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We study the quantum dynamics of  a particle in a one 
dimensional triangular well under a monochromatic per- 
turbation. Though the classical dynamics is described by 
the Standard Map, the quantum motion is not always 
localized. At a certain threshold field intensity, a tran- 
sition takes place, from a regime of power-localized quasi- 
energy eigenstates to one of extended states. 

Fifteen years of investigations on the quantum mechanics 
of classically chaotic systems have brought into the light 
an important phenomenon which has important analo- 
gies with the Anderson localization of Solid State Physics. 
A classical system subjected to an external time-periodic 
perturbation can enter a chaotic regime if the perturba- 
tion is strong enough; in that case, it will indefinitely 
absorb energy from the external field, in a diffusive way, 
Quite remarkably, this "diffusive excitation" turns out to 
be suppressed - or at least severely limited - by quantum 
interference [ 1 ]. This phenomenon is known as dynamical 
localization. It is present, e.g., in the microwave excita- 
tion of hydrogen atoms, and the application of the theory 
of dynamical localization to that problem has led to some 
predictions that have been recently confirmed by exper- 
iments [2-5]. 

In spite of the localization phenomenon, hydrogen 
atoms in microwave fields can be ionized via a quasi- 
classical diffusive excitation above some threshold field 
intensity. According to [4] this happens when the local- 
ized wave packet would be so large as to significantly 
populate states lying above the one-photon ionization 
threshold. In other words the delocalization in the H- 
atom is due to the presence of  continuum. 

In this paper we present a study of the classical and 
quantum dynamics of a particle in an infinite triangular 
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well, subjected to a monochromatic perturbation. The 
classical dynamics of this model exhibits a stochastic tran- 
sition and can be approximately described by a Standard 
Map. The quantum dynamics is then expected to be dom- 
inated by the localization phenomenon. According to our 
results, this is indeed the case for not too strong fields. 
However, we also provide theoretical and numerical ev- 
idence that delocalization - i.e., indefinite quantum ex- 
citation - takes place in the model above a critical per- 
turbation strength. This is an interesting result in many  
respects. 

In the first place, the unperturbed problem has no 
continuous component in its spectrum (unlike the H- 
atom); therefore, delocalization must be due to a change 
in the nature of the Floquet operator, from a point spec- 
trum with localized eigenstates to a continuous spectrum 
with extended states. To the best of our knowledge, this 
is the first example of such a transition in a periodically 
perturbed one-dimensional dynamical system. 

Second, delocalization comes as a seemingly paradox- 
ical result in a model which is classically described by the 
Standard Map; as a matter of fact, the quantized Stan- 
dard Map is the very prototype of  quantum localization. 
The paradox disappears upon realizing that the variables 
entering the Standard Map are not a conjugate pair for 
the model. In order to properly quantize the model one 
must resort to correct conjugate variables, which lead to 
a different map. We have here a clear illustration that 
quantizing classical area preserving maps is not a uniquely 
defined process. A single classical map may correspond 
to different quantum dynamics, depending on the way it 
is embedded in a Hamiltonian system. 

Finally, the model has a definite physical significance. 
It was introduced [6] as a description of the dynamics of 
bubbles in liquid Helium in the presence of a static field. 
Under suitable conditions it can also describe the dynam- 
ics of surface-state electrons near the surface of liquid 
helium [7, 8], the motion of ultracold neutrons on oscil- 
lating smooth surfaces [9], the dynamics of electrons in 
doped semiconductors [10]. 

The system we are going to discuss consists of a ball 
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elastically bouncing on a fixed wall under the action of 
a constant field plus a monochromatic perturbation. As 
introduced by Shimshoni and Smilansky in [6] the model 
is described by the following one-dimensional Hamil- 
tonian: 

p 2  

H(X,P;t)=~+aoX+aXcoso)t X>=O (1) 

where eo is the constant field strength, ~ and O) are the 
oscillating field strength and frequency respectively. 

This Hamiltonian would be integrable in the absence 
of the wall, and it is also integrable if the perturbation 
amplitude is zero; in both cases the explicit solution is 
trivially obtained. The time-dependent Hamiltonian (1) 
can be reduced to a more convenient form, by canonically 
transforming to a moving reference frame in which the 
wall oscillates according to x0 (t) = - e O) - 2 cos co t. The 
generating function for such a transformation from old 
canonical variables (X, P) (oscillating field representa- 
tion) to new ones (x, p) (oscillating wall representation) 
is: 

S(X,p,t)= - ~  sino)t  

• ( X - ~ . c o s  O)t). (2) 

The new Hamiltonian describes a ball bouncing on an 
oscillating wall under the action of a constant field. The 
dynamics is conveniently described by the impact map 
which gives the evolution from immediately after a bounce 
to immediately after the next [11 ]. 

