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In this paper we investigate the properties of the quan- 
tized discrete Frenkel Kontorova model. The structure 
of the ground state is numerically analyzed by means 
of the Metropolis algorithm; special attention is given 
to the effects of quantization on the Cantori structure 
of the classical ground state. These quantum effects pro- 
duce a new structure which can be approximately de- 
scribed by using a sawtooth map instead of the Standard 
map. The dependence of the quantum energy on temper- 
ature is also investigated and discussed in connection 
with these structural modifications. 

1. Introduction 

The understanding of the correspondence between quan- 
tum and classical mechanics for nearly integrable sys- 
tems is a subject of considerable interest [l]. Following 
the highlights of the Kolmogorov-Arnol'd-Moser theo- 
rem, an effectual combination of mathematical skill and 
sophisticated computer performances has been revealing 
in more and more detail the process of destruction of 
invariant surfaces that takes place when a classical in- 
tegrable system is subjected to a perturbation of increas- 
ing strength. It is now known that after the breakup 
of certain invariant surfaces (tori), some relics may be 
left in the form of invariant Cantor sets, which are named 
Cantori [2, 3, 4]. 

Now the necessity arises of understanding the quan- 
tal relevance of such intriguing classical results. Increas- 
ing efforts are devoted to the investigation of the effect 
of classical Cantori on the structure of quantum wave 
functions [5, 6]. Up to now, only dynamical models have 
been considered, i.e. models describing the evolution in 
time of some physical system. However, Cantori can be 
relevant also for static properties of many-particle sys- 
tems. A well known example from Solid State Physics 
is the discrete Frenkel-Kontorova model (FK) [3, 4, 7]. 

The classical version of this model has attracted 
much attention because of the unusual properties of its 
ground state. A rigorous mathematical analysis has 
shown that the configuration of the (properly defined) 
classical ground state is determined by certain invariant 
sets of the Standard map, which can be tori or Cantori 
according to whether the parameter of the map is smaller 
or larger than a critical value. 

This transition involves a deep change in the struc- 
ture of the ground state and is accompanied by a number 
of physically relevant phenomena, such as the appear- 
ance of a phonon gap. It is therefore important to investi- 
gate to what extent such classical predictions survive 
in the more realistic quantum domain. To the best of 
our knowledge, only a few attempts have been made 
at theoretically investigating this problem [-7, 8, 9] and 
very little is known, because the high nonlinearity of 
the model renders a mathematical analysis very difficult. 

In this paper we present the first numerical results 
on the structure of the quantum ground state (some of 
these results were anticipated in [10]). In our simulations 
we used the Metropolis algorithm [11, 12] for computing 
Feynman-Kac integrals. In Sect. 2 some basic facts about 
the FK model are briefly reviewed and the numerical 
methods of our quantum simulation are described. In 
Sect. 3 the classical and quantum numerical results are 
discussed. 

Finally, Sect. 4 is devoted to some results on the 
quantum thermodynamics of the model, which illustrate 
the dependence of the energy on the temperature. 

2. Model and numerical method 

The discrete Frenkel-Kontorova model is an infinite lin- 
ear chain of linearly coupled oscillators, in an external 
periodic potential. It is defined by the Hamiltonian: 

H = T +  V =  ~ [�89 Pi 2 + �89  xi-  1) 2 - K cos (xl)] 
i 

(2.:) 
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where we have taken the mass of  the particles and the 
elastic cons tant  equal to one. The abscissae x~ of  the 
particles in the equil ibrium conf igura t ion must  satisfy 
the condi t ion :  

8V 
- x ~ + ~  + 2 x ~ - x ~ _ a  + K sin (x~)=0. (2.2) 

Ox~ 

U p o n  in t roducing new variables p~ + ~ = x~ + ~ - x~ the con- 
dit ion can be written in the form of an area-preserving 
map  

pi+ ~ = pi + K sin (xi) 

x~+ ~ = x~ + p~+ t (2.3) 

which becomes the well k n o w n  Standard  map  [13] as 
soon as the variables x~ are taken modulo 2 m  

