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Abstract-We consider a modulated standard map, and study the break-up of the spiral mean torus: 
though the critical line seems smooth, the behaviour is not universal, some discussion on scaling 
features of the model is included. 

One of the most remarkable features of low-dimensional transitions to chaos consists of 
their universality properties; in particular this suggests that complicated sets of equations 
and, hopefully, the real world, may share (both qualitatively and quantitatively) properties 
exhibited by extremely simplified models. This is indeed the case for the period-doubling 
route in 1-D maps and the quasiperiodic transition for circle maps [l-3], where critical 
exponents have been measured in several experiments, with results consistent with 
theoretical predictions. 

In the afore-mentioned examples a renormalization group analysis can be carried through 
(thus reinforcing the parallelism between critical systems and low-dimensional chaos), and 
the universal features are connected to the existence of a non-trivial fixed point for the 
proper composition operator. Renormalization theory has been also applied to the problem 
of (strongly) irrational circles break-up in a class of area-preserving maps [4] (whose 
non-linearity is driven by a single parameter). Critical behaviour is here uniquely 
determined by the winding number, each case being characterized by a fixed point of a 
composition operator naturally induced by the expansion into continued fraction of the 
winding number itself. However, in this context (and also in the circle maps case), more 
complicated asymptotic structures in renormalization dynamics have been invoked when 
generic winding numbers are considered [3,5-71 (typically conventional renormaIization 
techniques are fitted to deal with quadratically irrational frequencies only). It has also been 
pointed out that for other classes of maps (ruled by two parameters) even noble 
frequencies exhibit novel features in the transition to chaos [S, 91: the critical line contains 
a Cantor set of cusps, and the critical exponents depend on this structure on all scales. 

The interest in area-preserving maps is tied to their representing a convenient tool in 
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investigating typical Hamiltonian systems with two degrees of freedom, a considerable 
interest lies in examining what happens in higher dimensions. This extension is crucial, 
different from the theory of critical phenomena, low-dimensional chaos is still far from a 
deep understanding of the role of dimensionality in universality theory; moreover three-fre- 
quency systems (like the one we will deal with) have been observed in fluid experiments 

[101~ and are conjectured to play a relevant role in studying hydrogen atoms in a 
microwave field [ll], or accelerator dynamics [12]. 

A straightforward extension would require investigating four-dimensional symplectic 
maps, while an intermediate step is obtained by freezing one of the actions (and thus 
having a free-rotating angular variable): we also stress that general volume-preserving maps 
have an interest of their own (even if we lose canonical structure) as they model passive 
scalars in a general time-periodic incompressible fluid [13]. 

The dissipative analogue of this line of research involves analysis of torus maps. In this 
context one of the first attempts to study the destruction of tori with two winding numbers 
was made by Kim and Ostlund [14, 151. In particular these authors have discussed in detail 
the problem of simultaneous rational approximations to a pair of mutually irrational 
numbers: we will maintain their scheme in what follows. 

The model we will consider is provided by the standard map with amplitude modu- 
lations: 

This map contains a pure rotation in z (the conjugate action is a constant of motion and 
does not appear explicitly in the map), and reduced to the usual standard map when E = 0: 
in the terminology of [13] it is a one-action volume-preserving map, and KAM like 
behaviour is expected. We checked this by looking at phase portraits corresponding to 
increasing values of one of the parameters (usually the way of visualizing the resulting 
overall behaviour is by considering almost two dimensional ‘slices’ of the three-dimensional 
phase space; Fig. 1 shows a typical sliced phase portrait for critical parameter pairs: there is 
a close similarity to phase portrait of area-preserving maps). A relevant feature is that 
invariant surfaces divide phase space (like in the area-preserving case), so the problem of 
torus break-up is relevant to study transport properties. Each orbit can be labelled by a 
pair of frequencies (x and z winding numbers) rl = lim,,,,(x,, - xo)/27rn and rz = lim,,,, 
(z,, - ~,,)/27rn. For area-preserving maps, persistence of invariant circles is dependent on 
irrationality properties of the winding number labelling the circle: this is intuitively grasped 
by thinking in terms of overlapping resonances [16] and is supported by a detailed 
numerical investigation [17]. We note that the notion of good or bad irrationals is based on 
metric properties of rationals that approximate them [18]. The extension to pairs of 
(mutually irrational) irrational numbers is by no means straightforward. We will adopt the 
scheme proposed in [14]: the winding numbers we will consider are given by r 1 = l/19, 
r2 = l/i?, I?= 1.324718 . . [14] being the real solution of 

i?-i?--l=O. (2) 

This particular choice (known as the spiral mean), is characterized by robust geometric 
scaling of rational approximations and in [ 141 it is argued that this irrational pair should 
play a role analogous to the golden-mean winding number for invariant curves. A 

somewhat similar choice has been investigated by Guckenheimer, Hu and Rudnick [19] 
(see also [20]): while the use of roots of cubic equations seems natural, there are some 
number-theoretic arguments [21] that seem to question the parallel between these choices 
and golden-mean in one dimension. 
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Fig. 1. Sliced phase space z E [O,O.Ol], for k = 0.3, E = 0.18 (critical case): the solid line refers to spiral mean 
torus, the points are obtained by taking eight different initial conditions. 