I p = - p  + eoAt + 2~_ sin (o)A t +~b ) 

mod 2 
(3) 

where ~b is the phase of the field at the time when a bounce 
occurs, and the time A t between bounces is given by the 
smallest strictly positive solution of the equation: 

pA t -  ~ (A t) 2 

8 
+~-~ [cos (O)A t + q~) -  cos q5 ] = 0 (4) 

The mapping (3) takes an especially simple form when 
the amplitude of the motion between subsequent kicks is 
much larger than the amplitude of wall oscillations: 

2a sin~b ~,-wq~+ 20) p,~p+~ e~ p mod 2re. (5) 

A quantitative condition for the validity of this ap- 
proximation is: 

E_> ee~ (6) 
- - o )  2 

where E=(3~eoI)3/2 is the unperturbed energy and I 
the action variable. In practice, numerical simulation 
showed that (6) is a cautious estimate. 

The map (5) is just the Standard Map. Using well- 
known results [12] it is possible to predict the onset of 
diffusive excitation in the system, when the chaos param- 
eter K=4eef ~ becomes larger than one, i.e., when 
the perturbation amplitude exceeds the critical value 
Ec(? =  o/4. 

The fact that the Standard Map provides a good de- 
scription of the classical model does not command any 
similarity of the quantum model with the quantum Kicked 
Rotator (which is a quantization of the classical Standard 
Map). As a matter of fact, the variables p and ~b in (5) 
are not a conjugate pair in the full Hamiltonian formu- 
lation of the model. The correct conjugate variable to the 
field phase ~b is the quantity N =  E/o), where E is un- 
perturbed energy. In the conjugate variables (N, q~ ) the 
impact mapping (5), on neglecting second order terms in 
e, takes the form: 

N - - N +  2e 2 ~ s i n  (~b) 

E0 

(7) 

This map is not an area-preserving one. In order to get 
a canonical map one should insert second order correc- 
tions in the first equation and first order corrections in 
the second one. The latter, however, decrease with in- 
creasing N and for this reason even the approximate form 
(7) was found to satisfactorily describe the motion in the 
chaotic regime where orbits rapidly diffuse to high N 
values. 

The map (7) is the analogue of the Kepler map which 
was found very helpful in the hydrogen atom problem 
[4]. A classical analysis of (7) leads to predict the onset 
of chaos under the same conditions found for the Stan- 
dard Map description. Above the chaotic threshold 
e~ c~ = co/4 a diffusive growth of N is observed, according 
to the Fokker-Planck equation: 

af  ~ # DN ~ (8) 

where r is time measured in the number of iterations of 
the map, i.e. in the number of bounces. The diffusion 
coefficient D N is given, in the random phase approxi- 
mation by: 

DN=4e2 0)-3 N + O(e4). (9) 

From the Fokker-Planck equation the evolution in time 
of an ensemble of orbits initially concentrated at N = N O 
and homogeneously distributed phases q~ can be found. 
In particular, the first and second moments of the dis- 
tribution increase in time according to a linear and a 
quadratic law respectively, which were well confirmed by 
numerical computations. 



The classical map (7) differs from the Kicked Rotator  
I 

mainly in that the "kick strength" k = 2 e co 2 (2 co N) ~ 
1 

increases with N as N'-. However, for any N this map can 
be locally approximated by a Standard Map with a local 
chaos parameter K =  4 e e o  ~ . In the quantum case N and 
~b become conjugate operators. As shown in [4], due to 
the periodicity of sin q5 the fractional part of N is a con- 
stant of the motion and N changes only by integer num- 
bers. This quantum model is in a sense analogous to a 
quantum Kicked Rotator  with kick strength k (N) de- 
pending on N. Accordingly, the "local" localization length 
will be l(N),~k2(N)/2. It is conceivable that, if the dif- 
fusion coefficient is almost constant on the scale l(N), 
then the quantum evolution will be localized; instead, if 
l (N) is large enough for the diffusion coefficient to ap- 
preciably increase over the scale l(N),  one can expect an 
unending escape towards higher values of N. According 
to a previously developed analysis of  the case of inhom- 
ogeneous localization [ 13], a condition for delocalization 
is that 1 (N) ~ D N > N, which yields 

2 

e > =::P.(Q)=�89 (10) 