If  a fixed density is assumed for the infinite chain, 
then the equil ibrium conf igurat ion corresponds  to an 
orbit  of  the S tandard  map  with a given ro ta t ion  number  
v. In our  investigations we used a finite chain of  s oscilla- 
tors, with a given length 2rcr and  fixed b o u n d a r y  condi-  
tions. This amoun t s  to approximat ing  the true infinite 
orbit  with ro ta t ion  number  v by means of  periodic orbits 
with rat ional  ro ta t ion  numbers  v~ = r/s. This kind of ap- 
proximat ion  is frequently used in numerical  investiga- 
tions of  the b reakup  of  K A M  curves [14]. In  our  case, 
we have taken for v~ the rat ional  approximants  of  the 
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golden mean ( r  1)/2, as provided by a continued frac- 
tion expansion. This choice is motivated by well-known 
results of the KAM theory for the Standard map: for 
irrational v and K small enough, there is an invariant 
torus (a K A M  curve) of the Standard map, with rotation 
number v. These K A M  curves break at some critical 
value Kor of K;  in their places, invariant Cantor sets 
named Cantori are left. The last K A M  curve undergoing 
this fate corresponds to the most irrational rotation 

number v=(1 /~-1) /2 ;  its breakdown occurs at Kc,= 
0.971635... [14, 15]. The bulk of our classical and quan- 
tum computations were made with r=34,  s--55; how- 
ever, also additional checks with r=233,  s=377 were 
performed. 

The breakup of the invariant tori of the Standard 
map has a counterpart in the FK model; indeed at 
K--  Kc~ an abrupt change occurs in the nature and prop- 
erties of ground state of that model. This transition was 
investigated by Aubry [3, 4] and is known as a "transi- 
tion by breaking of analyticity", for the following reason. 
Let u~=x~(mod 2re) and let l = 2 = v  the average distance 
between neighbouring oscillators. Then a function f is 
proven to exist, such that, for any i, 

ui = f ((il + ~) (mod 2 re)) (2.4) 

135 

where e is an appropriate phase. This f is called a "hull 
function". For K < Kor it is a monotonic analytic func- 
tion, and for K > K c r  it is a monotonic function with 
a countable set of step discontinuities. The stepwise char- 
acter of f for K>K~r  reflects the presence of Cantori 
in the Standard map, and shows that the ground state 
of the FK model is never chaotic. 

The transition by breaking of analyticity is accompa- 
nied by a number of physically relevant manifestations. 
Of particular relevance to the present work is the appear- 
ance of a gap in the "phonon spectrum" [16] - i.e., 
the spectrum of frequencies of small oscillations around 
the equilibrium configuration. 

The above sketched classical phenomenology is illus- 
trated by the numerical results shown in Fig. 1, which 
provide a term of comparison for the quantum results 
to be discussed below. In order to compute the equilibri- 
um positions of the classical model we exploited the gra- 
dient method described in [16]. The left and the right 
columns in Fig. 1 refer to values of K = 0 . 5  (subcritical) 
and K = 5  (overcritical) respectively. Besides the hull 
functions (la,  l d), we show pictures of the points 
xi, Pi( = x i -  x l_ 1) in the phase space of the Standard map 
(not to be confused with the phase space of the FK mod- 
el). Moreover we present a plot of the values gi, defined 
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by 
x i + l - 2 x i + x i  t (2.5) 

gi= K 

versus the values x~. As is apparent from (2.3) the points 
thus obtained must belong in the graph of the function 
g (x)= sin (x); actually in the overcritical case they belong 
in a Cantor subset of that graph. 

The Hamiltonian (2.1) depends on (s-1)  configura- 
tion variables x j, j = 2, ..., s, (x t = 0, xs + 1 = 2 zc r). For nu- 
merically investigating the ground state of the quantum 
model we used a well known method [11, 12], based 
on Feynman quantization. In the Feynman approach 
the quantum propagator between states Ix~> and Ixf> 
from time 0 up to time t is given by 

( x f l  e-int/"lxi> ~- S [dq] e~ stql (2.6) 

where x denote vectors of positions x j, 2 <j  ~ s and S [q] 
is the classical action of a path which starts from Ix~> 
at time 0 and reaches [xy> at time t. The formal integral 
S[dq] means the sum over all such paths. 

