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Abstract. - We consider properties of critical invariant tori with two fixed winding numbers 
in volume-preserving maps. We present numerical evidence for the existence of dqfeerent 
renormalization dynamics on small scales which corresponds to breakdown of universality. 

Two-dimensional area-preserving maps provide a convenient tool to study the classical 
chaotic dynamics of Hamiltonian systems. One of the most important problems is the 
transition from regular to chaotic motion which takes place at some critical value of the 
perturbation. Near the critical perturbation the structure of the motion is very complicated 
and consists of a hierarchical mixture of regular and chaotic components. Nonetheless this 
complicated critical structure obeys a remarkable universal scaling property which imposes 
a surprising order in this complicated motion[l]. 

The simplest case of such critical motion[2] corresponds to the destruction of the 
invariant curve with golden-mean winding number. The structure of such a motion revealed 
a remarkable universality in the sense that all characteristics depend asymptotically only on 
the winding number and not on the particular map considered. In this case the scaling 
structure of the critical golden invariant curve is known to be related to a fixed point in 
renormalization dynamics [ 1-31. A similar fixed-point structure characterizes other well- 
known routes to chaotic behaviour in parameter space, like period doubling [4] or transition 
to chaos for circle maps with golden-mean winding number [5,6]. More complicated 
universal structures have been invoked in the analysis of critical maps with general winding 
number [6-91. 

A natural question arises whether this universality will persist in higher-dimensional 
systems (or higher-dimensional maps). To this end, in the present paper we study the 
destruction of invariant surfaces with two winding numbers (two-torus). From a physical 
viewpoint such problems arise for example in the classical model of hydrogen atoms in a 
microwave field [lo]. Also, the knowledge of the most stable region in systems with two- 
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frequencies perturbations can find applications in accelerators where usually a certain skill 
is required to find a region of stability on the two-dimensional frequency diagram of 
resonances [ 111. 

The investigation of such a model opens the possibility to find a much richer and 
interesting renormalization group dynamics which appears on small scales of phase space. In 
particular we found that scaling properties are not determined uniquely by the winding 
number, which means a breakdown of universality on small scales. 

One of the first attempts to study the destruction of tori with two winding numbers was 
made, for dissipative mappings, by Kim and Ostlund [12,13]. In particular these authors 
have discussed in detail the problem of simultaneous rational approximations to a pair of 
mutually irrational numbers; we will maintain their scheme in what follows. 

In order to study the destruction of two-torus, one needs to find periodic orbits in four- 
dimensional area-preserving maps, which involves remarkable numerical problems, practi- 
cally unsolvable, especially if long periods have to be considered. To avoid these difficulties, 
we consider the case in which one of the actions is an integral of motion and the evolution of 
the corresponding phase is just a rotation with fixed winding number. An interesting model 
is provided by the standard map with amplitude modulations: 

The motion is characterized by a pair of frequencies given by the x and x winding numbers, 
that is 

(r2 accounts for the internal frequency of the modulation and appears as a fixed parameter in 
(1)). Notice that invariant surfaces divide the phase space in separate regions with no flux 
between them. Therefore such surfaces strongly influence transport properties. In the 
following we investigate the destruction of the invariant surface (torus) whose winding 
numbers are given by rl = 1/d2, r2 = 1/9, 9 = 1.324 718 ... [12] being the real solution of 

9 3  - 9  - 1 = o .  (2) 

This particular choice (known as the spiral mean), is characterized by robust geometric 
scaling of rational approximants and in [12] it is argued that this irrational pair should play a 
role analogous to the golden-mean winding number for invariant curves. 

We will approach the invariant torus via a sequence of periodic orbits, indexed by their x 
and x rational winding numbers (pl,/q,, pzn/qn), generalized Farey-tree rational approx- 
imants of (a-', a-'). In practice pln, pzn and q, all obey the same (Fibonacci-like) recursion 
relation Pi = Pi-2 + Pi-&3, = pj,, q,): with ( q - 8 ,  4-2 ,  q-' ) = (0, 1, 11, while = q n - 2  and 
pz ,  = qn-l. The analysis of periodic orbits for the map (1) can be pushed to remarkably high 
orders once we take into account symmetry properties: as a matter of fact this map can be 
written as a product of two involutive applications [141: T = AB (A2 = B2 = 1). As a result 
there is a line (the dominant symmetry line 2 = 0, z = 0) to which at least one point of each 
cycle belongs [14,11: this allows to reduce locating periodic orbits to a one-dimensional 
problem. 
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Before turning to the stability analysis of cycles we must understand how periodic orbits 
are connected to the motion on the invariant torus. The principal scales of the critical motion 
correspond to minimal detunings 8, and are indexed by the integers Qln, Q2,, Pn: 

The integer pair (Qln, Q2,) determines the principal resonances which affect most deeply 
the critical motion. It can be shown that for these resonances the detunings 8, decay 
as (max{IQlnI, IQ2nl})-2 (see for example[15]). For the periodic orbit labelled by the 
same approximation index n these detunings become equal to zero (Q1,*pl,lqn+ 
+ Q2n p2,/q, - P, = 0). As a consequence the above Fibonacci-like rational approximants are 
indeed the most relevant ones for a given rotation pair rl, r2. 