A similar result can be obtained by a different heuristic 
approach, which also yields some information about the 
structure of eigenfunctions. This approach rests on the 
assumption that the local structure of eigenfunctions be 
approximately the same as for a Kicked Rotator  with the 
same local kick strength. The eigenfunctions of the Kicked 
Rotator  are exponentially localized with a localization 
length 1/2. Then a quasi-energy eigenfunction of the pres- 
ent model should decay away from a site N o according 
to: 

~(1 + N  o ' N )  -~ (11) 

where e = 0.5 co 3 e - -  2 .  According to this estimate, one 
should expect a point spectrum with power-localized ei- 
genfunctions for 2~ > 1 and a continuous spectrum with 
non-normalizable eigenfunctions for 2c~ < 1. The thresh- 
old c~ =0.5  coincides with the previous one (10) apart 
from a factor 2. Needless to say, the above heuristic ar- 
guments can hardly be expected to yield numerically pre- 
cise estimates; anyway, both of them predict the same 
functional dependence. 

The above qualitative picture may have a counterpart 
in the theory of Anderson localization, where it was rig- 
orously proved [14] that for a one-dimensional Anderson 
model in which the disorder decays (away from a fixed 
site) according to an inverse square-root law, a transition 
from a regime of power localized states to one of extended 
states occurs at some critical coupling strength. Notice 
that in our case the "disorder" is constant, but the cou- 
pling strength increases as N 1/2. 

We need to stress at this point that the transition to 
delocalization takes place when the field strength e ex- 
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ceeds both the classical chaos border and the quantum 
border (10). 

This prediction was numerically confirmed by our 
computer simulations of the quantum evolution in the 
original oscillating field frame. Apart from obvious mod- 
ifications, the numerical method was the same used for 
numerical analysis of the hydrogen atom problem, as de- 
scribed in [4] (see also [6]). 

This method takes advantage of the fact that the un- 
perturbed problem (e = 0) has a pure point spectrum and 
a complete set of eigenfunctions u,,, which are explicitly 
known together with the corresponding eigenvalues E,:  

[ 

u, (X) = (2e0) ~ Ai [(2e0)~X - zn] 
Ai'  ( - z.) 

E , =  - -  Z n 

zn= f ( ~  (n-�88 (12) 

where "Ai" is the Airy function, the {z~} its zeroes and: 

~ (  5 5 7 7 1 2 5 )  
f ( x ) =  - x  ~ 1 q 48xa 36x4~ 82944x 6 + ... (13) 

is the auxiliary Airy function of the first kind. 
The coefficients of the expansion of the wave function 

over the unperturbed base satisfy a set of first order dif- 
ferential equations that can be explicitly written by using 
the matrix elements of the position operator 2, as given 
in [6, 151. 

\2eo j (z, Zz , )2  n ' : # ,  
( n ' [ x l n ) =  ( 1 ~+ n' (14) 

\ 2 e 0 /  ~z. = n  

The size of the base in our computations ranged from 
384 to 768. Initially, only a single unperturbed state n o 
was excited and the resulting quantum dynamics was 
compared to the classical evolution of an ensemble of 
orbits with the same value n o of the unperturbed action 
variable and randomly distributed angle variable. 

The existence of both a localized and a delocalized 
regime is demonstrated in Figs. 1, 2. In both these cases, 
the classical motion is fully chaotic, and the classical dif- 
fusion continues over all the integration time. Neverthe- 
less, in Fig. 1 the quantum packet follows this classical 
spread just for a small number of periods of the field, 
then it "freezes". Notice that in this "frozen" configu- 
ration the wave packet is still far from significantly pop- 
ulating the available basis set (see Fig. 3). On the contrary 
in Fig. 2 the wave packet continues to spread until the 
basis is filled. 

An enlargement of the size of the basis allows the wave 
packet to spread for a longer time, until even the new 
basis is filled (Fig. 2). Instead, in the localized case of 
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Fig. 1. The numerically computed 2nd moments A n 2 of the distri- 
bution in the unperturbed action variable n, as a function of time 
(given in number [ of periods of the perturbing field), for co = 2.52, 
e = 0.5, %= 0.4, no= 60. The classical motion (dashed line) is dif- 
fusive while the quantum (full line) saturates. Here is e(~)~2.0 
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Fig. 2. Same as Fig. 1, with co = 0.6. Here e(~)~0.2324. Two quan- 
tum curves are shown with basis size 384 (broken line) and 738 
(full line) 

Fig.  l ,  en larg ing  the basis does not  lead to any  signif icant  
mod i f i ca t ion  o f  the wave packe t  evolut ion.  

