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Abstract. - The manifestation of quantal localization for classically chaotic systems in 
disintegration processes such as ionization and dissociation is investigated. I t  is assumed that 
these processes are induced by noise. The effects of a nonperturbative mechanism that was 
recently introduced by D. Cohen are explored. The relation between these effects and noise- 
induced ionization of Rydberg atoms in the presence of microwave driving is discussed. 

For several model systemsrl-51 it was found that classical diffusion is suppressed by 
quantal effects that are similar to Anderson localization in disordered systems [6]. Some of the 
manifestations of these effects were observed in recent experiments [7-101. In this letter the 
manifestation of quantum localization in the disintegration (for example ionization or dis- 
sociation) of systems due to external noise is studied. Understanding of such mechanisms is of 
great importance, since most experiments require the destruction of coherence for the pur- 
pose of observation. For the sake of concreteness the results will be presented first for the 
kicked rotor and finally the relevance for driven H and Rb atoms will be discussed [5,7-131. 

The standard model for investigation of the chaotic behaviour in systems with time- 
dependent Hamiltonians is the kicked rotor [l, 2,6]. It is defined by the Hamiltonian 

where p is the angular momentum and its conjugate angle is 8 that is confined to the interval 
[0, 2x1. The units are such that the moment of inertia and the time between the kicks are 
unity. The classical system is chaotic and exhibits diffusion in phase space [14] with the 
diffusion coefficient Dcl(K) for K > K, = 0.9716. For large values of K it is approximately 

1 
2 Dcl - K 2  
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When the rotor is quantized it exhibits Anderson localization in phase space [6]. In the 
quantum system the angular momentum takes the values p ,  = nh. The quasi-energy states 
are localized on the lattice of momentum states in the same way as energy states are 
localized on a one-dimensional disordered lattice [E]. The localization length for small h 
is [16] 

This expression for the dynamical localization length holds for values of K that are larger 
than K ,  but not too close to it. With small changes it applies also when h is not very 
small [16]. On scales smaller than € in momentum space diffusion with the classical diffusion 
coefficient D,, takes place. On larger scales diffusion is suppressed and the system is 
localized [ 161 

The behaviour of the kicked rotor changes completely when noise is added [17-201. The 
most interesting behaviour is found when the noise is weak. In this case the basic structure 
of localized states is preserved and the noise induces transitions between the localized 
states. The time t* that is required to establish localization satisfies[16] 

If t, is the time it takes to destroy coherence, then the noise is weak if 

t* << t,. (5) 

If the noise is white, it induces a random walk on a lattice of localized states with spacing h5 
and hopping time t,. It leads to diffusion with the diffusion coefficient [17,20] 

D,=-. 
t c  

This result was obtained from a careful derivation [17,20]. It actually does not require that 
the noise is white, but merely that some correlations of the noise and the system are 
decoupled [201. It was shown that it holds also for many forms of coloured noise that are of 
physical interest. From (6) and (4) one obtains a general expression for the diffusion rate, 

that is much smaller than the classical diffusion coefficient. 
Assume that the rotor disintegrates when it reaches momentum p = pma. This will occur if 

the rotor is a linear molecule, for example, and for p > p ,  it dissociates. If initially the rotor is 
at p = 0, the time it takes for it to disintegrate in the presence of noise is of the order of 

It is assumed here that p ,  >> hE so that the disintegration is suppressed in the absence of 
noise. If the variance of the noise is v ,  the coherence is destroyed when there is an appreciable 
probability for noise-induced transitions between levels. Consequently, t ,  = h2/v [ 171 and the 
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resulting disintegration time satisfies 

where le, = p$,/DC1 is the time of classical disintegration. Therefore (6), (2) and (3) imply 

E-' = C1 K4v, (10) 

where C1 = l/h4&, is a constant. If the disintegration is due to pure classical diffusion, one 
finds 

with C2 = l / p L  that is very different from (10). This type of disintegration is expected when 
p,<ht; or if the noise is sufficiently strong to destroy the phase coherence and the 
localization, but not sufficiently strong to dominate the transport (1 << t, << t*). The relation 
(10) is a clear manifestation of localization in trasport. Although the derivation was carried 
out for the kicked rotor, for the sake of concreteness, it should hold for a wide class of 
systems, although some details may have to be altered. 

