
The problem of the escitation of an hydrogen atom under a monochromatic. linearly 

Two-Frequency Excitation of Hydrogen Atom 

G. CASATI*. I. CUARNERIt and D. L. SHEPELYANSKY$ 

Dipartimento di Fisica. Universitti di Milano Via Celoria 16, Xl?.1 Milano, Italy 

Ahstrac1-By using the Kepler map formulation of the microwave excitation of the hydrogen atom. 
we zhow that the introduction of a second incommensurate external frequency leads to a significant 
decrease of the delocalization horder. Numerical computations confirm this prediction. 

polarized. microwave field has attracted much interest in the past few years [l-lo]. in 

connection with the possibility of experimental investigation on the relevance of classical 

chaos in cluantum mechanics. By now we have a sufficiently clear general picture of the 

quantum escitntion process. In particular it was found [2, 4, S] that the chaotic diffusion 

which takes place in the classical case and which lends to strong ionization can be 

suppressed by ;I localization phenomenon somewhat analogous to the one occurring in 

I - tl lattice problems of solid state physics. More precisely one can distinguish between 

two rcgimcs dcfincd by w,, < 1 and w,, > 1 (whcrc w,, = WI: is the ratio bctwecn the 

microwave frequency and the frecluency l/II: of the unperturbed motion corresponding to 

the initially cscitcd state /I,,). For CO,, < 1 the escitntion process is s:ltisfactorily described b) 

the classical dynamics. Instead. for w,, > 1 cluantun~ inhibitory effects produced by qunntum 

interference arc at work, and a stronger field than predicted by the classical chaos border is 

required for ionization [2]. 

This phenomenon of quantum suppression of classical chaos, which has been observed in 

recent laboratory cspcrimcnts [ 1 I-13], turned out to be substantinlly stable for moclifica- 

tions of the model such as, e.g. the introduction of a second spatial dimension [3] or the 

introduction of an additional static field. 

It is therefore interesting to investigate what would be the most efficient way to dcstrq 

this localization. A promising approach appears to be the introduction of ;I second 

perturbing frequency [l-4, 151 incommensurate with the first one. Indeed. the addition of 

such 1111 iIicoIiiIiicIislIr;Itc frequency was already sho&n to significantly reduce localization 

effects in simple models [lb]. An heuristic csplanation of this effect was provided by n 

formal identification of the quantum, deterministic time-dependent problem with n suitable 

lattice problem with a static pseudo-random potential [ 17, IS]. Indeed. under this idcntifi- 

cation the introduction of a second incommensurate frccluency is equivalent to the 

introduction of ;I second spatiill dimension in the lattice problem. 

In this paper we present a theoretical and numerical study of the quantum escitation of n 

1 - ti hydrogen atom in n micro!vave field with two frequencies. ‘It is shown that also in 

this cnsc the delocalization border is sharply reduced in the presence of a second 
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incommensurate frequency, as is the ‘local stability’ at certain rational frequency ratios 

when CO,, < 1 (1-I. 151. 

In order to analyze the dynamics of the 1 - d hydrogen atom subject to two monochro- 

matic fields with strength Ed. E? and frequency wl, (I+, we used the Kepler-map formulation 

described in [5, 191. This map gives the change of the phases #, = tu,t. c#+ = CIJ~I (mod 2.2) 

of the field and of their conjugate variables N,, A’, over one orbital period of the electron. 

and is given by 

4.Z = iv,,, + X-,,: sin @I.2 

$,,: = c$,,~ + 2;rtu,,[- 2(01,N, + t~:iV, + &,)I-“’ 
(1) 

where k,,, = ~.%(F,.~/cu~,~) and E,, = (-1/2nfI) is the initial energy. In the quantum case 

N,., would give the number of quanta absorbed from the fields (we use atomic units). In 

order to derive the four-dimensional map (1). it was assumed that (o,.:!z% > 1 (see [5]). We 

will assume now that the two fields are of the same order of magnitude. so that the 

threshold for the onset of classical chaos in (1) will be at least not higher than the chaotic 

border for just one frecluency: 

(Fu) - nlin 49,,;“,*5 
7 

._ ,I 

Thcreforo above the border (2). one has diffusive excitation in the classical model. If the 

ratio OJ,/CU, = I) 2 1 is integer, then v@, - & = const so that the phase c$~ can be eliminated 

and the 4 - dim map reduces to a 2 - dim map in the variables cp, and N = N, + (I&‘?. 

