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Abstract. We discuss the classical problem of an hydro- 
gen atom interacting with a monochromatic  field. We 
illustrate in particular, analytically and numerically, the 
stabilization mechanism and give theoretical expressions 
for the stabilization borders. 

PACS: 31.50.+w; 32.80.Rm; 42.50.Hz 

The effect of a monochromatic perturbation on the 
Kepler motion is certainly a basic problem in theo- 
retical physics. In particular it is relevant for the under- 
standing of the excitation and ionization process of  hy- 
drogen atoms under microwave or laser fields. Even 
though the latter problem is strictly a quantum one a 
classical description turns out to be crucial for the un- 
derstanding of  the physical process. Due to its importance 
and formal simplicity this problem is well studied and the 
properties of the motion are already known to large ex- 
tent. 

The classical motion is described, in cylindrical co- 
ordinates, by the following simple Hamiltonian: 

H=�89 
m 2 1 

+ - -  + e z c o s c o t ;  (1) 
2p  2 ] / p 2 + z 2  

where z is the direction of the linearly-polarized external 
field, rn is the projection of the angular momentum on 
the field direction, e and co are the intensity and fre- 
quency of  the field. Here and in the following we will use 
atomic units. 

Theoretical and numerical results show that for 
coo = con3 > 1 where n o is the initially excited state, and 
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for field strength e o = e n  4 > ec~  (50 (..01/3) --1, the electron 
motion enters a chaotic regime which leads to a diffusive 
process in action space and then to ionization [1]. For  
o% < 1 the critical field for ionization increases and for 
COo~0 it approaches the static field value eo~0.13. 

Notice that for co o > 1 and when the electron is far 
from the nucleus, the external field mainly leads only to 
oscillations of the electron around its average Kepler or- 
bit. Near the perihelion, instead, the electron motion is 
strongly perturbed due to the Coulomb singularity: there- 
fore the influence of the external perturbation can be 
described as a sequence of  kicks. For  this reason it was 
possible to describe the classical (and the quantum) mo- 
tion by a map: the Kepler map [1]. Such Kepler map, 
which was originally introduced to describe the one-di- 
mensional model, provides a very useful insight on the 
nature of classical motion; it gives the change in energy 
after one orbital period, and has the simple form: 

~7= N +  ksin q~, 
(2) 

q~= q~ + 2 rcco ( -  2 coJg)-3/2 ; 

where N = E / c o  = - ( 2 n a c o )  -1, and q5 is the field phase 
at perihelion. The bar denotes the new values of variables 
after one orbital period, and the parameter k---2.6 eco- 5/3 
The map (2) provides a good approximation of  the mo- 
tion for coo> 1, while in the opposite situation, coo~l  
ionization behaves almost in the same way as in the static 
field case. 

Even though map (2) was derived for the 1 D case, 
it was shown to give a quite good qualitative descrip- 
tion even for the full 3D case (with parameter k 
slowly depending on l) provided the orbital momentum 
1< '/3 [1]. 

The Kepler map approach allows to easily understand 
the process of transition to the continuum. Indeed, when 
one of the kicks brings the electron in the positive energy 
region, ionization takes place: in the physical space the 
electron will proceed to infinity and never come back. 
Quite obviously, above the chaos border, the diffusive 
ionization rate depends upon the value of parameters. 
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More precisely, according to simple estimates [1] the 
ionization time re, measured as the number of  elapsed 
field periods, is r1 ~" (̀ 0 7/3 eo  2. 

However, the Kepler map description is only valid 
provided the field is not too strong. As a matter of fact, 
map (2) was derived under the assumption that the energy 
change caused by one kick AE~ko0 is much larger than 
the energy of free oscillations e2/(2o02), namely: 

e ~ eAT I ~ 5 0.) 4 /3  . (3) 

The qualitative behavior for larger fields strictly depends 
on dimensionality. For  the 1 D case with strong fields 
g > eATI, the unavoidable collisions with the nucleus will 
lead to ionization. A similar argument holds for the 2D 
case ( rn=0) ;  here, for l > (3/(.0) 1/3 the k value in (2) 
becomes exponentially small and therefore atoms remain 
stable up to very high field strength until the amplitude 
of  free oscillations e/o0 2 becomes larger than the unper- 
turbed distance between the electron and the nucleus at 
perihelion 12/2. Therefore, as it was shown in [2], for 
rn = 0 a critical field value always exists (which may be 
very large when the angular momentum I is large) below 
which the atom is stable, and above which ionization 
takes place. 