Upon going over to the euclidean time z=i t ,  one 
gets the euclidean propagator: 

ao 

<xfl e-~"/~lx,> = Y, %*(xl) %(x3 e -~E"/n (2.7) 
n = 0  

with ~(x), E, the energy eigenfunctions and eigenvalues 
of the Hamiltonian. In the Feynman-Kac formulation 
this propagator can be found by averaging over all classi- 
cal paths weighted by the Boltzmann factor c -~s/~ where 
S is now the euclidean action. According to (2.7) this 
average yields quantum thermodynamical averages [11, 
12] with the parameter h/z playing the role of tempera- 
ture. Nevertheless, if z/h is large enough the ground state 
contribution dominates in formula (2.7) and the ground 
state expectation value of any observable can be comput- 
ed as an average over such a Boltzmann distributed en- 
semble of paths. 

In order to numerically compute such an ensemble 
average we discretized the path with a suitable time step 
and we exploited the Metropolis algorithm [11, 12]. This 
method performs an "importance sampling" by random- 
ly generating a finite set of paths which mainly contribute 
in the Feynman-Kac integral. The number of paths in 
the randomly generated sample determines the conver- 
gence of the finite-sample statistics, and it must be large 
enough for the fluctuations to be acceptably small. The 
actual number of steps required for that depends on the 
time step, which in turn must be large enough to isolate 
the ground state contribution. We used 300-1000 time 
steps and ensembles of 2000-8000 paths. The whole algo- 
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rithm was adjusted by working out the case K = 0  for 
which exact analytical results are available; the final 
agreement between exact and Metropolis data was good. 

3. Numerical  results on the quantum model 

The above described numerical approach was used to 
investigate the properties of the ground state of the quan- 
tum FK model. The expectation values (x j) (j=2, s) 
of the positions of the oscillators at negligibly small tem- 
perature T=hz -1 computed by the Metropolis algo- 
rithm were used to construct the quantum analogues 
of Fig. 1. 

In order to check that the obtained results describe 
the actual ground state structure and not just some tem- 
perature effects, we increased or decreased the tempera- 
ture in a few times; in no case significant changes were 
observed. Moreover, from the study of thermal effects 
in the quantum model (Sect. 4) we got some quantitative 
information about the temperature required for signifi- 
cant excitation above the ground state. This temperature 
is measured by the plateau in Fig. 8. The temperatures 
in our ground state simulations were much smaller than 
that. 

First of all, "quantum hull functions" (QHF) were 
produced by plotting the ground state average Positions 
(xi) (mod2zc) against the unperturbed ones (mod2rc). 
As discussed above, in the classical case this procedure 
yields a set of points in the square [0, 2z~] x [0, 2~], 
which belongs in the graph of the "hull function". It 
is by no means obvious that the set of points obtained 
from quantum data should belong in the graph of a 
function whatsoever. Nevertheless, this kind of a plot 
allows for a straightforward pictorial comparison of 
quantum and classical data, and we loosely call it a 
"quantum hull function" for the sake of simplicity. 

Besides that, from the quantum expectations (x~) 
we computed the "momenta" (p~)=(x~)-(xi-1) ,  
which were used to construct a phase space picture to 
be compared with Fig. 1 b, e. 

137 

Finally, we computed the values gi according to (2.5) 
with (xi) in place of xi; a plot of the gi versus (xi) 
yields a quantum counterpart for Figs. 1 c, f. Such a plot 
we call a "g-function" (GF), though this denomination 
may be abusive on strict mathematical grounds. 