The diffusion rate in N wilt be given by 

n = (AW --($)(t +g: c/z? 
I 

(3) 

whcrc I is the number of mapping iterations. 

In the quantum cxc, intcrl’crcncc cffccts will product csponcntial localization in the 

number of absorbccl photons, with ;I localization Icngth /,,, -0. Wc recall that this cstimntc 

is dcritcct from a gcncral prescription. that quantum diffusive bchaviour up to a (discrctc) 

time I is possible only if AN > f, whcrc AN is the number of cscitcd states up to time 1; 

in the prcscnt case. AN - (At)“’ [5] which immediately yictds I,, - II as the maximum 

sprcacl in the number of absorb4 photons. It’ this I,, bccomcs comparable with the number 

of photons rcquircd for ionization: N, - 1/(2/r&~,). then localization Lvill bc dcstroycd, and 

the excitation will bc close to the classical enc. From 1,) - N, WC get the conditions for 

localization: 

whet-c t‘,, = E, tli. wI, = w,~tA. This result is almost the same as in the monochromatic cast 

[A. 51, SC) that the introduction of the second field dots not strongly change the localization 

picture. 

As is ~vcll knokkn, in the classical case, in the region of strongly dcvcioped chaos. the 

diffusion rate ~k~.~ld practically not change in the case of incommcnsuratt frequencies. 

I-lu\vcvcr. in the quantum cast the nun-comrncnsl~r~lt~ility of frcclucncics products a 

signikant IoLvcring of the dclocalization border. In that cast. indeed, the number of 

cscitccl states Ai\‘,AiV, ~ “rows according to (k, kzl’Z)~. The delocalization condition is then 

A ,\’ , A ,\. , :. I. This condition rcquircs k, k, > 2 to be comparcd with k’ - ,I’, for one 
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frequency case. It is therefore clear that with two incommensurate frequencies* a lower 

field is required for delocalization. Strictly speaking. even in that case one should not 

expect two-dimensional delocalization but rather localization over an exponentially large 

scale. Since, however, just a finite number of photons is needed for ionization. the 
condition AN,AN? > r still defines the border for strong ionization. This condition can 

then be explicitly written: 
511 5,‘h 

tOi, _ 0‘ 

flu ’ 
l.sF,,(I’.Z. 

(3 

In the range of n,, given by (4) and (5) together, we expect a much stronger ionization with 

a two-frequency field than with a monochromatic one. or than with two commensurate 

frequencies. 
Strictly speaking. the sharp difference between the commensurate and the non-commen- 

surate case refers to an ideal situation with inifinite interaction time and with precisely 

specified frequency values. Quite clearly, in any physical situation, the finiteness of the 

interaction time will smooth this difference to some extent. In principle, it should be 
possible to numerically demonstrate the difference between commensurate and incommen- 

surate cases, but the required computation time would be too long. We wish to recall in 

this connection that a distinction between commensurate and incommensurate cases occurs 
also with the well-known kicked rotator model. In spite of the simplicity of that model. a 

numerical investigation of the effects of commensurability required quite large computation 
times [Zl]. In the present model we expect the localization condition [4] to hold when the 
two frequencies are such that the system ‘sees’ a common period and the interaction time is 

long enough with respect to this common period. In practice, for interaction times of a few 
hundred cycles this will happen only when the frequency ratio is not too large an integer. 

Great care is needed in order to numerically cheek the above prediction (5). To this end. 
we made numerical cxpcriments on the H-atom dynamics, by the same procedure 
described in [4]. The results arc shown in Fig. 1. The full curve there shows the boundary 

of the parameter region defined by (5), with (1 = 1, o = 1.382. Here 2 - u is a rational 
approximation to the golden ratio and could be taken as a ‘practically irrational’ frequency 

ratio in our computations. Each point in Fig. 1 represents the outcome of a numerical 

simulation with different parameters in the range 661 n,, ~~400, 0.014 zz E,,I 0.04, 

I.3 zz tr),) 2 2.5 and over a time - 2SO periods. The transition from localization to 
delocalization was detected by the increase of the ratio between quantum excitation 

probability Wf, above fi = 1.5r1,, and the corresponding classical probability WC!,. The 

figure shows that this transition took place across the theoretical border (5) (full line). 