The most interesting case occurs for m :/:0, and for 
sufficiently strong fields, so that the Kepler map descrip- 
tion is not valid. Here the centrifugal potential makes it 
possible to avoid collisions between the electron and the 
nucleus, thus preventing ionization. Indeed, by increasing 
the external field, the amplitude of the free oscillations 
is also increased, thus leading to a decrease of the at- 
tracting Coulomb force, while the centrifugal force re- 
mains the same. Therefore the distance between the elec- 
tron and the nucleus will increase with the increase of 
the field. This fact suggests the possibility that atoms will 
become stable by increasing field intensity. 

Actually this phenomenon, called "stabilization", was 
put forward for the quantum case [3-5]. Theoretical ar- 
guments were given to predict that a quantum atom 
should become stable when the energy of field photon is 
much larger than the coupling energy and when the size 
of  electron oscillations in the field e/o0 2 is much larger 
than the size of the atom [8]. These conditions are of 
purely quantum nature and according to them there is 
no stabilization in the classical atom. Indeed in the quasi- 
classical limit the energy of one photon boo goes to zero 
and becomes much smaller than the energy required for 
ionization, which is independent on h. 

On the base of our arguments we expect stabilization 
to take place in the classical atom. As a matter of  fact 
we were able to derive an analytical expression for the 
stabilization border [9] which shows that stabilization is 
present in the purely classical context even when the size 
e / 0 )  2 of  electron oscillations in the field is much less than 
the size of the atom. Due to the correspondence principle, 
the existence of  classical stabilization implies in particular 
that stabilization in quantum case will take place even 
when the photon energy ha) is less than the coupling 
energy of  the atom. 
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Fig. 1. The potential V(p) for smallfl taken at z=0 (left part), 
and the "effective" average potential V(p) for large p (right part). 
The left and right vertical scales are different. Here ~= 

 VT[ 20, ' V 2 co' Pmi~= and = L. The curves are 

drawn for co =0.001, m=0.4, e =0.05 

To better understand the features of the classical mo- 
tion it is convenient to focus our attention on the dy- 
namics in the p-direction. From Hamiltonian (1) one case 
see that when both e and p are sufficiently large, the z- 
motion is dominated by the driving term giving approxi- 
mately z;ee/o02cos (cot). One can then average over the 
z-motion and obtain an Hamiltonian which describes the 
average motion in p;  the effective averaged potential 
l~(p) has a minimum in r = ~ (m/o0) and near z = 0 
can be approximately written as (Fig. 1): 

_ _  1 -- m~2 + 2o02 log ( ~ )  +~-  ( ~ ) 2 .  
lP(p) - 2 p 2  7/',~ 

(4) 

Notice that the logarithmic term gives the local potential 
of a charged thread which arises due to electron oscil- 
lations. Expression (4) is valid as long as p < e/o02; for 
larger p values the average potential approaches the as- 
ymptotic constant value 1/4 (e/(`02) (see the right part of 
Fig. 1 where the averaged potential is shown). 

The average potential (4) gives a good description of 
the electron motion if the frequency ~2 ~ co2/(em) of os- 
cillations in p is much smaller than the frequency (̀ 0 of 
field oscillatons. This condition, namely S = (`0/g2 > 1, is 
fulfilled if 

6O 

/7'/ 

where fl is a numerical constant. We call S the "stabili- 
zation parameter". In the quantum case the substitution 
of  m by m + 1 is needed in order to take in account that 
quantum effects smooth the singularity, and that semi- 
classical quantization gives non zero m value (see also 
the discussion in [10, 11]). 
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Therefore, under condition (5), the atom is stable since 
the averaged Hamiltonian 

/ 1 = ~ +  IP(p) (6) 

is a constant of the motion with adiabatic accuracy 
[ ~ex p  ( -  const. S)]. For  field values smaller than (5) 
down to the usual chaos border, ionization takes place. 
Numerical computations [9] confirmed the estimate (5) 
with fl ,,~ 12. 

