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Abstract. - Coherence effects in the excitation of molecules by a monochromatic field in a quasi- 
continuum of states are investigated and shown to give rise to localization of the excitation 
energy. Our results follow from a simple model derived from the underlying Hamiltonian and 
containing the essential physics. 

Multiphoton excitation of large molecules in the collisionless regime is a problem of long- 
standing interest with important practical applications [l, 21. The question has repeatedly 
been discussed whether a rate equation approach is sufficient or coherence effects might 
play a role in the transport up the energy ladder from the distinctly discrete levels at the 
bottom through an intermediate quasi-continuum of states into the continuum [3,4]. It 
seems clear that coherence effects are important near the bottom, but it has often been 
argued that a rate equation approach is sufficient in the quasi-continuum and the continuum. 
Akulin and Dykhne [5] derived a model from the underlying Hamiltonian and obtained the 
diffusion rate of the excitation energy in the quasi-continuum. Meanwhile the extensive 
study of quantum models like the kicked rotator [6], the Morse map [7], the Kepler map and 
the one-dimensional hydrogen atom in an external high-frequency field [81 and experimental 
studies of hydrogen atoms in microwave fields[9] have established the existence of a 
quantum-mechanical coherence effect, ((photonic. localization, which could have a strong 
influence on the excitation of molecules by a monochromatic external field in the quasi- 
continuum. 

In the present paper we wish to analyse this problem. We first reduce the Schrodinger 
equation to the Akulin-Dykhne model [51 and then incorporate the further assumption that 
the matrix elements for the excitation vary smoothly throughout the quasi-continuum and 
can be replaced by a constant. We find that in this case the problem can be mapped on a 
simple 1-dimensional soIid-state model with nearest-neighbour interaction and diagonal 
disorder stemming from randomness in the level spacings of the molecule and incommensur- 
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ability of the mean level spacing with the externally applied frequency. Without randomness 
the model is exactly solvable and we obtain continuous bands of quasi-energies correspond- 
ing to delocalized Bloch states. With randomness Anderson localization occurs and the 
localization length is easily computed. Under conditions where the molecular levels have 
some rigidity, we find a systematic dependence of the localization length on the quasi- 
energies. It is large and proportional t o  the square of the matrix element for quasi-energies 
near the former band centre, and smaller and proportional to the magnitude of the matrix 
element for quasi-energies in the former band gap. 

We start from the Schrodinger equation (with itl = 1) for the probability amplitudes dN of 
the unperturbed molecular states In) 

id, = E n d ,  + 2 COS ot V,,, d,! , 
n’ 

where E,  = n/,c + E,, ,c is the average density of states in the quasi-continuum which we shall 
normalize to ,C = 1, E, is random (see below), and V,,, is the product of the external field 
amplitude and the matrix element between the states In), In’ ) . The external frequency w is 
taken as w >> 1, i . e .  large compared to p-l. Introducing d,(t) = exp [- im,wt] C,(t), where 
m, = [E,/w] is the integer closest to E J w ,  and making the <<rotating wave,, approximation, 
i . e .  neglecting oscillatory terms, which to  a good approximation are averaged out on the 
remaining longer time scale, we obtain the Akulin-Dykhne model 

with w&=E,-m,w, ISn1<1/2. 
Equation (2) implies that 1-photon transitions occur only between neighbouring groups of 

molecular eigenstates of the size of one photon energy. In the following we shall assume that 
Vnnt changes on a scale larger than w and approximate Vnnl = V. With C, = uAA) exp [- i w ~  tl, 
where the wA are quasi-energies and defined for -0 /2<w,:Sw/2,  and 

we can rewrite eq. (2) as 

Defining the generally random function (Fm(wA))-’ = S”,,,/(W~ - US,), we arrive at 
n 

which can be viewed as a solid-state model with nearest-neighbour interaction and diagonal 
disorder. The eigenfunctions K$) of this model will be localized. Note that the <<site-index. m 
counts the member of the photons, and the localization length therefore is measured in the 
number of photons. Once the eigenfunctions KF have been determined, the amplitudes U$) 
follow from u t )  = Fs(oA)K$i/(o1, - osn) and, in general, will have very large fluctuations, 
because the denominator can become small. States for different wA will have quite different 
amplitudes within a block of given m,, even if their amplitudes K, are similar. In the 
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simplest case without randomness of the levels E, = 0. If in addition the number of levels of 
the quasi-continuum is very large, it may be taken as infinite in the evaluation of the sum for 
(Fm(oA))-l. Then we obtain 

with vm=mo. For typical irrational values of o the model is exactly solvable[lO]. The 
spectrum of quasi-energies is pure point, and the eigenstates are localized. Even if the 
randomness caused by the E, is negligible within each block of the size of a photon it may still 
give rise to random values of U,. In that case, if the values of v,(modw) are randomly 
distributed in the interval w, eq. (5) reduces to the analytically solved Lloyd model. As was 
shown in [ l l ]  the Lloyd model can be mapped exactly on the model for the kicked rotator 
with a potential proportional to arctg of the rotation angle, which therefore also describes 
our model for the present case. The localization length for the Lloyd model is known 
explicitly, and, for plVI >> 1 it is given by 