Examples of such quantum results, below and above 
the critical value of K and for a small value of h are 
shown in Figs. 2, 3. A comparison of these figures with 
their classical analogues (Fig. 1) shows that for small h 
the quantum average positions approximately follow the 
classical ones. In particular, the classical transition is 
mirrored by a crossover in the nature of the QHF. In- 
deed, in the overcritical regime, the QHF has a step-like 
character, remindful of the classical hull function. 

Nevertheless, a closer analysis revealed remarkable 
deviations from the classical behaviour in the overcritical 
regime. A first hint on the nature of these quantum effects 
was provided by the analysis of the variances of the posi- 
tions of the oscillators. This is shown in Fig. 3c, which 
is a plot of the mean-square deviations of the oscillators 
from their average positions: 

:t 
k = l  

here k labels the Metropolis paths, and N is the number 
of paths. In Fig. 3c we observe a strong correlation be- 
tween oscillators which belong to the same plateau in 
the hull function. The largest variances are given by oscil- 
lators which are located near the edge of a gap. This 
is explained by quantum tunneling; the quantum system 
is resonating between different configurations, in which 
the oscillators close to the edges of a gap belong to oppo- 
site sides of the gap itself. Such a picture was confirmed 
by the analysis of the probability distribution for the 
positions of the oscillators (Fig. 4). Oscillators near the 
edge of a gap have a double peaked distribution, with 
peaks corresponding to opposite edges of the gap itself. 

The most interesting illustration of the effect of quan- 
tum fluctuations was provided by the quantum phase 
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space picture (Fig. 3 d) and by the quantum GF (Fig. 5). 
The comparison of the classical phase picture (1 e) with 
the quantum one (3d) shows that the quantum points 
spread out of the classical Cantorus, along straight lines 
that connect the edges of the gaps. As a result, a new 
object is formed, which we call a quantorus. 

A similar tendency to fill the convex envelope of the 
classical Cantor structure is revealed by the analysis of 
the quantum GF (Fig. 5) for several values of h. The 
points of the quantum GF are not concentrated in a 
small Cantor-like set (as they would classically) but ap- 
pear to be more smoothly distributed. Surprisingly en- 
ough, even for large h the points do not spread in the 
plane but follow a well defined curve, which is different 
from the classical g(x)= sin (x) and is close to a continu- 
ous sawtooth curve especially for h < 4 (for K = 5). 

The indications provided by Figs. 3 and 5 yield quali- 
tative but nevertheless definite evidence that quantum 
effects in the FK model tend to reduce the gaps in the 
classical structures. One may even be tempted to say 
that the quantum structures look more like KAM curves 
than the classical ones; though, of course, the blurring 
due to fluctuations makes it meaningless to speak about 
invariant curves or Cantori in the strict mathematical 
sense. 

The nature of the quantum GF suggests that the 
quantum ground state configuration is better described 
by a sawtooth map than by the Standard map. Follow- 
ing this idea, we fitted the quantum GF by a continuous 
sawtooth function: 

[ c ( x - 2 ~ )  

O < x < x  o 

Xo < _ X < _ 2 n - - x  o 

2~-Xo<X<2~z 
(3.1) 

where a=(cxo)/(~-Xo) and the parameters c, x0 were 
obtained from the quantum numerical data. Then we 
studied the dependence of the fitting parameter go = cxo 
(which gives the maximum value of the GF) on h. It 
was found that go monotonically decreases as h increases 
(see Fig. 6); instead, the dependence of Xo on h is much 
less regular. The decrease of the value go is consistent 
with the idea put forward in [8, 9] that quantum effects 
in the FK model may be accounted for by a reduction 
of the kick strength of the Standard map; anyway a more 
important quantum modification is given by the change 
of the GF to a sawtooth function. 

For values of K not too much above Kcr (for example 
K ~ 2) the sawtooth function has to be replaced by some 
piecewise linear function obtained by connecting the 
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points of the Classical Cantorus by straight lines. Never- 
theless the shape of the sawtooth function is practically 
the same for all K > 4. 

As h is increased, the steps in the QHF are more 
and more smoothed, and the QHF comes closer and 
closer to the diagonal [10]. In such deeply quantum 
regimes, the classical transition is completely effaced by 
quantum fluctuations. 