The stabilization border (5) is much higher than the 
chaos and static ionization borders. Therefore in order 
to obtain atoms in the stabilized region attention must 
be paid to the field switching process. Namely, the time 
of switching t~ must be less than the orbital period of the 

ts  

electron 2 ~rn 3 and moreover j" e (t) dt  ~ - 0, so that the field 
0 

does not transfer momentum to the electron during the 
switching time. With such type of switching and for initial 
unperturbed state no, the size 2 no 2 of the initial atom in 
sufficiently strong fields becomes smaller than Pmin = 

m ( ~ )  lj and therefore the electron cannot be cap- 
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1 1 " " ( m ~  1/4. For small co 0 this border ap- 
e ~  50 (o)m3)1/12 \ o J 0 /  
proaches the usual static border eo~0.13. The "magic mountain" 
of stability is delimited from below by the stabilization border 
eo~12 ~~176 and from above by the destabilization border 

m0 
16L ((~ 2 ( 1 / ~  ~ l~0  ) ~ 1  with L = In . The dashed lines 

a~ ~r \mo/  COomo 

% =  m are drawn at constant  e :  (a) e=0 .0025 ;  

(b) e = 0 . 0 5 ;  (c) e =  1. The border  (3) below which the Kepler  
map description is valid is given, in the present case, with fixed m 

/ x 
and co, b y t h e  line go=0 .2  ( c o s  drawn in the figure). The 

present  picture is drawn at fixed co and m. I f  instead we keep n o 
fixed, then the system will always be stable in the region to the 
right o f  the dot ted vertical line given by coomg = 3 

tured in the minimum of the averaged potential (see 
Fig. 1), hence ionization takes place after one orbital pe- 
riod. This gives the destabilization border: 

16Lcoo 2 
~ des t  ~,~, ~rmZn2 (7) 

where 

6om 

Notice that the stabilization border (5) is relevant only 
if (.ore 3 < 3. Indeed in the opposite case the electron passes 
sufficiently far from the nucleus and the change of energy 
during these passages are exponentially small and atoms 
remain stable up to the value given by (7). This fact is in 
agreement with the numerical simulations [10]. 

In Fig. 2 we present a general picture of the stability 

(2) diagram in the %, plane. The most impressive re- 

sult of our analysis is the "magic mountain" of stability 
in the upper-rightmost part of  the figure which emerges 
from the chaotic sea and, coming from infinity, ap- 
proaches, but does not touch, the familiar territory of  
K.A.M. stability. The latter is delimited by the full curve 
in the lower part of Fig. 2. Quite obviously the details of 
the classical motion depend separately on all parameters 
m, e, ~o, as well as on the initial conditions, however 
Fig. 2 gives the correct main qualitative behavior. 

The three dashed lines on Fig. 2 are drawn at three 
different values of e. One can move along these lines by 
changing n o only (e, a), rn fixed), and the corresponding 
different types of motion are illustrated on Fig. 3, in which 
we draw the related surfaces of section in the (p,pr 
plane. To this end we numerically integrate system (1) 
and plot the intersections of the orbit with the (p, pp) 
plane at each microwave period. Since we are dealing 
with a two degrees of freedom system, periodically per- 
turbed, we should not expect to obtain smooth curves 
even in the quasi-integrable stable region; still useful in- 
formations can be obtained on the qualitative properties 
of the motion. For  reason of graphical presentation we 
use two different vertical scales and the dashed vertical 
line in Figs. 3a -3b  is drawn only to separate these two 
scales. In Fig. 3c, only the points in the upper curve, 
corresponding to n o = 1, refer to the left scale, while all 
the other curves refer to the right scale. 