We will follow Greene’s criterion [17,22] to locate critical parameter pairs; that is we 
will approach the invariant torus via a sequence of periodic orbits, indexed by their x and z 
rational winding numbers (p rn/qn, pzn/qN), generalized Farey-tree rational approximants of 
(a-‘, tY’). In practice pin, pZn and qn all obey the same (Fibonacci-like) recursion relation 

B, = /L2 + /L3(Bn = P,~, q,J, with (q-3, q-2, s-r) = (0, I, I), while plrl = qn-2 and 

P2n = 411-I. 

The map can be written as a product of two involutive applications (T = 
AB, (A2 = B2 = 1)): this symmetry property implies the existence of a dominant symmetry 
line [23] to which at least one point of each cycle belongs: thus finding cycles numerically 
amounts to a one-dimensional search. 

Together with rational approximations to the pair of winding numbers, we introduce 
another number-theoretic sequence of pairs, which plays a major role in gauging our 
intuition on what we expect to get from numerical investigations. These indices (Q,,, QZn) 
label detunings in the following sense: they give the resonance order of each periodic 

approximant: 

and correspond to minimal detunings 6, along the quasiperiodic structure 

Q,n - rl + Qzn * r2 = 4irnod~. (3) 

General number-theoretical reasoning leads to the expectation of a detuning decay of the 
form 6, = (max{lQl./, iQ2,I>)-‘~ and indeed this can be checked explicitly. 
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Obviously the scheme adopted here is not a priori physically meaningful (even if the 
resonance picture suggests that the particular choice of rational approximations is moti- 
vated, in the sense that we must check afterwards that the sequence of approximations that 
we select is able to catch the relevant scales of critical motion: we will comment at the end 
how Fourier analysis reveals which rational sequence correctly describes scaling of critical 
motion (a more detailed analysis will be presented in [24]). 

The sequences Q,,,,, (which label the resonance orders of the cycles under inspection) 
are determined by recursion relations Q1,2rz = -Q,,,,,_, + Q1,2n-3, whose associate algebraic 
equation is A” + P - 1 = 0 (which is obtained from (2) through the substitution a = B-‘, 
and corresponds to the inverse spiral mean). While (2) leads to robust geometric scaling of 
approximations, as it has a single real root outside the unit circle and two complex-conju- 
gate roots inside, the equation governing the asymptotic behaviour of resonances possesses 
a real root (I’-‘) inside the unit circle. while the dominant roots form the complex-conjug- 
ate pair --\/8e’ln outside the unit circle. Thus these simple considerations predict 
oscillations (ruled by the phase N: cos CY = 1p:‘i.?/2) superimposed on an overall geometric 
scale, which we expect to be rather weak, being governed by -\/a. 

We now apply Greene’s criterion. For each sequence of rational approximations we 
analyse the behaviour of residua R,, = l/4(3 - TrJ,) where J,, is the Jacobian matrix of the 
map (l), critical parameter pairs are chosen as the values for which the R,, ---$ m behaviour 
changes, in the sense that lower parameter values result in R,, + 0, while upper values lead 
to R,, + x. These limits are to be understood in an average sense, as each sequence is 
characterized by strong oscillations superimposed on an overall behaviour. 

These oscillations have a dramatic role if one looks for straightforward extensions of 

EFS 

Fig. 2. Residua of periodic orbits vs E, for k = 0.3: the different lines refer to the n = 6, 9, 11, 13, 15, 18 order 
approximations. 
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Greene’s criterion [25]. For instance if one looks at residua of periodic orbits vs E (for k 
fixed) (see Fig. 2) oscillations rule out the possibility of singling out a critical E, as is the 
case with the standard map. 

Though it is almost impossible to visualize the changes in small scale behaviour of the 
approximant orbits we used sliced phase-space portraits to check that parameter pairs so 
chosen single out the transition point: for supercritical parameter values there is numerical 
evidence of single orbits hopping through the partition induced by the spiral mean set of 
points (see Fig. 3), so Greene’s criterion is still valid in the 3-D case. We now want to 
motivate, on a number-theoretic basis, the nature of the oscillations found in the residua 
pattern. Already in the area-preserving case, resonances have been claimed to be the 
meaningful label for the approximating periodic orbits [7]. This leads to the conjecture that 
the oscillations have to be related to the phase appearing in the resonance behaviour. This 
is indeed the case for a relevant portion of the critical parameter pairs that we have 
chosen. The phase (Y characterizing the leading roots of the resonance equation is very 
closely approximated by 2~r/9 and in Fig. 4 this approximate pattern is stressed by arrows. 