In order to check that the above described picture 
is not just an outcome of the relatively small number 

of oscillators, we made additional computations with 
v = 89/144 and v -- 233/377. The obtained data are shown 
in Fig. 7 and demonstrate the independence of our re- 
sults on the number of oscillators. 

For K below Kc, the situation is quite different. The 
quantum GF is approximately sine-shaped, like the clas- 
sical one, but its amplitude decrease as h is increased, 
at least for not too large h (h~ 1 for K ~ 0.5). The numeri- 
cal analysis for larger h becomes very difficult, because 
the decrease of temperature demands for a larger number 
of time steps. 

4. Dependence of energy on temperature 

In this last section we investigate the dependence of the 
energy of the quantum chain on temperature. Plots of 
the average energy per oscillator in the quantum model 
versus the temperature in the overcritical region are 
shown in Fig. 8. The numerical data were obtained by 
the Metropolis algorithm; in computing the average ki- 
netic energy, the Feynman's prescription was used [11]. 

Typically these curves exhibit a plateau for small 
temperature and a linear growth (with unitary slope) 
for high temperature. The latter feature agrees with the 
classical predictions. Instead, the initial plateau appears 
to be connected with the classical phonon gap, which 
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sets a lower bound to the temperature  required for signif- 
icant excitation above the ground state. A more precise 
theoretical description of this effect was obtained by lin- 
earizing the classical model around the equilibrium con- 
figuration. In this way a system of harmonic  normal  
modes was obtained. The spectrum of frequencies coz of 
these modes (the phonon  spectrum) is shown in Fig. 9. 
In order to obtain an analytical expression for the depen- 
dence of the energy E on the temperature T, we quantized 
this system of phonons,  and we used the Bose-Einstein 
formula for the average energy: 

,o, 
E(T)=Eo+ Z he~ 

i = 1  

where 

(4.1) 

E o = ~  ' 1 e c o s  (4.2) 

and x~ are the equilibrium positions for the classical 
model at zero temperature.  The dependence of energy 
on temperature given by (4.1), for different values of K 
and h, is shown by the smooth  lines in Fig. 8. For  small 
values of h the agreement is quite good, but for large 
values of h the law (4.1) does not fit any more the Me- 
tropolis data  (see curve (c) on Fig. 8). This is probably  
due to the fact that for large h the ground state structure 
changes as we have shown in previous section. Neverthe- 
less the failure of this theoretical curve, based on the 

linearized mot ion near classical equilibrium positions, 
occurs for larger values of h than would be expected 
on the grounds of the results of Sect. 3. For  example 
that curve acceptably works even for values of h for 
which significant changes of the G F  could be observed 
(compare Fig. 1 f with 5 a). A qualitative explanation of 
this relatively good agreement may be provided by the 
fact that for the case with h = 1 the number  of points 
which deviate from the sine curve is relatively small and 
therefore does not lead to a significant change in energy. 

On the other hand, a possible way for extending the 
validity of (4.1) to larger values of h is suggested by 
the results of Sect. 3, which show that for large h the 
ground state configuration is approximately described 
by a sawtooth map. This suggests that for such values 
ofh  the phonon  spectrum should be computed in a differ- 
ent way, namely by linearizing an "effective Hamil ton-  
ian" constructed in such a way that  its equilibrium posi- 
tions are given by the sawtooth map. This effective Ha-  
miltonian is determined by the sawtooth function ob- 
tained from the quantum GF,  apart  from an additive 
constant, which we used as a fitting parameter  in our 
computations.  