Notice that the ‘l-frequency’ border (dotted curve) is much higher. The three cases 

denoted by r in Fig. 1 correspond to a frequency ratio 17 = 2(q = 1): in that case the 
crossover to strong ionization appears to take place at higher field values, about the 
threshold (4). 

Some typical data are singled out in Table 1. In particular, we see that the case with two 

commensurate frequencies (third case) gives almost the same ionization as the one 
frequency case with the same total power. 

‘In any physical situation. the frcqucncics arc not exactly known. so that the distinction hc~wccn the 
commcnsuratc and the incommcnsurnte czw is. strictly speaking. mcnninglcss. Ncverthclcss. the dynamics of an 
atom interacting with the bichromatic field for a finite interaction time will follow the predictions of the 
incommcnsuratc cast if, in the given interaction time. it will not bc able to pcrccivc any pcriodicity in the 
perturbing field. 
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Fig. 1. The two frequency delucalization horders given by equation (-l) (dotted curve) and equa,+n (5) (full line) 
in the plane of the parameters y = rr~j,h,u~,,. (number of photons required for ionization). .r = ,I$, ‘/F,,. Here (1 = I. 
P = 1.387. Full squares correspond to situations in which a value of W = lop Wi’JW;!, between -0.5 and 0. was 

obtained: full triangles, to - 1.0 5 W < -0.5; open squares to -1.5 5 LV -I: open triangle, to \V < -1.5. The 
three casc~ with .C = -!X(C.(I = O.lCl) and denoted by letter r. correspond to two commcmuratc frequencies with 

In this pnpcr wc illustralc how the localization cf~ccts that limit the cliffusivc classical-like 

cxcitativn of a 1.1~atom in a microwave field can bc clcstroyccl by the introduction of ;I 

second IiOn-cOIiiIiiCIisur;ItC frequency. 

Ikcausc cspcrimcnts with single-frqucncy driving [ 1 I, 131 have shown for (II,, > 1 clear 

clll:lntill suppression of d;Acill chaos, supporting our cnrlicr thcorcticul predictions [2] fur 

this cffcct, and cxpcrirncnts with two-frcclucncy driving have been reported for tu,, < 1 [ 141. 
it will bc most interesting to have thcsc two-frcqucncy cxpcrirncnts cstcndcd into the 

w,, > 1 region trcatccl in this paper [22J. 

The consiclcrations CIWCIO~CCI ithovc for this particular problcnl at-c actLIiIlly of il more 

gcncral nature and can be usccl also for more gmml models to clcscribe the excitation of 

systems with a lcvcl density /j unclcr the iiction of external fields with more than one 

frequency. Indeed for tht! nlonc~chromi~tic CiIW, this Sittlilti~ll was investigated in gcncral in 

Rcfs. [5, 191 and it wx shown that lociilizi\tion must bc cspccttxl with 2~ localization Icngth 

in the nunibt’r of absorbed photons given by 
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(6) 
where 1~ is the one-photon matrix element and E is the field strength. It was also shown 

that expression (6) gives essentially a diffusion coefficient in the number of absorbed 

photons. Instead, for two non-commensurate frequencies, the number of absorbed photons 

of both frequencies grows in time according to AN ,A Nz - 7~ c~,E~~~~E~_J f. According to our 
views [lS]. introduction of new non-commensurate frequencies is equivalent to the 
introduction of new degrees of freedom. Then, the above situation corresponds to a 2 - n 

localization problem in solid-state physics. where the localization length. for (D, D:)“’ > 1, 
grows exponentially with (D, D,)‘,‘, where D,,? are diffusion coefficients for each 
frequency given by (6) [17]. On account of this analogy, we expect In I, - 
(D, D:)‘,’ = 27r$,,~+~ $. 

Along the same lines, we are led to predict that the introduction of a third incommensur- 

ate frequency would produce a transition from localized to diffusive behaviour for 

27rj~p > 1. where we assumed the three fields to be of the same order. This transition 
would be analogous to the Anderson transition in 3 - CI solid state problems [lS]. 
According to this theoretical argument based on similarity with solid state physics 

localization problems. the introduction of a third incommensurate frequency should be 

even more effective for ionization. In this case, the threshold for strong ionization should 
be the same as the quantum border of stability [20]. 

.~\c~~rr~~~~/~~t/~~~~rrc~~rfs-~we nrc greatly indchted to Ginncarlo Ginami for his vnluablc assistance in numerical 

comput;~tions. 
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