From the inspection of Fig. 2 one can easily predict 
the qualitative behavior of the solutions of system (1). 
Indeed for c = 0.0025 (line a) there is a chaos border at 
n o ~> 2 below which the orbits arc stable and above which 
orbits ionize. For  e =0.05 (line b) the chaos border is 
around n o > 1 ; in the range 1 < n o ~ 6 orbits ionize, while 
for n o > 7 orbits are stable again. For  e = 1 (line c) the 
K.A.M. stable region disappears since here m = 0 . 4  is 
fixed and n o must be larger than m; therefore all orbits 
with n o ~< r/ionize, while orbits with n o > ~ are stable, where 
r/~ 12. The latter dependence of ionization on initial con- 
ditions at fixed e, co, m is probably the most surprising 
effect of stabilization. These predictions are confirmed 
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Fig. 3. Surfaces of section plots obtained by solving system (1) for 
the three different cases of Fig. 2 with o)=0.001, /=m=0.4;  a 
e = 0.0025, b e = 0.05, e g = 1. The curves are obtained by plotting 
the values (p, pp) after each period of the external field. The dotted 
vertical line in Fig. 3 a, b separate the two different scales on the 
vertical axis. The different set of points (curves) refer to different 
values of initial classical action n. In Fig. 3a only the orbit with 
n = 1 is stable and all the others with n = 3, 4, 8, 10, 12, 30 ionize. 
In Fig. 3b the orbit with n = 3 ionizes, all the others are stable. In 
Fig. 3c the orbits with n = 1, 3, 4, 8 ionize, while those with n = 12, 
30, 50 are stable; here only the points in the upper curve, corre- 
sponding to n = 1 refer to the scale on the left axis, while all the 
other curves refer to the right scale 

by Figs. 3 a - 3 c  where the two minima o f  the potential  in 
Fig. 1 are clearly seen. The points to the left in Figs. 
3 a - 3 b  belonging to n o =  1, are centered a round  p ~ rn  2 
= 0.16 and the excursion in Po is ~ 1/m = 2.5. The points 
to the right, belonging to n o >  3 are centered a round  

fi~ ~ ( m / c o ) , ~  500 ~ which is the posit ion o f  the 
min imum in the potential  (4). 

A n  interesting remark  is that  the low frequency case 
is qualitatively different f rom the static field case limit. 
Indeed for  the static case the electron can remain stable 
only near the nucleus. Instead,  in the case o f  a mono-  
chromat ic  field with small frequency co, the stabilization 
border  (5) is very low and new stable m i n i m um  appears  
at Pr~n far f rom the nucleus. 

The general picture o f  classical mot ion  we give in Fig. 2 
leads to different conclusions than those existing in the 
current  literature. One point  to be stressed is that  the 
main  effect on the electron, produced by the collision 
with the nucleus, is in the perpendicular  p-direct ion while 
in the z-direction the velocity changes only slightly. This 
is a typical situation f o r  the collision o f  a fast heavy 
particle with a light electron: the m o m e n t u m  of  the elec- 
t ron in z-direction remains practically unchanged.  This 
considerat ion allows to construct  an approximate  1D 
model  [11]. Indeed, in the Kramers -Henneberger  f rame 
[ 18 ] Hami l ton ian  (1) writes 

~ m 2 1 
H =  + q (8) 

p 2 +  z - ~  s i n w t  

Neglecting the changes in z we may  write the following, 
approximate,  1 D Hamil tonian  

m 2 1 

H =  -r 2 p2 1 /  8. 2 (9) 

V p2 + ~ (sin), + sin cot) 2 

where y is a constant  which determines the point  of  col- 
lision in z = - e  sin y/co2. This Hamil tonian  is quite dif- 
ferent f rom the usual 1 D screened Cou lomb  model  [4] 
which is frequently used to approximate  the 3D dynamics  
and leads to results which are in quite good  agreement  
with the full 3D  dynamics.  Indeed Fig. 4 shows an ex- 
ample o f  a surface o f  section plot  obtained f rom 
Hami l ton ian  (9) with the same parameters  as in Fig. 3b. 
The curves in Fig. 4 completely overlap with the corre- 
sponding curves in the right par t  o f  Fig. 3b thus indi- 
cating that  the approximate  Hamil tonian  (9) gives quite 
an accurate description o f  the real motion.  Needless to 
say, while Hamil tonian  (9) is accurate for the description 
o f  the stabilization phenomenon ,  it cannot  certainly de- 
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Fig. 4. Surface of section plot for the case of Fig. 3b, obtained by 
solving the 1D approximate Hamiltonian (9) with sin y = 0.6. No- 
tice the good agreement with the curves of Fig. 3 b obtained from 
the numerical solution of the exact Hamiltonian (1) 

scribe the motion in the K.A.M. region, in the left part 
of Fig. 3b where the electron closely follows the nucleus 
oscillations. 