I = 2x/vI .  (7) 

In the case without randomness, if the frequency o is an integer multiple of p- l ,  i .e .  an 
integer in our units, then all m-dependence disappears from eq. (6) and eq. (5) is solved by 
extended plane waves - exp [i2xkm3, Ikl< 1/2, with the continuous band spectrum 

(8) 1 w w - - c A c - , 2 2 q ( k )  = xarctg [2xV cos 2xkl + A ,  w >> 1 , A integer, 

i.e. the excitation propagates coherently through the quasi-continuum. The energies wA(k) 
occur in bands of width A = (2/x) arctg(2xV) with centres at integer values of oh and gaps 
around half-integer values of oA. For small V the bands appear just at the position of the 
unperturbed levels. In the case when the molecular levels have random positions, described ' 
by E,, Fm(wA) is random and eq. (5 )  has to be solved numerically, which is an easy task, using 
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Fig. 1. - Localization 1 vus. the matrix element /VI in a doubly logarithmic plot. Different symbols 
correspond to case i) with quasi-energies in the band centre (U), in the gap (01, in the middle between 
gap and band centre (*), and case ii) (A). The full lines give ZA for the Anderson model in the middle of 
the band, and ZL for the Lloyd model. 
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the transfer matrix technique-[l2]. Special checks were made that the number of states pw 
within one photon interval, if sufficiently large, does not influence the final results. Usually 
we chose pw = 128. In fig. 1 we present results for the localization lengths as a function of the 
matrix element IV( obtained under two different statistical assumptions on the E,: 

i) The E, are assumed to be independently and homogeneously distributed in the unit 
interval - 112 < E, S 1/2 and pw is taken integer. In this case each energy level E,  is rigidly 
confined to n - 1/2 <E, S n + 112. We find that the localization length depends systematically 
on the energies W A ,  i . e .  the band structure of the nonrandom system is not entirely washed 
out. For w~ close the the former band centres w A = A  the localization length is large and 
proportional to IV/'. This dependence is expected for Anderson localization in a weakly 
random l-dimensional system with long mean-free path, which corresponds to a case with a 
small density of impurities[13]. For wA outside the centres of the former bands the 
localization length is smaller and proportional to IVI like in the Lloyd model. 

ii) The levels E,  are distributed on the real line as a discrete Poisson process with 
independent random increments in the interval (0,2]. In this case there is practically no 
dependence of the localization length on wA. For all wA the localization length is proportional 
to /VI as in the Lloyd model, which also gives a good estimate of the prefactor. In the doubly 
logarithmic plot shown in fig. 1 we compare the results for the localization length for the 
different cases we have studied. 

Let us also compare these results with some simple estimates. There is a general 
connection between the quantum-mechanical localization length 1 of quasi-energy eigen- 
functions in the number of photons and the diffusion constant D of energy over one period, 
2 = (D/2w) [8,12]. Assuming that the diffusion constant is determined via D = 2w2(2y)(2x/w) 
by the l-photon transition rate 2y and calculating the latter from the Fermi golden rule one 
obtains ZF = 4x21V12. In strong external fields one may expect that the l-photon transition 
rate saturates and Deng and Eberly [14] have shown how to take this effect into account. In 
our present case their method yields 2y = (2V12/(2(xp)-l + 2y) = 12Vl for 12VI >> 2(xp)-'. 
Under the same assumption as before we then find ZDE = 4x1 VI. This result gives the same 
dependence on /VI as the Lloyd model, ZL = 2xlV1, with a different prefactor, however. 
From the Anderson model in the limit of small randomness, one obtains [15] l A  = 100/V/2, 
similar to the result obtained via the golden rule, but again with a different prefactor. 
Comparing these estimates with our results for case i) we can see that the results based on 
the l-photon transition rates give the [VI-dependence correctly away from the band centre if 
the saturation is taken into account. However, the prefactor differs roughly by a factor 2. 
The localization length at  the band centre should not be compared with an estimate based on 
the transition rate, because these estimates [12] assume that the localization length is 
independent of wA, at least approximately. The numerical results give the following 
dependence of the localization length on the matrix element V in case i), in the middle of the 
gap I = 2.5 1 V 1 ,  in the band centre 1 = 90) V 1 2 ,  in the middle the gap and the centre of the 
band I = 81V/. The localization length at  the band centre agrees well with ZA, while 11, gives 
the best estimate for the other cases. In case ii) 1 = 71 VI without dependence on the quasi- 
energy. This case agrees well with the Lloyd model. The linear dependence of I on 1 VI can be 
understood physically by saturation [141. 

In conclusion we have shown that molecular excitation in a quasi-continuum by multi- 
photon absorption under some simplifying assumptions can be described by a solid-state 
model, which in some cases can be reduced even further to the Lloyd model. The molecule 
then absorbs energy from the external field like a quantized periodically kicked rotator, i . e .  
the complexity of the system is drastically reduced. Localization in the number of absorbed 
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photons occurs in the quasi-continuum with a localization length which, remarkably, is 
independent of the photon energy, and, depending on the case under consideration, can be 
estimated from the Anderson model or the Lloyd model, or, up to factors of order 1, from an 
extension of the golden rule including saturation effects. 
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