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Two-Frequency Excitation of Hydrogen Atom
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Abstract —By using the Kepler map formulation of the microwave excitation of the hydrogen atom.
we show that the introduction of a second incommensurate external frequency leads to a significant
decrease of the delocalization border. Numerical computations confirm this prediction.

The problem of the excitation of an hydrogen atom under a monochromatic. linearly
polarized. microwave field has attracted much interest in the past few years [1-10]. in
connection with the possibility of experimental investigation on the relevance of classical
chaos in quantum mechanics. By now we have a sufficiently clear general picture of the
quantum excitation process. In particular it was found [2, 4, 5] that the chaotic diffusion
which takes placc in the classical case and which lecads to strong ionization can be
suppressed by a localization phenomenon somewhat analogous to the one occurring in
I = d lattice problems of solid state physics. More precisely one can distinguish between
two regimes defined by w, <1 and w,>1 (where w, = wnj is the ratio between the
microwave frequency and the frequency 1/n]) of the unperturbed motion corresponding to
the inttially excited state ny). For o, < 1 the excitation process is satisfactorily described by
the classical dynamics. Instead, for @y > | quantum inhibitory effects produced by quantum
interference are at work, and a stronger ficld than predicted by the classical chaos border is
required for ionization [2].

This phenomenon of quantum suppression of classical chaos, which has been observed in
recent laboratory experiments [[1-13], turned out to be substantially stable for modifica-
tions of the model such as, e.g. the introduction of a second spatial dimension [3] or the
introduction of an additional static ficld.

It is therefore interesting to investigate what would be the most efficient way to destroy
this localization. A promising approach appears to be the introduction of a sccond
perturbing frequency [14, 15] incommensurate with the first one. Indeed. the addition of
such an incommensurate frequency was already shown to significantly reduce localization
effects in simple models [16]. An heuristic explanation of this effect was provided by a
formal identification of the quantum, deterministic time-dependent problem with a suitable
lattice problem with a static pscudo-random potential [17, [8]. Indeed. under this identifi-
cation the introduction of a second incommensurate frequency is equivalent to the
introduction of a sccond spatial dimension in the lattice problem.

In this paper we present a theoretical and numerical study of the quantum excitation of a
| — d hydrogen atom in a microwave field with two frequencies. It is shown that also in
this casc the delocalization border is sharply reduced in the presence of a second

*Dipartimento di Fisica, Universitd di Milano Via Celoria 16, 20133 Milano, Italy.
*Diparumento di Fisica Nucleare ¢ Teorica, Universitd di Pavia Via Bassi, 27100 Pavia, Italy.
tinstitute of Nuclear Physices, 630090 Novosibirsk, USSR

13t



132 G. CasaTi eral.

incommensurate frequency. as is the ‘local stability” at certain rational frequency ratios
when w, <1 [14, 15].

In order to analyze the dynamics of the 1 — d hydrogen atom subject to two monochro-
matic fields with strength ¢, &, and frequency w,, w,, we used the Kepler-map formulation
described in (5, 19]. This map gives the change of the phases ¢, = w,t. ¢-» = w-r (mod 2.1)
of the field and of their conjugate variables N, N, over one orbital period of the electron.
and is given by

Ni:=N2+ kpasin ol

P2 = P2 + 2700[= 2N, + 0N, + E)]~ 0
where k, =2.58(¢,,/wi3) and E, = (—1/2n7) is the initial energy. In the quantum case
N1; would give the number of quanta absorbed from the fields (we use atomic units). In
order to derive the four-dimensional map (1). it was assumed that w,.nj, > 1 (see [5]). We
will assume now that the two fields are of the same order of magnitude. so that the
threshold for the onset of classical chaos in (1) will be at least not higher than the chaotic
border for just one frequency:

(£y) ~ min ————r.
o Nwling
Therefore above the border (2). one has diffusive excitation in the classical model. If the
ratio w,/w, = v = 1 is integer, then v, — ¢ = const so that the phase ¢, can be eliminated
and the 4 — dim map reduces to a 2 — dim map in the variables ¢, and N = N | + 0N,
The diffusion rate in N will be given by

_ (AN)? k3 q* \ _ &
D= T\ 1 + ) q = -{-—1 (3)

where ¢ is the number of mapping iterations.