A system that exhibits localization like the rotor is the kicked particle. It is described by 
the Hamiltonian (l), but the angle variable 0 is replaced by a space variable x that varies 
from - to + w.  The momentum is not quantized, but the transitions that are induced by 
the kicks couple only momenta that differ by integer multiples of h. The matrix elements are 
identical to those of the kicked rotor, therefore localization with the same localization length 
is found. If initially the particle is prepared in a state p,, it can reach states only within a 
ladder p ,  + nh, that is determined by p , ,  where n are integers. Within the ladder, quantum 
localization takes place, and the dynamics are similar to those of the kicked rotor. Noise, 
however, induces transitions between ladders belonging to different values of p,. Unlike the 
case of the kicked rotor the effect of noise on the kicked particle is nonperturbative in its 
nature, and therefore it leads to a much more effective destruction of localization, as shown 
by Cohen [21]. Due to noise-induced diffusion the spreading in momentum is Ap = fi. The 
resulting variation of the velocities of the particles leads to a spread in position 

For the description of a state with localization length 5 in momentum, details on the scale l/E 
are important. Consequently, localization is destroyed when 6x exceeds l 1 E  resulting in 

The quantal diffusion coefficient (6) is much larger for the kicked particle than for the kicked 
rotor due to the v'l3-dependence on the variance of the noise. This result was verified 
numerically [21] and it is different from the perturbative result (9). The disintegration time 
following from (6) is 
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Therefore the disintegration time for the kicked particle satisfies 

? (15) i-1 = C3K4+4A? v l B  

where C3 = l /h10/3pk is a constant. The dependence o f t  on K is not very different from that 
of the kicked rotor but the dependence on the noise variance v differs sharply. 

In the presence of noise, the behaviour of real systems is intermediate between the 
kicked rotor and the kicked particle. Their proximity to each one of these idealized systems 
is determined by the number of ladders of states, such that the dynamics are restricted to 
within each ladder. The noise induces transitions between these ladders. Moreover, locally 
in phase space, many systems can be approximated by the kicked rotor[3,5]. The most 
studied example of this type is the hydrogen atom in a microwave field [5,7-131. Let w be the 
frequency of the microwave field. The driving microwave field induces transitions between 
levels that are separated approximately by w in energy (in atomic units that will be used in 
what follows). These are called sometimes the photon states [5,131. The quasi-energy 
eigenstates are localized in the basis of these states. These are ladders of energy states that 
are not connected by the dynamics if one starts from a particular eigenstate of the 
unperturbed hydrogen atom. Noise induces transitions between these ladders. The 
proximity of the behaviour to the one of the kicked rotor or the kicked particle is determined 
by the number of these ladders g. This number g is approximately equal to the number of 
unperturbed states in the one-photon energy interval, so that for the one-dimensional 
hydrogen atom g = on3 where atomic units were used. This number g increases with the 
level number and therefore the kicked-particle approach becomes more applicable for 
initially excited level no with a large value of wo = on$ = g .  The excitation in microwave field 
can be approximately described by the Kepler map [5] which can be reduced locally to the 
standard map with Hamiltonian (1). From this reduction (see ref. [5], eqs. (13)-(18)) one 
obtains 

where = En& while E is the field strength and h is the effective Planck's constant for this 
problem. Noise will be characterized by a decay rate r of the probability at a given level n, 
assuming that noise generates transitions mainly to nearby levels. For example, for the case 
of the black-body radiation at temperature T, one gets [22] r = 4T/(3c3 n2), where the 
temperature and velocity of light are measured in atomic units. For given T the value of v is 
determined by the change of the effective momentum ( A O ) ~  = h2(AN)2 of the electron in the 
Kepler map after one orbital period. Since the variation in number of photons is 
AN = An/on3, one finds 

where it was taken into account that the orbital period is 2rn3 and (An>2 = 2#n3. It results 
from the assumption that transitions take place mainly to nearest levels. From (2), (31, (13) 
and (161, one obtains an expression for the coherence time (in the number of microwave 
periods) 

