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For a solid state model described by a band matrix with 
diagonal elements depending periodically on the site- 
index we determine the eigenstates and their localization 
length. The periodicity of the diagonal elements gives 
rise to the appearance of a pronounced peak structure 
of the eigenstates with the same period. The same type 
of peak-structure is present in the quasi-energy states 
of some periodically driven quantum systems, and can 
be associated with a nearly conversed quasi-momentum 
quantum number. We investigate the influence of the 
periodic peak structure on the nearest neighbor level 
spacing distribution and find that the nearly conserved 
quasi-momentum modifies but does not destroy the level 
repulsion expected for a Gaussian orthogonal ensemble. 

1. Introduction 

In disordered one-dimensional solids with short-range 
interaction Anderson localization is well known to occur 
[1], i.e. the energy spectrum is pure point and eigenstates 
are exponentially localized. The nearest neighbor level 
spacing distribution of a finite number of states shows 
level repulsion and follows the Gaussian orthogonal en- 
semble of random matrix theory if the states considered 
are neighbored within a localization length [2]. This dis- 
tribution will be Poissonian and show no level repulsion 
if the spatial centers of the states are separated by much 
more than a localization length, since the energies of 
such states are completely independent. What happens 
if the amplitudes of the localized states within a localiza- 
tion length are confined to periodically spaced and nar- 
row peaks? States with practically the same center of 
localization whose peaks are phase-shifted with respect 
to each other will then have very small overlap. Since 
these states do not 'feel' each other they should have 
a correspondingly suppressed level repulsion. The same 
suppression of the level repulsion one would also expect 
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by the argument that the near-periodicity of the peak 
structure of the localized state, if strictly periodic, would 
be associated with a conserved quasi-momentum. Levels 
with different quasi-momentum would then be indepen- 
dent and would not repel each other. 

The assumed peak substructure of the localized states 
is not as contrived as it might seem at first glance. It 
occurs naturally in localized quasi-energy states of per- 
iodically driven quantum systems if the number of unper- 
turbed levels in these systems in the range of the external 
frequency co (we put h = 1) is much larger than 1, that 
implies pco > 1, where p is the smoothed density of states 
[3]. These periodically driven quantum systems bear a 
dose analogy to 1-dimensional solid state systems, as 
first demonstrated for the case of the periodically kicked 
rotator in [4]. In the present paper it is our purpose 
to introduce a 1-dimensional solid state model in which 
localized states with a periodic substructure can be ex- 
pected to appear (Sect. 2), analyze the localized states 
of that model (Sect. 3) and find the nearest neighbor level 
spacing distribution (Sect. 4). Our results are briefly sum- 
marized in Sect. 5. 

2. The model 

Let us consider a 1-dimensional chain of periodic lattice- 
sites labelled by n and let the Hamiltonian be given by 

H = y E .  + (2.1) 
n n ,n '  

We shall assume that the energy E, on the lattice-sites 
varies periodically with n, with period E,+M----E,. A nat- 
ural realization of this assumption would be a solid 
structure grown of epitaxial layers each of thickness M 
in the lattice constant. We shall assume M > l, i.e. the 
number of lattice sites in one period is large. In our 
numerical work we choose 

E . = l ( ( n + ~ - ) ( m o d M ) - M ) + e .  (2.2) 
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where we normalized the energy scale so that p = 1. The 
e, are random and will be specified later. The potential 
matrix V,,, in (2.1) is assumed to be a band matrix. We 
shall be interested in the transport  in the periodic back- 
ground described by the diagonal elements E,  from one 
period to its neighboring period and choose 

M , 3 M  
V if ~ - < l n - n  [< 2 

Vnn' ~" 
0 else 

(2.3) 

We make this choice in order to strengthen the analogy 
of our solid state model with periodically driven quan- 
tum systems. There, transitions between 'sites' (i.e. ener- 
gy levels E,) are caused by the absorption or emission 
of a photon. Therefore energy differences I E , - E n ,  I of 
states coupled by V,,, naturally lie in some band around 
the 1-photon energy co = M/p where p is the density of 
states [5]. We note, however, that the results will not 
change qualitatively if in (2.3) we replace the lower 
boundary of the band by 0. The choice of (2.3) has the 
added advantage that the model becomes closely related 
to a model for mult i-photon excitation in molecular qua- 
si-continua [6], which has analytically solvable limits 
with which we can compare our results. In that model 
(2.2) also holds and (2.3) is replaced by 

[Inn, = V(~ . . . . . .  (2.4) 

where m, is the integer closest to (E,/M). This matrix 
consists of two lines of blocks of the size M next to 
the diagonal, while the matrix (2.3) consists of two bands 
of width M parallel to the diagonal at a distance M. 
In the case where the energy levels are not random, en = 0, 
the eigenstates are, of course, extended Bloch states and 
the energy eigenvalues are continuous. 