[n the quantum case. interference effects will produce exponential localization in the
number of absorbed photons, with a localization length [, ~D. We recall that this estimate
is derived from a general prescription, that quantum diffusive behaviour up to a (discrete)
time ¢ is possible only if AN >, where AN is the number of excited states up to time t;
in the present case. AN ~ (Ar)"? [5] which immediately yields /, ~ D as the maximum
spread in the number of absorbed photons. 1f this /, becomes comparable with the number
of photons required for ionization: N, ~ 1/(2niw,). then localization will be destroyed, and
the excitation will be close to the classical one. From [, ~ N, we get the conditions for
localization:

wz,.’\

", < . S 2 4
' 6.6ei(1 + g o7 )

where ¢, = €1, w, = wyn;. This result is almost the same as in the monochromatic case
{4. 3], so that the introduction of the second ficld does not strongly change the localization
picture.

As is well known, in the classical case, in the region of strongly developed chaos, the
diffusion rate would practically not change in the case of incommensurate frequencics.
However, in the quantum case the non-commensurability of frequencies produces a
significant lowering of the delocalization border. In that case, indeed, the number of
excited states AN AN, grows according to (k,k./2)¢. The delocalization condition is then
AN AN, > . This condition requires & k> >2 to be compared with k° ~ N, for one
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frequency case. It is therefore clear that with two incommensurate frequencies* a lower
field is required for delocalization. Strictly speaking. even in that case one should not
expect two-dimensional delocalization but rather localization over an exponentially large
scale. Since, however, just a finite number of photons is needed for ionization. the
condition AN AN, > still defines the border for strong ionization. This condition can
then be explicitly written:

/3,56
;v

)

n, > ———.
1.86,q"*
In the range of n,, given by (4) and (5) together. we expect a much stronger ionization with
a two-frequency field than with a monochromatic one. or than with two commensurate
frequencies.

Strictly speaking. the sharp difference between the commensurate and the non-commen-
surate case refers to an ideal situation with inifinite interaction time and with precisely
specified frequency values. Quite clearly, in any physical situation. the finiteness of the
interaction time will smooth this difference to some extent. In principle, it should be
possible to numerically demonstrate the difference between commensurate and incommen-
surate cases, but the required computation time would be too long. We wish to recall in
this connection that a distinction between commensurate and incommensurate cases occurs
also with the well-known kicked rotator model. In spite of the simplicity of that model, a
numerical investigation of the effects of commensurability required quite large computation
times {21]. In the present model we expect the localization condition (4] to hold when the
two frequencies are such that the system ‘sees’ a common period and the interaction time is
long enough with respect to this common period. In practice, for interaction times of a few
hundred cycles this will happen only when the frequency ratio is not too large an integer.
Great care is needed in order to numerically check the above prediction (5). To this end,
we made numerical experiments on the H-atom dynamics, by the same procedure
described in [4]. The results are shown in Fig. 1. The full curve there shows the boundary
of the parameter region defined by (5), with ¢ =1, v =1.382. Here 2 — v is a rational
approximation to the golden ratio and could be taken as a ‘practically irrational’ frequency
ratio in our computations. Each point in Fig. 1 represents the outcome of a numerical
simulation with different parameters in the range 66 = n, =400, 0.014 =¢,=<0.04,
1.3=w,=2.5 and over a time ~250 periods. The transition from localization to
delocalization was detected by the increase of the ratio between quantum excitation
probability W{s above # =1.5n, and the corresponding classical probability W¢s. The
figure shows that this transition took place across the theoretical border (5) (full line).

Notice that the ‘l-frequency’ border (dotted curve) is much higher. The three cases
denoted by r in Fig. 1 correspond to a frequency ratio v =2(q = 1): in that case the
crossover to strong ionization appears to take place at higher field values, about the
threshold (4).

