

The numerical factor a = 1 has been obtained in 
ref. [27] by comparison with the exactly solvable 
Lloyd model. For this model the perturbation is 
V(O)  = 2 arc tg(E - 2k cos 0), and, in the quasilin- 
ear approximation, the diffusion rate is 

1 fW ave2 
D = = Yo ao  I dO.  (5.3) 
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Lyapunov exponents were computed using the 
standard techniques (see, e.g., ref. [3]) in the 
parameter range: 5 < k < 75; 1.5 < K <  29; T <  1 
(T /4~r  irrational), and D O varying by four orders 
of magnitude [27]. The mean value ( a ) =  0.57 + 
0.02 (here and below statistical errors only are 
indicated). A slightly enhanced a value might be 
observed because the ratio k / l  - 0.1 was not small 

enough. 
Another way to check eq. (5.2) is by computa- 

tion of the localization length for stationary distri- 
bution. Let the system be initially in state n = 0, 
for example. The stationary distribution for ~- >> '/'D 
is obtained by time averaging of probabilities 
I xO(n, I")12: 

]:(n) ~ I'/'(n, , )1  z=  E I%,(0)%,(n) 12, 
tYt 

(5.4) 

where %,(n)  are the eigenfunctions. Notice that 
f ( n )  is the counterpart of the density-density 
correlation in the solid state problem [25]. Ex- 
ponentiaUy localized eigenfunctions may be repre- 
sented as 

I%~(n) [ -  exp ( ~ +  [n-ml ~nm), (5.5) 

fluctuations, 

= Z),l nl, 

we have, according to refs. [19, 27], 

1 1 D~ 
l~ - t 2 ' lD~ <_ l ,  

1 1 
lD~ > 1, 

l~ 212D~ ' 

(5.8) 

Again, a similar phenomenon is known in solid 
state physics [25]. 

An example of the stationary distribution is 
shown in fig. 2. The law (5.7) is verified approxi- 
mately within a long range (0 < x = 2 D n I l ls  <_ 25) 
over about 10 orders of magnitude in fN varia- 
tions. A large-scale structure of f N ( x )  is ap- 
parently related to fluctuations of ~ , , .  

Numerical simulation [19] in the parameter 
range 5 < k < 120; 9 < l s < 180; T <  1 (D o varia- 
tion comprises four orders of magnitude) results 

in (as)  = 1.04 +_ 0.03 where a s = l s /D  = lsTZ/Do 
(4.2), and l s was numerically determined using eq. 
(5.7) (see fig. 2). Thus, l s = 2l, and the diffusion 
rate in ~,,~ is 

1 2 
D~ = 7 --" D "  (5.9) 

where ~,,, describe fluctuations about average ex- 
ponential dependence, and ( ~ , , , ) =  0. Assuming 
that on the average 

Direct computation of D~ from the fluctuations of 
Lyapunov exponents gives (lD~) -- 1.14 [27]. 

1 ( l % , ( n ) 1 2 ) = ~ e x p ( - 2 [ n - m [ )  , (5.6) 

we obtain from eq. (5.4) 

f ( n )  = 1 + 21nl / t s  ( 21hi 1 
2l s e x p -  ls ]. (5.7) 

It may seem strange that the distribution localiza- 
tion length I s is generally different from l for 
eigenfunctions. This is due to large fluctuations in 
~.m- In the case of diffusively growing Gaussian 

0 

× 
B Io 2~ ~0 

Fig. 2. Stationary distribution for k = 10; T = 0.5; K = 5. 
Straight line: f-N = e-X; fN = 21~](n)/(1 + x); x = 2n/ls. 
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Above we considered the asymptotic behaviour 
of eigenfunctions and of the stationary distribu- 
tion at n >> l. Those at n - 1 are also of impor- 
tance as they determine, for example, the mean 
energy of stationary oscillations, E s = {n2) /2 .  If 
eq. (5.7) holds, then (n 2) = l 2, and E s = D2/2.  
This is also in a good agreement with our numeri- 
cal data: ( 2 E s / D  2) = 0.92 _+ 0.04. 

6. Energy level statistics 

Asymptotically as t ~ oo, the time evolution of 
any bounded quantum system (at least, a con- 
servative one) is almost periodic because of its 
discrete energy (and frequency) spectrum irrespec- 
tive of the motion in classical limit. This is just the 
opposite to the classical chaos (hence, the term 
"quantum pseudochaos" [30]). Yet, "remnants" of 
classical chaos still persist in peculiar statistical 
properties of the quantum spectrum, which will be 
discussed in this section, and of chaotic eigenfunc- 
tions to be considered in the next section 7. 