If the e, are nonzero the Schr6dinger equation has 
to be solved numerically. We have considered two cases: 

i) e, is distributed randomly and independently for each 
n over the interval ( -  �89 + n, �89 + n). 
ii) The E,  are distributed on the real line as a discrete 
Poisson process with independent random increments 
in the interval [0, 2]. 
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Fig. 1. Localized eigenstate for energy E = 0.471 over distance mea- 
sured in periodicity intervals. A part near the maximum is amplified 
in the insert, also in logarithmic scale. The straight lines give the 
exponential decay with the smallest eigenvalue of the transfer ma- 
trix. Parameters are V= 0.5, M = 32, N = 100. j u(n) l 2 the probability 
of the unperturbed level E, 
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Fig. 2. The same as in Fig. 1 for E=0.108 

3. Numerical solution 

For  the numerical solution of the Schr6dinger equation 
we have employed 2 methods. In the first method we 
directly diagonalized the Hamiltonian in the In> - basis 
restricted to MN=7680 states where M was taken up 
to 256, and N, the number of periodicity intervals, was 
taken up to 100. This method yields eigenstates and ei- 
genvalues and is used to determine the eigenvalue statis- 
tics. Only the first case described at the end of Sect. 2 
was treated by this method. As a second independent 
method we use the transfer matrix technique which yields 
Lyapunov exponents [7]. Here we have the possibility 
to make MN large, MN= 106 in our calculations, and 
the largest M chosen was M=256 .  The localization 
length is always given in the number of periodicity inter- 

vals. We made special checks to confirm that M was 
sufficiently large so that this localization length did not 
depend on the size of M. The results are shown in 
Figs. 1-5. 

In Fig. 1 we show one of the eigenstates determined 
by the first method using a basis of 3200 states for a 
periodicity interval of m =  32 states, and V=0.5. The en- 
ergy of this state is E=0.471 and therefore close to the 
middle of the gap E = 1/2 of the system without random- 
ness. The state is exponentially localized. A comparison 
with the localization length determined by the transfer 
matrix method is also given in the figure. The figure 
clearly shows the periodic peak structure with the period 
M, a part of which is shown on an amplified scale in 
the insert. As can be seen from this figure, a local periodic 
structure is preserved in the eigenstate, i.e. an approxi- 
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Fig. 3. Localization length l versus the matrix element t VI in a 
doubly logarithmic plot. Different symbols correspond to case i) 
with quasi-energies in the band center (m), in the gap (o), in the 
middle between gap and band center (.), and case ii) (zx). For com- 
parison the data obtained in [6] for the matrix (2.4) in the band 
center are also shown (O). The straight lines give IA for the Anderson 
model in the band center and log 
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Fig. 4. Nearest neighbor level spacing distribution of the eigenstates 
for V=0.5, M=256, N=6. The dashed lines give the Poissonian 
and the Wigner distribution 
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mately conserved quasi-momentum quantum number 
should exist. In the closely related problem of periodi- 
cally driven quantum system such a nearly conserved 
'quasi-momentum'  also appears. It has been introduced 
in the theory of periodically driven hydrogen atoms in 
[3]. 

In Fig. 2 another eigenstate with energy E=0.108 
close to the band center at E = 0  is shown. Otherwise 
all parameters are as in Fig. 1. This state has a much 
larger localization length which is no longer very small 
compared to the size of the finite basis. Again the period- 
ic peak structure can be seen. 