Even for small values of r this time is relatively short, which leads to a fast ionization 
with a rate that is inversely proportional to q. However, expression (18) can be applied only 
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if the time 2, is bigger than the time T~ = w / 2 g  required for transition to the nearest level, 
leading to 

If this condition is not satisfied, then noise acts as in the case of kicked rotor and coherence 
time is inversely proportional to v .  The time it takes to ionize a fxed fraction, say lo%, of the 
atoms, in the presence of noise is proportional to E. If (19) holds eq. (15) with K replaced by E 

applies, otherwise (10) should be used. 
It is possible that the main predictions of this paper that are eqs. (10) and (15) have 

already been observed in experiments on rubidium atoms by the Munich group [23]. In these 
experiments Rb atoms are driven by a microwave field E cos wt for a time ti. In the first set 
of experiments localization was observed and its destruction by external noise was 
studied[9,10]. In the second set of experiments[23], that was done for a different 
frequency, the field that is required to ionize 10% of the atoms, E,, was measured as a 
function of ti, that is the time that the atoms interact with the microwave field. The 
experiment is performed in liquid-nitrogen temperature and no controlled noise is added. It 
was found experimentally that 

where a = 0.25 or a = 0.20 depending on the initial state, where the value 0.25 was found for 
the lower initial states. According to the argument presented in this paper E, - K and ti - E. 
Therefore ti is related to E, by eq. (10) or (15) with K replaced by E, and t by ti, depending on 
the mechanism that applies. The values that are predicted by eqs. (10) and (15) are cx = 0.25 
and a = 3/16 = 0.188, respectively, in agreement with the experimental results. Due to the 
close values of a predicted by these equations, it is hard to determine experimentally which 
of the two mechanisms, that were presented in the paper, takes place. The regime of 
applicability of (15) is restricted by (19) as well as by (5) and may be quite narrow. Therefore 
careful experiments are required to find a regime where it applies. Measurement of E, or ti as 
a function of the noise variance v will enable to distinguish between these mechanisms due to 
the big difference between the exponent of v in eqs. (10) and (15). 

It is not completely clear what is a possible source of noise in these experiments. One 
obvious possibility is thermal noise. Using the usual estimate for r due to black-body 
radiation for liquid-nitrogen temperature, we get rn3 = Tn/c3 = for n = 100. This is 
extremely small. Transitions to various I and m states induced by black-body radiation are 
not very effective due to the small phase space for low frequencies. The existence of other 
low-frequency noise combined with black-body radiation may induce transitions in a more 
effective way. Another possibility is that this noise results from the core electrons. The 
microwave field couples mainly to the outer electron. Due to exchange correlations with the 
core electrons the energy levels of the external electron are shifted by a very small amount 
leading to a shift in the quasi-energies. A very long time is required to resolve this shift and 
on short time scales of the experiment it looks as level widening or noise. The core electrons 
may act, therefore, as a heat bath for the external electron. Detailed calculations are 
required in order to evaluate the importance of this mechanism. Another possibility is that 
the noise originates from the microwave generator. In such a case it should depend on E and 
the prediction of theory for a may be somewhat different, for example if v is proportional to 
c2, one expects a = 116 = 0.17 that is close to the experimental results. Since there is no 
classical theory for driven Rb atoms, we cannot rule out the possibility of an ionization 
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mechanism that is of classical origin, making the theory presented in this paper inapplicable 
for the explanations of this experiment. 

In summary, it was demonstrated how quantal localization manifests itself in noise- 
induced disintegration mechanisms, such as ionization and dissociation. The destruction of 
localization by noise may be particularly effective if it leads to transitions to states that are 
not coupled otherwise by the dynamics. However, the regime of applicability of this 
mechanism is found to be quite restricted. The theoretical arguments that were presented 
may be related to recent experimental results on the ionization of Rb atoms. 
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