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Abstract. -We investigate a quantum model of dynamical 2D five-fold quasi-crystal, the classical 
counterpart of which can be integrable or chaotic. This system can also describe the motion of an 
electron in a quasi-periodic potential with a magnetic field perpendicular to the plane. In the 
classically integrable bounded regime, we observe quantum diffusion for big values of h. In the 
chaotic regime, a transition from quantum suppression to diffusion is obtained for fixed small h as 
the perturbation is increased. The analogy with diffusion properties in 2D quasi-crystals is 
discussed. 

Introduction. - Since the discovery of quasi-crystals some attention has been paid to the 
investigation of quasi-periodic tight-binding models. The 1D case is the most studied 111 and 
displays nonusual fractal spectra. The wave functions are neither localized nor extended. 
This leads to anomalous difhsion properties for the time evolution of a wave packet [2]. In 
higher dimension, the most investigated models are tight-binding Hamiltonians on the 
Penrose tilings (2D and 3D) [3] and the octagonal tiling [4,5]. The main difference with the 
1D case is that the electronic spectrum is not necessarily a Cantor set, which has some 
consequences on the physical properties [4]. For instance, it was shown in ref. [4] that for 
reasonable Hamiltonian parameters the spectrum displays some level repulsion, instead of 
level clustering. This could be a mark of quantum chaos in such systems. However, the 
models studied have no simple classical dynamical analogue which permits to understand this 
phenomenon. 

For crystals in a magnetic field, such dynamical systems are known as, for instance, the 
Harper [6] and kicked Harper [?I models. In the first case, the classical motion is integrable 
but the existence of an infinite separatrk net leads to normal quantum diffusion. For the 
kicked model, the classical motion can be completely chaotic, leading to more interesting 
diffusion properties, namely anomalous difhion with an exponent depending on the various 
parameters [?I. 

(*) On leave from Budker Institute of Nuclear Physics, Novosibirsk. 
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In the present letter, we investigate a quantum dynamical model of two-dimensional 
quasi-crystal with a clear classical counterpart. 

Dynamical model. -We first present the classical model since its relation to the Penrose 
lattice will be clearer. So consider the following Hamiltonian first introduced and 
investigated in [8] 

(1) 

where ST (t) is a periodic Dirac peak of period T = 2x/Q, with Q being an integer. We shall see 
that Q = 4 corresponds to the kicked Harper model, whereas the case under study in this 
letter is Q = 5. Indeed, between two kicks the motion in the phase space is a rotation of the 
vector U = ( p ,  x) by an angle T. For integer Q, the free evolution of U goes back to the initial 
position. Therefore, in the rotating frame the Hamiltonian can be written 

1 1 
2 2 

.E@, X) = -p2 + - - x ~  + Kcosx&(~),  

0-1 
.%RF (p ,  X) = K 2 COS (ei * V) @(t) ,  

U = (p ,  x) , 
(2) i=O 

ei = (ai = cos (2z i /Q) ,  pi = sin (Bxi/Q)) ,  i 
where the &$I kicks are ordered in time. After Q kicks, the phase space and the dynamics of 
both Hamiltonians are the same. In the case of small K, Gfunctions can be eliminated after 
averaging and the effective Hamiltonian is 

Q-1 

,%&(p, x) = K 2 cos (ei * U) . (3)  

In fig. la), we show the constant-energy section .Ee&, x) = K for Q = 5. The structure 
strongly recalls a Penrose lattice. Note that, contrary to the Harper case (Q = 4 )  and to any 
other crystallographic symmetry (Q = 2,3 ,6) ,  there is no infinite separatrix (see also [SI). 

i = O  

Fig. 1. - a) Constant energy surface.%-,&, 2) = K for (z, p )  E [ - 120, 12012. A careful analysis shows 
the absence of infinite separatrices; b)  same phase plane region of map (4) for K = 1.25 in the chaotic 
regime. 
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For Hamiltonian (2), one can write a' map relating V after a kick to U before it: 

(4) 

From (2) and (4) it is clear that Q = 4 corresponds to the kicked Harper model. In our case 
(Q = 5) ,  the motion is bounded and integrable in the limit K + 0. For K of order 1, there is 
chaotic diffusion in the phase plane and the width of the wave packet in the phase plane U = 
= (p' t x') behaves like Q - Dt, where t is measured in number of kicks. For K 3 4, D is 
approximately equal to K 2 / 2  which is the diffusion rate in the random phase approximation. 
Some examples of chaotic trajectories in the phase plane are shown in fig. lb). 