These statistical properties have been studied 
since long ago, that led to the development of the 
random matrix theory, a statistical theory closest 
to the quantum dynamics (see, e.g., refs. [31, 32]). 
Until recently, however, this theory had been un- 
derstood as some general description of a typical 
"complex" quantum system with many degrees of 
freedom. A striking resemblance to the traditional 
philosophy in statistical mechanics! Apparently, 
the relation of the statistics of quantum spectra to 
the dynamical chaos in classical limit was first 
considered in refs. [33, 34]. Much later numerical 
experiments on simple quantum models of only 
two degrees of freedom demonstrated surprisingly 
good agreement with random matrix theory, in- 
deed [35]. This important result for the energy 
level statistics of a conservative system has been 
extended in ref. [36] to the quasienergies of the 
time-dependent model (3.1). 

Here we consider the finite model (3.5) of a 
conservative quantum system as explained in sec- 
tion 3 above. Random matrix theory, particularly, 

predicts that the distribution of nearest energy 
level spacings has the Wigner-Dyson form [31, 32] 

p ( s )  = As ~ e -  Ss2, (6.1) 

where A, B are normalizing constants; s the spac- 
ing with ( s )  = 1, and the parameter/3 = 1, 2 or 4 
depends on the system's symmetry (for a new 
recent discussion of this dependence see refs. 
[36, 37]). For our finite model, /3 = 1. 

In fig. 3, two characteristic examples of numeri- 
cal data for model (3.5)-(3.7) are shown. Because 
of the spatial parity conservation the eigenfunc- 
tions are either even or odd: xo,+(n)= _+ ~ o , ( - n )  
where o~ is an "energy" eigenvalue. Both sets of 
eigenvalues were processed separately, and the 
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Fig. 3. Nearest energy level spacing distribution in model 
(3.5)-(3.7) for T= 16~/(2N~ + 1); N t = 25: (a) k --- 20; K~- 
20; 1=130; A=5; (b) k=5; K--5; /~6; A ~-0.25. Curves 
are Wigner-Dyson distribution (6.1), fl = 1. 
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results were summed up. To further improve the 
statistics, 20 values of the parameter k were used 
with Ak = 0.2, the total number of energy levels 
amounting to 20 × 51 = 1020. The reduced spac- 
ing is s = N 1 Aw/2~r, where A~0 is the difference of 
nearest energy values, and N 1 = (N - 1) /2  = 25 
the number of eigenfunctions with a given symme- 
try. The calculation accuracy in ~ = exp(i~0) was 
checked by the deviations I lXl - 11< 10 -5. 

For  both cases in fig. 3, the classical motion is 
known to be fully chaotic [13] as K =  kT>> 1. 

Yet, the two distributions p ( s )  reveal a striking 
difference. Our explanation is in that a new im- 
portant  parameter comes here into play, namely, 
the ratio A = I / N  1 of the localization length (sec- 
tion 5) to the dimensionality of eigenfunctions in 
Hilbert space that is the maximal number N x of 
(independent) unperturbed states coupled in an 
eigenfunction. 

In one case (fig. 3(a)) A---5 >> 1, that is, the 
eigenfunctions are ergodic in the full unperturbed 
basis (see section 7 below). As a result there is a 
good agreement with random matrix theory (6.1), 
well confirmed by the X2-criterion: X2(24)--28.6 
which corresponds to a confidence level of 23 
percent. 

In the other case (fig. 3(b)) A = 0.25 < 1, which 
leads to an undisputable deviation p ( s )  from eq. 
(6.1). Thus, random matrix theory is applicable to 
classically chaotic systems under the condition 
A >> 1 only, and we call eq. (6.1) the "limiting 
statistics". The new result for A < 1 we term "in- 
termediate statistics" because there are good rea- 
sons to believe [36] that in the limit A ~ 0 the 
distribution p (s)  ~ exp ( - s) would approach the 
Poisson statistics of a completely integrable sys- 
tem in spite of chaos in the classical limit. 

An important  question arises: could the inter- 
mediate statistics be described by a one-parameter 
(A)  family of distributions? A similar possibility 
was discussed by several authors and recently 
rejected in ref. [38] for a different kind of inter- 
mediate statistics due to the presence of regular 
motion in classical limit. In our case, however, we 
believe that it is true, indeed, and there exists a 

universal distribution pu ( s ,A )  connecting both 
limits, Poisson's and Wigner-Dyson's.  Moreover, 
we conjecture that the localization parameter A 
must be related somehow to the inverse "tempera- 
ture" 13 (6.1) in Dyson's thermodynamical model 
of level repulsion [39]. This hypothesis is currently 
under study. 