Due  to obvious  c o m p u t a t i o n a l  l imi ta t ions  the basis  
cou ld  no t  be fur ther  enlarged.  Str ict ly speaking,  the ob-  
ta ined  numer ica l  d a t a  do  not  therefore  answer  the ques- 
t ion,  whe ther  the observed  t rans i t ion  is a real  delocal i -  
za t ion  due  to the appea rance  o f  a con t inuous  spectra l  
componen t ,  or  jus t  a loca l iza t ion  on a much  larger  scale. 
On  the o ther  hand,  a numer ica l  c o m p u t a t i o n  can ha rd ly  
be expected to yield be t te r  evidence than  the clear  cross- 
over  i l lus t ra ted  by  our  data .  

The  above  results  c lear ly  show tha t  the q u a n t u m  dy- 
namics  o f  this mode l  is quite different  f rom tha t  o f  the 
quan t ized  s t a n d a r d  m a p  (5). 
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Fig. 3. a A localized distribution : the probability of occupation P, 
of the unperturbed state n, versus N, in logarithmic scale. Here 
o~ = 2.52, e = 0.5, e0 = 0.4, n o = 60. b The total probability PN within 
the N-th photon zone, versus N in double logarithmic scale 
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Fig. 4. The spread of the wave packet A n 2 over the unperturbed 
states (2nd moment of the distribution in n), averaged in time from 
100 to 200 field periods, versus the decimal logarithm of the variable 
e(.O -3 /2  for %=5:  Full diamonds: e)=l .00,  e0=0.2; Circles: 
~o = 2.00, e 0 = 1.0; Triangles: co = 2.52, e0 = 0.4; Crosses: e) = 4.60, 
e0=1.44 and for n0=10: Full triangles: e)=2.52, e0=0.4. The 
dashed line is drawn to guide the eye 
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Figure  4 provides  a check for  the val id i ty  o f  the es- 
t imate  (10) for  the cri t ical  field for  de local iza t ion .  The 
d a t a  in Fig.  4 i l lustrate  how the loca l iza t ion  (measured  
by  the spread  o f  the wavepacke t  af ter  a f ixed t ime)  is 
des t royed  u p o n  increasing e while keeping a) fixed. The 
da t a  in Fig.  4 co r re spond  to four  different  values o f  co. 
In  each case, the spread  increases more  or  less sharp ly  
f rom 0 to a sa tu ra t ion  value (which is de te rmined  by the 
filling up  o f  the finite basis set). In  Fig.  4 the spread  is 
p lo t t ed  (in semi- logar i thmic  scale) aga ins t  the var iable  
e c o - s / a  that ,  accord ing  to (10, 11) is the same as e / e ~  ), 
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apart from a numerical factor. The five sets of data in 
Fig. 4 yield evidence that the localization scales with the 
variable e (e) ~(cO) /ecr and that has the predicted functional 
dependence. Moreover, they suggest that the numerical 
factor is about 0.5, as in (10). 

The steady-state distribution in the localized regime 
exhibits a remarkable structure. In Fig. 3a we plot one 
such distribution against the variable N = E/co. The main 
characteristics of  this distribution is a sequence of peaks, 
equidistant in energy, starting from the initially excited 
state. 

Concerning the overall shape of the distribution, the 
data provide some clear evidence for a power-like decay- 
ing distribution (recall that the quantization of the Stan- 
dard Map (5) would lead instead to an exponential dis- 
tribution); see Fig. 3b, which is a bilogarithmic plot of 
the population of "resonant" zones (i.e. a plot of 
in PNVS ln N, where PN is the total probability on unper 
turbed levels n with energies E~ lying between 
Eno + (N--  �89 co and E,,0 + ( N +  �89 co). With this definition 
of PN, Fig. 3b differs from Fig. 3a not only because 
of a different scaling in the horizontal axis, but also be- 
cause of a local smoothing. 

There is some evidence that the exponent ruling the 
algebraic decay of the distribution decreases when the 
delocalization border (10) is approached from below. 
However, because of the algebraic tail, very large bases 
must be used for reliably computing this exponent. This 
is one reason why we could not yet have a full check of  
the predicted power law (11) for eigenfunctions ; our nu- 
merical data relate to the decay of the distribution rather 

than of the eigenfunctions, and the theoretical relation- 
ship between the two types of decay requires further in- 
vestigations. 

This work was performed with the support of Consiglio Nazionale 
delle Ricerche, Progetto Finalizzato Sistemi Informatici e Calcolo 
Parallelo. 
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