One can quantize the model by setting [i?, $1 = ih. After that, j3 and i? can be seen as 
normal 1D momentum and coordinate. Alternatively, (3) represents the motion of the 
electron in a 2D quasi-periodic potential (with X = 5 and = $) in a magnetic field (Peierls 
substitution). Then, h is related to the field flw and i? and $ are the two quasi-momenta of 
the electron. From Hamiltonian (l), one can see that the classical and quantum dynamics of 
the systems (11, (2) are time reversible. 

Now, the quantum map for the wave function after one kick of kind i (i = 0, ..., 4) is given 
by 

- 13 = p t Kpi sin (aip + pix), z = x - Kai sin ( a i p  t pi E ) .  

$ = exp [ - ik cos (ai$ + pi Z)] + , or in x representation, 
+ m  

= m= - m ( - i)" Jm (k) exp [ihm ' a& /21 exp [impi E ]  +(x + mhai ) , 
(5) 

where k = KIA and the classical limit corresponds to h + 0. Jm is the m-th Bessel 
function. 

Numerical results. - The numerical investigation of this model is much more difficult than 
in the kicked Harper case, since the dynamics leads to spreading in the whole ( p ,  $)-plane and 
cannot be reduced to a motion on a cylinder. This seems to be the reason why there were 
practically no attempts to investigate the quantum dynamics of model (1) except in [91, where 
only the case Q = 4 in the representation (1) was considered, and in [lo]. In both cases the 
authors used the harmonic-oscillator representation which does not allow us to treat a large 
space volume which determines the number of effective quantum states. Here, we used the 
Hamiltonian in the rotation frame (2), which allows us to work in x representation using the 
simple map (5) and to reach an effective number of oscillator states of about lo5. Moreover, 
by approximating ai by means of the golden-mean approximants, we were able to work on an 
integer grid for x which is equivalent to periodic boundary conditions for p (the number of 
points in the x direction was up to 3 .  lo6). We took rational approximants with denominator 
up to 610 for the golden mean which enters in the expression of ai and pi. For instance, one 
has a1 = (z - 1)/2, a2 = -z/2, and p1 = z sin(z/5), z = 1.618 ... . This procedure corresponds 
to the exact numerical treatment of system (2)  with rationally twisted eis so that the classical 
phase plane becomes periodic in p with period up to 2z x 610. 

First, we present our results for k small for which the Hamiltonian in approximately the 
sum of five cosine and the classical motion is essentially bounded. We observed two different 
situations depending on the value of h which is the only parameter in this regime. For small h 
we recover the bounded classical behaviour for initial wave packets centred in the stable 
region as well as near unstable fuced points. More unexpected and interesting was the case of 
large A for which we observed diffusion in the phase plane (x ,p) .  A typical evolution of the 
wave packet width Q is shown in fig. 2 for k = 0.05 and h = 10. We checked that this 
behaviour really corresponds to the limit of small k by testing several values of k which 
simply led to resealing of time (see (3) and (4)). The qualitative interpretation of this result is 
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Fig. 2. - Wave packet width in phase space U = ( F 2  + Z 2 )  as a function of the number of time 
perturbation periods T = 5t (the number of kicks is 5 times bigger). For this simulation k = 0.05 and 
h = 10. The initial wave packet was a Gaussian centred at  q, = 3.1 and p ,  = 0 with width of order 0.5. 

the following. For big values of A, the Planck cell is comparable to the size of the stability 
islands for the classical motion. Due to quantum uncertainty, this allows effective transitions 
between different classically isolated regions. Here, we have an example where quantization 
leads to diffusion and destroys the classically bounded motion. This is in opposition with the 
kicked rotator case [ll] for which quantization causes the suppression of classical diffusion. 
Then, increasing k (for example up to k = 1 or more for A = 10) does not destroy diffusion 
whatever the nature of the classical regime, integrable or chaotic. Finally, we have verified 
that in x-space the wave function was roughly Gaussian, confirming a diffusive 
behaviour. 