7. Chaotic structure of eigenfunctions 

Even though random matrix theory considers 
statistical properties of both energy levels as well 
as eigenfunctions, until recently the former were 
studied almost exclusively. One reason was that 
the data on eigenfunctions are not directly 
available in laboratory experiments. However, this 
restriction does not take place in numerical simu- 
lation. The second, more profound, difficulty is 
that the eigenfunction structures, unlike the eigen- 
values, are noninvariant under rotation of the 
basis. Particularly, there always exists a special 
bas is -  the eigenfunctions themselves- with trivial 
structure. In a sense, such bases are a priori very 
unlikely. In any event, it does not preclude the 
formulation and proof of a very important theo- 
rem [40] which states that in a classically ergodic 
system almost all eigenfunctions sufficiently far in 
the semiclassical region are also ergodic. In what 
follows we are going to make use of the unper- 
turbed basis. 

In the spirit of random matrix theory we define 
ergodicity by the condition ( [~m(n) l  2> = 1 / N  1, 

where q , , (n)  is probability amplitude for the mth 
eigenfunction in the n th unperturbed state, and 
the normalization zULl[kOm(n ) ]2= 1 is assumed. 
The averaging above is over either the same eigen- 
function (in n), or different eigenfunctions (in m), 
or various matrices U,,, with different values of 
parameters, or any combination of the former. 

The obvious condition for ergodicity is A = 
l / N  1 >> 1. In the semiclassical region l - k 2 ~ o o ,  

and N a - m o / T - m o k / K ~  ~ so that A 
K k / m  o ~ ~ ,  which leads to ergodicity in accor- 
dance with Shnirelman's theorem [40]. 
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A more interesting and difficult question con- 
cerns the fluctuations of g',,(n). Gaussian fluctua- 
tions were conjectured in several papers (see, e.g., 
refs. [41]). Here we present our numerical results 
for model (3.5)-(3.7). 

Because the matrix U,~, is unitary and symmet- 
ric, the real and imaginary parts of the eigenfunc- 
tions coincide. Hence, it is sufficient to study the 
eigenfunctions of the real part Re(Urn,). An exam- 
ple of a distribution of the values xI,- xt,,,(n) of 
different odd eigenfunctions m = 1 . . . . .  N 1 at dif- 
ferent n = 1 . . . . .  N 1 for 20 different matrices U,, n 
is presented in fig. 4. Curve I shows the Gaussian 
distribution 

w(,/,) = f~2--~ e-*'"J2, (7.1) 

assuming ergodicity ( ~ 2 )  = l /N1 ' and (~/') = 0. 
At first glance the agreement is fairly good. Yet, 

X2(38) = 98, and the confidence level < 10-6(!). 
Hence, the fluctuations are close to Gaussian ones 
but certainly not exactly Gaussian. 

Our explanation of this surprising disagreement 
relies upon the finite dimensionality, N1, of the 
eigenfunctions. As a result, if' fluctuations are 
strictly bounded by the condition x~t2 _<< 1, and an 
exact Gaussian distribution is impossible. Instead, 
we assume, following random matrix theory, the 
eigenfunctions to be invariant under any rotation 
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Fig. 4. Fluctuat ions of chaotic eigenfunctions for the parame- 
ters in fig. 3(a). Curve I is Gaussian distribution (7.1); curve II 
the distribution (7.2). 

of the basis. Then (see, e.g., ref. [32]) 

wNl(g') = v ~ F ~ ) ( 1 -  (7.2) 

where F is the gamma-function. This distribution 
is also shown in fig. 4 (curve II). The difference 
from a Gaussian distribution appears to be negli- 
gible. Yet, the X2-criterion (X2(38) = 56, 3 percent 
confidence level) clearly indicates a much better 
agreement of numerical data with eq. (7.2) which 
approaches the Gaussian distribution (7.1) in the 
limit N 1 ---, o0 only. This is again in agreement 
with random matrix theory provided the quantum 
system is ergodic (A >> 1), and fully chaotic in the 
classical limit. 

An additional check of eq. (7.2) is by calcula- 
tion of the moments m k of distribution (7.2) 
normalized to unity for Gaussian distribution. 
Comparison of analytical and numerical results, 

m(2 a) = 1, 

m(2 n) = 0.996 + 0.012, 

1 
m~4") = 2 = 0.926, 

m(4 ") = 0.888 _ 0.030, 

1 
= 0.798, 

m (n) = 0.703 + 0.068, 

also clearly shows deviations from a Gaussian 
distribution in agreement with random matrix the- 
ory. We emphasize again that unlike the later, our 
model has no random parameters. 

During many years the present authors have 
greatly benefitted from permanent (though 
chaotic!) collaboration, discussions, and disputes 
with Professor Joseph Ford. May it last forever! 
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