Some typical data are singled out in Table 1. In particular, we see that the case with two
commensurate frequencies (third case) gives almost the same ionization as the one
frequency case with the same total power.

*In any physical situation, the frequencies are not exactly known, so that the distinction between the
commensurate and the incommensurate case is, strictly speaking, meaningless. Nevertheless, the dynamics of an
atom interacting with the bichromatic ficld for a finite interaction time will follow the predictions of the
incommensurate case if, in the given interaction time, it will not be able to perceive any periodicity in the
perturbing field.
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FIE l. The two frequency dLlOLdllZi’l(lOﬂ borders given by equation (4) (dotted curve) and equg }lon (5) (full line)

in the plane of the parameters y = ny/2ex. (number of photons required for lomzatmn) x= w(, 3/ey. Here q=1.

o = 1.382. Full squares corre%pond to situations in which a value of W =log W"ﬁ/Wl ¢ between —0.5 and 0. was

obtained: full triangles, to —L.0= W < -0.5; open squares to —1.5 = W —1: open triangles to W < —1.5. The

three cases with . = J48(ey = 0.021) and denoted by letter r, correspond to two commensurate frequencics with
ap=landv=2.qg=1.

In this paper we illustrate how the localization effects that limit the diffusive classical-like
excitation of a H-atom in a microwave ficld can be destroyed by the introduction of a
sccond non-commensurate frequency.

Because experiments with single-frequency driving {1, 13] have shown for w, > | clear
quantal suppression of classical chaos, supporting our carlicr theoretical predictions [2] for
this effect, and experiments with two-frequency driving have been reported for w, < 1 [14],
it will be most interesting to have these two-frequency experiments extended into the
w, > 1 region treated in this paper [22].

The considerations developed above for this particular problem are actually of a more
general nature and can be used also for more general models to describe the excitation of
systems with a level density p under the action of external fields with more than one
frequency. Indeed for the monochromatic case, this situation was investigated in general in
Refs. [5. 19] and it was shown that localization must be expected with a localization length
in the number of absorbed photons given by

Table 1. Tonization probability W s after v = 240 microwave periods for the case ny = 200. The monochromatic
Yy W 0
case in the last line corresponds to the same total power as in lines 2. 3 and to the same peak intensity as in line !

(7] L]

eqnt ""”i‘) “’2”?, v = —”-’-l— q = i W

0.014 25 3.382 1.352¢ | 151074
0.02 2.5 33825 1.3528 l 3.0-10-2
0.02 2.5 5 2 1 1.5-10-3
0.028 2.5 - — — 2.5-10-3
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l, ~ 2 e’ p’ (6)

where u is the one-photon matrix element and ¢ is the field strength. It was also shown
that expression (6) gives essentially a diffusion coefficient in the number of absorbed
photons. Instead. for two non-commensurate frequencies, the number of absorbed photons
of both frequencies grows in time according to AN AN, ~ 7y € 1:€,0 t. According to our
views [18]. introduction of new non-commensurate frequencies is equivalent to the
introduction of new degrees of freedom. Then, the above situation corresponds to a 2 — d
localization problem in solid-state physics., where the localization length. for (D,D.)"* > 1,
grows exponentially with (D,D-)"*, where D,, are diffusion coefficients for each
frequency given by (6) [17]. On account of this analogy. we expect In/,~
(D\ D))" =2 e € 207

Along the same lines, we are led to predict that the introduction of a third incommensur-
ate frequency would produce a transition from localized to diffusive behaviour for
2ruep > 1, where we assumed the three fields to be of the same order. This transition
would be analogous to the Anderson transition in 3 —d solid state problems [18].
According to this theoretical argument based on similarity with solid state physics
localization problems, the introduction of a third incommensurate frequency should be
even more effective for ionization. In this case. the threshold for strong ionization should

be the same as the quantum border of stability [20].
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