The sequences Q1,2n (which label the resonance orders of the cycles under inspection) are 
determined by recursion relations Q1,2n = - Q1,2n-1 + Q1,2,-3, whose associate algebraic 
equation is A3 + A2 - 1 = 0 (which is obtained from (2) through the substitution A = a-’, and 
corresponds to the inverse spiral mean). While (2) leads to robust geometric scaling of 
approximants, as it has a single real root outside the unit circle and two complex-conjugate 
roots inside, the equation governing the asymptotic behaviour of resonances possesses a real 
root (8-l) inside the unit circle, while the dominant roots form the complex-coniugate pair 
- fl exp [ f ia] outside the unit circle. Thus these simple considerations predict oscillations 
(ruled by the phase a: cos a = d3”%) superimposed to an overall geometric scale, which we 
expect to be rather weak, being governed by fl. 

To study the scaling properties of our invariant torus we follow Green’s procedure and 
determine the residua R, which characterize the stability properties of resonances and 
periodic orbits. For orbits with period q,, R, = (1/4)(3 - Tr J,), where J ,  is the Jacobian 
matrix of the map (1). 

Theoretical arguments, lying at the basis of the approximate renormalization of the two- 
dimensional standard map [91, lead to the expectation that the above-described oscillatory 
behaviour of resonances will be reflected in the dependence of the residua of the 
approximants on the order of approximation n. Indeed, according to our numerical results 
the residua do not have a unique limit in the critical case. However, this does not prevent us 
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Fig. 1. Fig. 2. 

Fig. 1. - Residua us. approximants order of renormalization time n for k,, = 0 (E,, = 0.40628). 

Fig. 2. - Same as fig. 1, for k,, = 0.05 ( E ~ ,  = 0.34594; dashed line) and k,, = 0.3 (E,, = 0.18; full line). We 
found close agreement in the oscillations also for intermediate values of k,,. The approximate 9- 
periodicity is stressed by the arrows. 
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from determining critical parameter values: if we fix k in (1) and look at the behaviour of the 
residua of periodic trajectories R, vs. n for different E (taking, as in the usual two- 
dimensional case .elliptic orbits.), we can determine E,, as the value of E such that R,(E) - 03 

for E > E,,, and R,(E) H 0 for E e E,,, even though this overall behaviour is modulated by 
strong oscillations. We consider (for each fixed value of k) periodic orbits up to period 
1221537 which correspond to  n = 4 7  in the sequence of generalized. Farey rational 
approximants to $-I). In fig. 1-3 we show the behaviour of residua vs. order n of 
rational approximants of different critical parameter pairs (k,,, E,,). According to our 
numerical results there is a region (fig. 2)-seemingly connected in parameter space-in 
which residua oscillations display universal behaviour. Moreover these oscillations appar- 
ently follow a period-9 pattern, and this can be understood in terms of resonances: in fact the 
phase a characterizing the leading roots of the equation for resonances is very closely 
approximated by 2x19 (a = 2x. 0.1120224 ...). Similar features appear if we fuc k and look at 
the sequence of {E,}  values corresponding to periodic orbits (at the n-th step in the rational 
approximation scheme) with a fixed residue R = 0.25. We found that the { E , }  sequence 
converges geometrically with superimposed oscillations to the critical value (which depends 
on k). In the range of critical parameters 0.05 S k,, d 0.3 (corresponding to 0.18 d E,, d 0.31, 
where residua oscillations are universal, we observed that the oscillations of the convergent 
sequence { E , }  were also the same. The scale factor for the geometric convergence rate, as 
anticipated above, is rather small. Therefore even going to orders as high as n = 40 and 
more allows only to determine this factor up to a few percent. Within this rather high error 
bar all values we obtained are compatible with a geometric rate fi. Such a rate corresponds 
to  convergence - E , I  = l/(Qf, + &I,>'" as it is for the one-torus case [2,9]. This is shown, 
for example, in fig. 4, where we plot log I E, - &,,I vs. n for k,, = 0.3. 