In order to provide the reader with a more complete 
picture of the stabilization phenomenon, we would like 
to make a few comments on other existing theories. The 
first step in this direction is to define, as clearly as pos- 
sible, the meaning of the term "stabilization". As it is 
clear from the above discussion, under the term stabili- 
zation we mean that atoms are stable in sufficiently strong 
fields while they are ionized for smaller fields. Moreover, 
by stable we mean that the life-time of the atom is much 
larger than one orbital period of the electron in the given 
external field. This latter point is quite important; indeed 
in strong fields the orbital period can increase with the 
field strength (for example, for the motion near d, T =  
2 n/t-2 = 2 teem~co 2) and this may lead to a decrease of 
the ionization rate which is merely due to a change in the 
time scale of the problem. We will not consider this as 
stabilization since after one orbital period the atom will 
ionize. Therefore our analysis deals with a different re- 
gime than in the experiments [ 13] where the interaction 
time is of the order of one orbital period. Another im- 
portant point concerns how the atoms, prepared in a 
given, initial (Rydberg) state, are injected in the external 
field or, in other words, how the external field is switched 
on. As we already discussed we considered situations in 
which the momentum transfer from the field to the elec- 
tron during the switching is small (j" e ( t ) d  t ~, 0). Also the 
switching time is not larger than few orbital periods (oth- 
erwise the atom may ionize during the switching process). 
Therefore under the term stabilization we understand the 
phenomenon according to which a given atomic state with 
fixed n o is stable in a strong field during many orbital 
periods while it rapidly ionizes in smatler fields. 

In [15, 16], the classical dynamics of system (1) has 
been studied in terms of an approximate map over one 
period of  the external field. The stability of  the classical 
motion is then related to the stability of  the fixed points 
of the map. However, in strong fields, the period of the 

driving field is much shorter than the orbital period of 
the electron Torb/Text~em/co >~ 1 and it is questionable 
whether an analysis over a period shorter than the orbital 
period is meaningful. Also near the stabilization border, 
when the two periods are comparable, the approximation 
by kicks (which include the constant centrifugal force) 
is not justified. In addition it is not clear whether the 
map description gives a good approximation for C~o = 
e0/cog~ 1 since it does not reproduce, for example, the 
usual chaos border for small fields. In any event, for a 
correct comparison of  different approaches, it is neces- 
sary to remark that in Fig. 1 in [15], the two axis e0 and 
coo cannot be associated with their usual meaning e0 = 
en4, coo = c~ with no the initial state. The only way in 
which Fig. 1 can be correctly understood is to consider 
co o = co and eo = e, so that n o = 1 only fixes the classical 
scale and it is not connected to the initially excited state. 
This is the reason why destabilization border (7) does 
not appear in Fig. 1 of [15]. 

A different approximation to the classical dynamics 
has been developed [4, 6, 7] on the basis of the 1D model 

H _ p  2 1 ~-ezcoscot. (10) 
2 Va  2 + z 2 

This model however takes into account only the motion 
in z direction and neglects the dynamics in p which, as 
discussed above, is the most relevant one in the real 3 D 
atom. In this sense the 1 D model (9) gives a more correct 
description of stabilization and correctly reproduces the 
stabilization border (5) of the 3D case [11]. Finally, a 
numerical analysis of the classical problem was carried 
on also in [17] and led the authors to the conclusion that 
stabilization takes place in 1D case and not in the 3D 
case. This result appears to be in contradiction with pre- 
vious works [1,9-11, 15, 16]. 

Our approach to the stabilization problem, discussed 
in the present paper, is based on classical mechanics and 
allows us to understand the origin and the conditions of 
stabilization in strong field. One can now address the 
question to what extent the above results can be applied 
to the quantum case. Formally the considerations pre- 
sented in this paper can be extended to the quantum case 
if co ~ 1/n g. However it was shown in [ 11 ] that the motion 
can be described by a simple map, the Kramers map, 
which is analogous to the Kepler map. The latter de- 
scribes quite well quantum dynamics even if co > 1/n~ 
(for example it gives the correct one-photon ionization 
rate) [1 ]. The reason is that the classical map gives also 
the quasi-classical value of the one photon matrix element 
which determines the one photon ionization rate via the 
Fermi golden rule. In the same way the Kramer's map 
determines the quasi-classical value of the matrix element 
for an one photon transition and gives the one photon 
ionization rate. According to Kramers map this rate de- 
creases exponentially with the increase of the stabilization 
parameter S [ 11 ], and therefore stabilization persists even 
in the quantum regime. In conclusion, our classical treat- 
ment allows to estimate the quantum ionization rate in 
the stabilized regime and in particular shows that stabi- 
lization takes place even if co ~> 1/n 2. 