More complex situations arise when decreasing A. Indeed, we have observed quantum 
suppression even when the classical motion was chaotic. This is illustrated in fig. 3. We 
cannot conclude about the localization of quasi-energy eigenfunctions, however the quantum 
suppression is obvious. Some preliminary results giving support to suppression were also 
obtained in [lo]. For bigger values of k and same values of A, the diffusive excitation takes 
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Fig. 3. Fig. 4. 

Fig. 3. - Same as fig. 2, for k = 2 and h = 1. The packet was centred at the same position which is in the 
classically chaotic region. At the end of the evolution (lo4 x 5 kicks) the quantum width is two orders of 
magnitude less than the classical one. 
Fig. 4. - Same as fig. 2, for k = 5 and h = 1. 
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place (fig. 4). However, the diffusion rate is less than the classical one which gives support to 
the quantum nature of this diffusion. 

The time reversibility of the system is crucial for Anderson localization in 2D. Due to 
classical chaos, the phase volume excited after t kicks is V -  Dt with D - K2/2 and the 
number of quantum states N - V/A grows linearly with time. The uncertainty relation 
between frequency and time [ll] leads to the spectrum resolution decreasing like l/t. This 
decay goes in the same way as the average distance between quasi-energies which behaves 
like 1/N = h/(Dt). Since the functional dependence is the same, this case is analogous [12,131 
to a two-dimensional Anderson model in the time reversible case, with a localization length 
In € - D/h  - K 2  /2A (note that without time reversibility one has Anderson transition from 
localization to diffusion). However, in our case this estimate does not work, since for large 
values of A we have observed diffusion (see fig. 2 and 4). This result shows that one cannot 
consider the present effective potential as random and that the quasi-periodic structure 
produces important effects. In fact the situation seems to be somehow similar to what is 
observed for the diffusion in 2D quasi-crystals [4,14]: for strong quasi-periodic potential 
(small k and A) the spectrum is strongly fractal and diffusion is suppressed, whereas for big 
coupling between cells (big k and A) the diffusion is enhanced. However, in our case we have 
normal diffusion instead of the anomalous one observed in[14]. 

Before concluding we would like to mention another approach we also used for the 
investigation of this system. It is based on the analysis of propagation of pure plane waves in 
the quantum system (2). In the plane-wave representation, the wave function can be 
expanded as a superposition of waves of type exp [i(nlpl + n2A) XI. For an initial wave 
function of this form, we were interested in the spreading in the (nl , n2)-plane. The quantity 
p = nlpl + n2A is the momentum and is the relevant physical characteristic. We found that 
( p 2 )  was growing diffusively for k bigger than 1 ( A  = 11, whereas for small k we have 
obtained anomalous diffusion with exponents less than 1. This is also similar to the results 
of [141. In the perpendicular nonphysical direction p ,  = %pl - nlpz the spreading was going 
in a ballistic way. 

Conclusion. - In this letter we have considered the evolution of a wave packet in a 
quasi-periodic Hamiltonian system with integrable or chaotic classical dynamics. 
Quantization can lead to delocalization of classically bounded integrable motion due to big 
values of Planck cell in comparison to the size of stability islands. On the contrary, for small 
fixed values of A, we go from a regime of quantum suppression to a diffusion spreading as the 
classical kick amplitude is increased. The obtained results have a certain analogy with similar 
diffusion properties in 2D quasi-crystals. 

Finally, we would like to point out the connection between this model and the question of 
localization of 2D electrons in a smooth random potential in the presence of a magnetic field. 
This problem is directly related to the quantum Hall effect. In the limit of strong field, there 
is no transition between different Landau levels. In that case, it is believed that localization 
takes place for all values of energy except the centre of the band[15]. The existence of 
infinite localization length for this energy is due to the occurence of infinite separatrices for 
the classical system. In our system the limit of strong magnetic field corresponds to KIA + 0, 
so that there is no transition between oscillator states in (1) associated to Landau levels. 
Qualitatively, large values of KIA correspond to strong transitions between Landau levels, 
for which there is no definite prediction. Our result in the case of small K/h  (see (3)) shows 
that there are many energy values with delocalized states, explaining the observed diffusion. 
This result is different from the random potential picture[15]. The reason for that can be 
connected to the dynamical nature of the Hamiltonian or to its quasi-crystalline 
structure. 
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