However the most striking result is that the critical dynamics outside the critical 
parameters range discussed above exhibits a quite different behaviour of residua as a 
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Fig. 3. Fig. 4. 
Fig. 3. - Same as fig. 1, for k,, = 0.55 (E,, = 0.543; dashed line) and k,, = 0.65 (E,, = 0.0179; full line). 

Fig. 4. - Convergence rate (eq. (4)) to the critical parameter value lis. n for three different cases: 
a) k,, = 0.3 (E,, = 0.18; full curve), b )  k,, = 0.6 ( E , ~  = 0.0349; dashed curve), c )  E , ~  = 0 (k,, = 0.83247; 
dotted curve). The scale on the left corresponds to curves a) and b) ,  the one on the right to  curve c) .  
The slope of the straight full line corresponds to theoretical scaling factor fl= 1.1509 ... (we checked 
that for the two-torus case the same scaling factor appears if one fixes E and studies how {k,} 
converges to the critical value). The least-square fitting of the two curves a) and b)  gives, respectively, 
1.14 and 1.18. The straight dotted line is a least-square fitting of curve c )  with corresponding scaling 
factor 1.33. 
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function of renormalization time n. This is pictorially illustrated in fig. 1, where the residua 
pattern corresponding to k equal to zero is shown, being completely different from the one 
corresponding to the universal range in fig. 2. The parameter region displaying a behaviour 
of the type shown in fig. 1 is relatively small (kcr < 0.05). A larger region of renormalization 
behaviour different from the two cases mentioned above (fig. 1, 2) has been observed for 
k 3 0.5. In this region the behaviour of residua is sensibly dependent on small changes in kcr. 
This is illustrated in fig. 3, where we show that changing from k ,  = 0.55 to k ,  = 0.65 leads to 
different evolutions in renormalization time. 

In this region we also studied the law ruling convergence of sequences { E , }  (and k,) to the 
critical value and we found (see fig. 4) that the convergence rate 5 is close to fi, as follows 
from simple resonance considerations: 

It is interesting to push the analysis to the limiting case E = 0, corresponding to the 
destruction of the invariant curve with one winding number. One of the first attempts to 
investigate the destruction of such an invariant curve, with rotation number r = 1/S, was 
made in ref. [16]. This case is similar to ours with rl = 1/a2 = 1/(1+ 1/9) = [ l ,  1, 3, 12, 1, 1, 3, 
2, 3, 2, 4, 2, 141, 80, 2, 5, 1, ... 1 and E = O .  We considered convergence of the sequence 
1 k ,  - k,, 1 (determined by Fibonacci-like approximants) and found that the convergence law 
is 1 k,  - k,,l= l/Qy,2n with corresponding scaling exponent Q = 1.33 = 9 which is different 
from the value previously obtained for the destruction of two-torus (see fig. 4). Therefore 
scaling properties of one-torus renormalization dynamics differ totally from the two-torus 
case (eq. (4)). We also checked the convergence to the critical k when the irrational rotation 
number rl is approximated by periodic orbits (of period qn) determined by the periodic 
fraction expansion. Since the entries in the continued-fraction expansion are not bounded 
and grow with n, we could not reach very high n (nmm = 11). For these approximants we 
found that the convergence is approximately described by the relation 1 k,  - kcr\ = l/qk with 
s =  1.1. This values is slightly different from the results of ref. [16] (s= 1.44), where 
apparently n- = 7. However, to determine the limiting value of s one needs to go to higher 
values of n. Further investigation is also required to find how small E ,  has to be to have two- 
frequencies scaling close to one-frequency behaviour. 

In this paper we have provided empirical evidence for the existence of different basins of 
attraction for renormalization dynamics on small scales in phase space. Numerical evidence 
shows that in one set of attraction, corresponding to 0.05 < k ,  S 0.3, small changes in critical 
parameters do not change the resulting renormalization dynamics, so this set can be 
considered as stable and universal. However, on another set of attraction a small change in 
critical parameters leads to different behaviours on small scales and therefore renormal- 
ization dynamics in this set is probably unstable and chaotic. We conjecture that this region 
corresponds to a chaotic attractor in the space of 3-dimensional maps with two rotation 
numbers coinciding with the spiral mean, while the parameter region of fig. 2 probably 
corresponds to a limiting stable renormalization cycle. 

In conclusion we have shown that 3-dimensional, volume-preserving maps obtained by 
adding modulation to the standard map have a renormalization group behaviour much more 
rich than the scenario of the 2D case: different critical parameter values lead to quite 
different behaviour on small scaies for a fixed pair of rotation numbers. Instead in the 2D 
case the asymptotic oscillations of residua for critical invariant curves with a fixed typical 
irrational winding number are always universal and the same for different maps. 
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