The phonon  spectrum determined in this way is 
shown in Fig. 9. By this method a satisfactory agreement 
with Metropolis data was obtained (see curve (b) on 
Fig. 8). Moreover,  for h < 1, the phonon spectra obtained 
from the Standard map  and from the sawtooth map  
agree with each other (see Fig. 9), and this yields another  
explanation of the good fitting of the Metropolis data 
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Fig. 10a-d .  C o m p a r i s o n  between q u a n t u m  
and  classical hul l - funct ion  and  g-funct ion at 
the same finite t empera tu re  T = 0 . 5 .  The  
pa ramete r s  are K = 5, v = 34/55. a Classical  
"hu l l - func t ion" ,  b Classical  "g - func t ion" ;  c 
Q u a n t u m  hul l - funct ion;  d Q u a n t u m  g- 
funct ion  

by means of formula (4.1) with the original phonon  spec- 
t rum co i. 

The parameters  of the sawtooth map  depend on h 
as illustrated in Fig. 5. Therefore, the phonon spectrum 
associated with that map  must be expected to change 
with h, too. As a mat ter  of fact, Fig. 9 clearly shows 
that the phonon  gap undergoes a sharp reduction as 
h increases from 1 to 3. It  is interesting to analyze this 
phenomenon in the light of some rigorous mathematical  
results on the sawtooth map  available in the literature 
[17]. According to these results no invariant curves exist 
at all when* 

4 (~--Xo) 2 
go>g~r--  K 2~--Xo " (4.3) 

F rom (4.3) we obtain for x o = 1, K = 5, (which correspond 
to h = l ) :  gcr=0.695. This is less than go-~0.72 numeri- 
cally obtained from the quantum case, so that  no invar- 
iant curves for the sawtooth map  should exist and a 
nonzero phonon  gap should be expected. On the other 
hand the difference between these two values is quite 
small, and quantum fluctuations make it difficult to de- 
cide whether the Quantorus  is better described by an 
invariant curve or by a Cantorus.  

* The  connec t ion  between our  pa rame te r s  and  the  pa rame te r s  k, 
a used  in [ 17] is the following: k = Kgo/(~  -- Xo); a = (1/2 -- Xo/2 ~) 

In the other case of Figs. 9 for Xo = 1.2, K = 5 (h = 3) 
we have gcr =0.593 which is now larger than the numeri- 
cal value go ~-0.57 obtained from the quantum model. 
Formula  (4.3) does not any more exclude that invariant 
curves for the sawtooth map  exist, and this would quali- 
tatively agree with the strong decrease of the phonon 
gap observed in this case. This qualitative argument  is 
however not conclusive, because the critical value of go 
at which all invariant curves with a given rotat ion 
number  v disappear depends on v in a peculiar fractal 
way [17] and we do not actually know the exact critical 
value for our rotat ion number. Anyway, on account of 
the smallness of the phonon gap we can assume the 
Quantorus  to be closer to an invariant curve than in 
the previous case with h = 1. 

Another  interesting feature of the phonon spectrum 
(for h = 3) associated with the sawtooth map  is the small 
value of the first and second derivative (vg =dcog/dn N0, 
1/M = d 2 ~og/dn2~ 0). This behaviour is qualitatively dif- 
ferent from that of the linear phonon  spectrum' both  
in the case of invariant curves (Vg= const >0), and in 
the case of Cantori  (1/M >0). This property,  which ap- 
pears to correspond to a quasiparticle with a very large 
mass M, can be connected with the unusual property 
of the sawtooth map  of having invariant curves even 
for some rational rotat ion numbers. 

It  is also worth mentioning that classical thermal 
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effects affect the F K  model in quite a different way than 
quantum effects do. In the first place the dependence 
of energy on temperature  in the undercritical as well 
as in the overcritical case follows, for T > 0.01, a straight 
line of unitary slope, while in the quan tum case we have 
practically no change of energy for temperature  less than 
hcog/2, where cog is the phonon  gap (see Fig. 8). The con- 
clusion that  the Quan tum and the Classical F K  model 
at the same temperature  display quite different properties 
is also enforced by more detailed data [-18]. For  example, 
a comparison of g-function and hull-functions (Fig. 10) 
shows that while the quantum characteristics are still 
close to the ground state ones, in spite of the nonzero 
temperature,  the classical g-function and hull-function 
are completely destroyed. 