Different approaches to quantum stabilization have 
been developed in recent years. In [19] it is argued that 
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for o9 > 1/(2 n 2) the ionization probability of  a Rydberg 
electron will decrease with increase of  the field strength 
provided e > o9 s/3 (in other words k > 1). From our 
viewpoint this prediction is in contradiction with the 
Kepler map description which has been confirmed by 
numerical computations and which is in agreement with 
quasi-classical limit. 

Another condition for stabilization was proposed in 
[12] and gives e2/o9 2 > o9. Later, in [14], this condition 
was modified into e2/o92 > mog. It is argued that this 
border is of pure kinematic origin. F rom our viewpoint, 
instead, the structure of the average potential is impor- 
tant, since it determines the minimal distance between the 
electron and the nucleus which actually rules the ioni- 
zation process. This structure will definitely influence the 
ionization of  Rydberg states at least in the regime when 
o9~1,  e ~ l .  

In [14] numerical computations are also presented. 
These computations however do not allow to extract the 
functional dependence of stabilization border, since the 
considered parameter range is quite narrow. In this paper 
the ionization rate is computed from the ground state in 
the average potential while we consider ionization start- 
ing from an excited state in this average potential. Our 
choice is motived by the fact that during the switching 
process the electrons are mainly captured in the excited 
states of the average potential while the probability to be 
captured in the ground state is quite small. 

One of the important conclusions of our investigations 
is that stabilization can be obtained not only when the 
size of the electron oscillations e = e / o 9  2 is larger than 
the size of the atom 2 n 2, but also in the other limiting 
case when c~ ~ no z. Our conclusion differs from other re- 
sults [8] in which stabilization is predicted to occur only 
when e is larger than the size of the atom. Also in [8] 
the condition that the photon energy (hogo) is larger than 
ionization energy (Ex) was considered as a necessary con- 
dition for stabilization. This condition is of a purely 
quantum nature and it cannot be statisfied in the quasi- 
classical limit. According to our results stabilization takes 
place even for ho9 o much less than the coupling energy. 

A point we would like to stress is that the Rydberg 
stabilization presented here is a very interesting pheno- 
menon, which we consider more important than the sta- 
bilization of atoms in very strong fields, with field strength 
and frequency larger than the corresponding atomic 
values (e, co >> 1). The reason is that in such large fields 
the ground state is strongly modified and therefore the 
frequency of  transitions between states of a stabilized 
atom cannot be larger than the atomic unit of energy. 
Instead in the case of Rydberg stabilization, the field, 
which is strong enough to stabilize the Rydberg state, 
does not modify the ground state, since e ~ 1, o9 ~ 1, and 
it acts as a small perturbation. Therefore the electron 
energy in the ground state remains approximately the 
same as for the unperturbed atom while in the Rydberg 
stabilized state the electron energy can be very high due 
to fast oscillations in the driving field. Indeed the differ- 
ence in energy between these two states is of  the order of 
e2/o9 2. For  example, for a CO 2 laser with o9~1/300  

(0.1 eV) stabilization of Rydberg state with n o = 40, m = 2 
takes place for ~,-~2 108V/cm and the transition fre- 
quency between the stabilized Rydberg state and the 
ground state is ~ 1000 eV. It would be very important to 
estimate the transition rate for the above radiative proc- 
ess. However we think that this rate will be comparable 
with the transition rate in the normal Rydberg atom, since 
the size of the atom is the same as for the unperturbed 
Rydberg state c~ = e/o9a<~2 no 2. Let us mention that the 
dipole approximation used above is still correct since the 
ratio of the wavelength 2 = 2 7rc/o9 to the size of the atom 
2no 2 is approximately 102. 

The possibility of radiation of photons with very high 
energy makes Rydberg stabilization a very interesting 
phenomenon. 

This work has been completed during the E.S.F. workshop "Clas- 
sical mechanical methods in Quantum mechanics" in Como. 
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