Before turning to a more systematic account of the parameter space analysis it is worth 
stressing that maybe the results in [19] and [20] can be given a similar interpretation: their 

scheme also involves a cubic equation with a pair of non-leading complex conjugate roots 
whose phase accounts for the observed absence of smooth scaling. Also recent results by 
Mao and Helleman [26] are strongly supportive of wild oscillations superimposed on an 
overall convergence in the behaviour of symplectic maps in higher dimensions. 

We now sketch our previous work [22]. With the method described above we located a 
number of critical parameter pairs: even if this set is too small to draw definite conclusions 

s1 I I I I I I I I I I, I I I I I I I, 

ob.0 0.2 0.4 0.6 0.8 1.0 

x 

Fig. 3. Slices phase space z E [O,O.Ol], for k = 0.3, E = 0.21 (supercritical case): the solid line is obtained by 
joining points of the spiral mean orbit, the circles refer to a single initial condition. 



186 R. Aruwso et al. 

0 

d 

‘0 .O 10. 20. 30. 40. 

n 

Fig. 4. Residua vs approximants order of renormalization time n for k,, = 0.05 (E,, = 0.34594; dashed line) and 
k,, = 0.3 (F,, = 0.18; full line). We also found close agreement in the oscillations for intermediate values of k,,. 

The approximate Y-periodicity is stressed by the arrows. 

all the points are consistent with an hypothesis of a smooth critical line in the (k, E) plane 
bounding the region of existence of a smooth spiral mean torus (see Fig. 5). This view is 
reinforced by the universality in residua patterns which we found in a connected region 
along the critical pairs, see Fig. 4. The oscillations are consistent with the number-theoretic 
phase commented on before. 

The most striking result is that the critical dynamics outside the critical parameters range 
discussed above exhibit a quite different behaviour of residua as a function of renormali- 
zation time n. For instance, when k 2 0.5, the behaviour of residua is sensibly dependent 
on small changes in k,,. This is illustrated in Fig. 6, where we show that changing from 
k,, = 0.55 to k,, = 0.65 leads to different evolutions in renormalization time. 

In [22] other scaling sequences are considered, in particular the standard map limit can 
also be considered. We found evidence of a totally different renormalization behaviour in 
this limit. 

Many of these features are better understood if we consider a Fourier analysis of high 
periodic approximations to the critical torus: for a P,,,~, qjM periodic approximation we 
calculate the Fourier spectrum by 

Y,Cl 

X,! - x, ” = c A, cos 2 
/=o Li 

where {xi} is the unperturbed pure rotation. In particular we consider the case M = 44, 
which corresponds to q, = 525456 = 24 . 32 - 41 - 89, so that modified FFT routines are still 
reasonably fast. 
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The first indication is scaling behaviour of Fourier peaks: that is IAil/k’j = C (scaling 
behaviour is thus completely different from noble circles in standard-like maps [27]), with 
oscillations of the same nature as observed in residua patterns. This scaling can be 
explained by a resonance analysis. From the resonance picture we have that Fourier 
components A, of x(t) scale like Aj - l/Q,,,,,, (this estimate was also correct for one 
winding number [7]). On the other side the physical detunings 6, [see equation (3)] 
determine the Fourier frequencies j/qM = 6,. Since 6, - l/]Q,,,]’ we get the estimate 
Aj - k’j. This result is in agreement with an argument given by Chirikov for the general 
case in which N frequencies are present [28]. Thus the critical torus in a sense exhibits 
structure at all length scales. 

In Figs 7 and 8 some of the Fourier plots are shown. We refer to [24] for a full analysis. 
We just summarize here the major features: the same kind of peak scaling is observed for 
all parameter pairs with E,,~~ # 0, the peaks are clearly related to denominators of 
Farey-triangle approximations q, (this confirms the relevance of the renormalization 
scheme), and the modulation of the resealed peaks is of the very same nature as the 
residua patterns. The intermediate k,,,, region is characterized by universal Fourier spectra, 
and the A,, oscillate with the same phase as residua. A totally different behaviour is 
observed in the standard map limit: here peaks are related to continued-fraction approxi- 
mants of the x winding number, and the form of scaling appears quite different (see 
Fig. 8); we remark that the different forms of scaling are compatible with an interpretation 
in terms of resonances [6,7,22]. 

We conclude by remarking a few facts: first of all the applicability of Greene’s procedure 
to the study of cubic torus breakup: the extension we presented finds numerical support 
both from a phase-space analysis and Fourier components scaling; the existence of different 
renormalization regimes along the critical line, and the possibility of understanding part of 
the observed behaviour on the basis of number-theoretic properties of resonance indices. 
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