Next we turn to our results for the localization length 
l in the number of periodicity intervals obtained by the 
transfer matrix technique. In Fig. 3 we give in a doubly 
logarithmic plot I in the number of periodicity intervals 
as a function of the matrix element V. The upper curve 
was calculated for the case i) of Sect. 2 and gives I for 
states near the center of the band E = 0. For  comparison 
we also show the corresponding result for the band ma- 
trix of (2.4) which was obtained in a preceding paper 
[6]. The remarkable agreement shows that near the band 
center both models are nearly equivalent, The propor-  
tionality l - 9 0  IV [ 2 at the band center and the coefficient 
agree well with the result IA ~--100 1 V[ 2 for the Anderson 
model at the band center [8]. The localization length 
for states away from the band center or in the gap are 
given in the lower curves in Fig, 3. Here we also give 
the result for case ii) of Sect, 2. In this case the localiza- 
tion length is independent of the energy. In the case i) 
in the middle of the gap /_~12[V[, and in the middle 
between the band center and the gap / -~18  [VI. In the 
case i/) we find 1-~ 18 [ V[ independent of the energy. A 
linear dependence of l on I VI for energies away from 
the band center was also found in [6] for the model 
described by the band matrix (2.4) and could there be 
understood by the similarity of the model with the Lloyd 
model [9]. In the present case the coefficients of propor-  
tionality are larger and do not agree as well with the 
Lloyd model, whose localization length is given, in the 
present notation, by /L=27z I vI if lL>>l. The physical 
mechanism for the I Vl-proportionality is revealed by cal- 
culating the transition rate 2 7 from a given state to a 
state in a neighboring periodicity interval. The golden 
rule gives 

27=27c [r[2p (3.1) 

but it is, of course, only valid for IV] 2 small. Following 
Deng and Eberly [10] we can extend the golden rule 
by including saturation effects. To this purpose we re- 
write (3.1) as the ratio of the square of a Rabi frequency 
12 VI and the total transition band width of the final 
state which is the sum of the 'static line width' 2/(7cp) 
and the 'dynamic '  width 2 y [10] 

1 2 v I  2 
2 7 = 2(~ p)-  1 + 2 y (3.2) 

For  y > (re p)-1 one obtains the saturated transition rate 
2 7 = 12 VI, which equals the RaN frequency of the transi- 
tion. The localization length is proportional  to 2 y and 
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hence to IV I, and the coefficient of proportionali ty can 
be obtained along the lines of Fishman et al. [11] as 

lvB=4rCT=47c ]V] (3.3) 

The numerical results agree much better with (3.3) than 
with the Lloyd model result IL, contrary to what was 
found in [6], where the numerical data were in better 
agreement with 1L. This might be connected with an im- 
portant  difference between the two models. While the 
present model describes the interaction between many 
sites, the one treated in [-6] could be mapped on a model 
with nearest neighbor interaction only. 

4. Level statistics 

We can now use the numerical results to generate the 
nearest neighbor level spacing distribution (cf. [,-12]). An 
unfolding of the spectrum is not necessary as the model 
has a homogeneous averaged density of states. In 
Figs. 4, 5 we present our results for two different cases. 
Figure 4 was obtained for a basis of 1536 states, but 
the number of periodicity intervals contained in the basis 
was merely N =6.  The matrix element was V=0.5, the 
same as in Figs. 1, 2. The localization length in this case 
changed between 5 and 20 and is not small compared 
to N. All localized states therefore overlap. For  compari- 
son the spacing distributions of the GOE statistics (full 
level repulsion) and the Poisson statistics (no level repul- 
sion) are also given as dashed lines. It can be seen that 
the numerically determined levels show a slightly de- 
creased level repulsion (the region s ~ 0), but the overall 
agreement with the GOE statistics is rather good. We 
conclude that the periodic peak structure of the eigen- 
states does, in this case (] VI =0.5), not significantly influ- 
ence the level spacing distribution. In Fig. 5 we choose 
IV] = 1.2 and a basis size of 7680. The number of period- 
icity intervals included in this basis is N--30.  Here the 
localization length changed between 14 and 100, i.e. I/N 
is still not small. Even though a significant distortion 
of the level spacing distribution compared to the GOE 
is noticeable, it is clearly not Poissonian. So it appears 
that the pronounced equidistant peak structure of the 
eigenstates has surprisingly little influence on the nearest 
neighbor level spacing distribution. A reason for this 
might be the fact that already a very small violation 

of a conservation law is sufficient to introduce level re- 
pulsion [12] and to destroy the Poissonian level spacing 
distribution. 

5. Conclusions 

We have presented a solid state model with a spatially 
modulated single-particle potential and a two-particle 
potential described by a band matrix. With randomness 
in the single,particle energies the model has localized 
states, which we determined numerically together with 
their localization length. The dependence of the localiza- 
tion length on the matrix element was determined under 
to different statistical assumptions on the single particle 
energies. The states were found to have a pronounced 
structure of peaks spaced at the periodicity interval. We 
have examined the nearest level spacing distribution of 
the energy levels and did not find a noticeable influence 
of the peak structure on the level repulsion. 
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