A final remark is that  the existence of the phonon  
gap facilitates the quan tum numerical investigation of 
the ground state, because in this case there is a significant 
distance between the ground state and the first excited 
state. For  this reason, it is not necessary to use so small 
temperatures as would be required in the undercritical 
c a s e .  

5. Conclusions 

In this paper  we have reported about  results of extensive 
numerical simulations on the quantum Frenkel -Kontor-  
ova model. These results illustrate how the characteris- 
tics of the quantum ground state reflect the sharp transi- 
tion which takes place in the classical model at a critical 
model at a critical value of the parameter,  and provide 
evidence that, at least for not too large h, a crossover 
in the nature of the quan tum ground state occurs, some- 
how mimicking the classical transition. A more physical 
evidence of this crossover is given by the behaviour of 
the quan tum energy as a function of temperature. We 
emphasize that in the overcritical regime an important  
modification appears  in the quantum ground state aver- 
age positions of the oscillators, which are described by 
a sawtooth map  instead of the Standard map. 

The bulk of the above reported investigations was 
aimed at analyzing the effects of quantum fluctuations 
on the Cantori  structure which characterize the classical 
ground state in the overcritical regime. Our results give 
for the first time some precise indication in this sense, 
beyond the obvious intuition that  the classical structure 

should be somehow blurred. Though these indications 
are very far from the standard of mathematical  precision 
of the classical theory of the F K  model, we believe that 
they may provide useful hints in connection with the 
general problem of the relevance of classical Cantori  in 
quantum mechanics. 

We are grateful to B.V. Chirikov for interesting discussions. This 
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demy of Sciences (USSR) agreement. 

References 

1. Eckhardt, B.: Phys. Rep. 163, 205 (1988) 
2. Mackay, R.S., Meiss, J.D., Percival, I.C.: Physica 13D, 55 (1984) 
3. Aubry, S.: Physica 7D, 240 (1983) 
4. Aubry, S., Dacron, P.Y.: Physica 8D, 381 (1983) 
5. Chirikov, B.V., Shepelyansky, D.: Radiofizika 29, 1041 (1986) 
6. Geisel, T., Radons, G., Rubner, J.: Phys. Rev. Lett. 57, 2883 

(1986) 
7. Pokrovsky, V.L., Talapov, A.L.: Theory of incommensurate 

crystals. Sov. Sc. Rev. Suppl. Series Phys. V.1 (1984) 
8. Berman, G.P., Iomin, A.M.: Phys. Lett. 107A, 324 (1985); Zh. 

Eksp. Teor. Fiz. 89, 946 (1985) 
9. Beloshapkin, V.V., Berman, G.P., Iomin, A.M., Tret'yakov, 

A.G.: Zh. Eksp. Teor. Fiz. 90, 2077 (1986) 
10. Borgonovi, F., Guarneri, I., Shepelyansky, D.: Phys. Rev. Lett. 

63, (No. 19), 2010 (1989) 
11. Creutz, M., Freedman, B.: Ann. Phys. 132, 427 (1981) 
12. Shuryak, E.V., Zhirov, O.V.: Nucl. Phys. B242, 393 (1984) 
13. Chirikov, B.V.: Phys. Rep. 52, 263 (1979) 
14. Greene, J.M.: J. Math. Phys. 20, 6 (1979) 
15. Mackay, R.S.: Physica 7D, 283 (1983) 
16. Peyrard, M., Aubry, S.: J. Phys. C16, 1593 (1983) 
17. Bullett, S.: Commun. Math. Phys. 107, 241 (1986) 
18. Borgonovi, F.: Ph.D. Thesis, Universita' di Pavia (Italy) (in 

preparation) 

F. Borgonovi 1, 2, I. Guarneri 1, D. Shepelyansky 2 
1 Dipartimento di Fisica Nucleate 
e Teorica dell' Universit/t di Pavia 
and Istituto Nazionale di 
Fisica Nucleate 
Via Bassi 6 
1-27100 Pavia 
Italy 
2 Institute of Nuclear Physics 
SU-630090 Novosibirsk 
USSR 


