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Abstract. A simple approach is proposed to determine analytically the classically stable 
mnfigurations of doubly excited states in atoms and Zions, in the case when balh electrons are 
located on one side of the nucleus. An analytical formula gives he ratio between the electron 
distances within the 1% accuracy of the existing numerical computations. 

Recently new classical configurations of electrons in the helium atom have been discovered 
in numerical simulations [I-31. The main unusual feature of these states is that both 
electrons are located on one side of the charged centre and the inner electron does not 
allow the outer electron to come close to the nucleus. The numerical calculations carried 
out in [1-3] show that corresponding classical trajectories are stable in the one-dimensional 
model of helium and that this stability persists in the threedimensional atom. It was also 
demonstrated numerically that such a stable orbit exists also for an ion with charge Z > 1 
[3]. In the quantum case the existence of stable classical orbit leads to the appearance of 
long lived excited states which for the outer electron are located near the position of classical 
equilibrium 131. While the numerical analysis of such configurations in the classical and 
quantum cases was quite extensive the analytical investigation is much less developed. 
Here I introduce a simple analytical approach which allows us to find analytically the 
equilibrium positions for arbitrary Z values and provides a better understanding of the 
underlying physics. This understanding gives explanations for some numerical observations 
of [3] and can be useful for future investigations of these interesting states. 

The physical basis for the analytical approach can be discovered from the picture 
of classical electron motion presented in [I]. First, we see that the stable classical 
configurations exist even for the one-dimensional helium atom and that these ID orbits 
are preserved in the 3D case. Second, we remark that the outer electron is located at a much 
larger distance from the nucleus than the size of the orbit of the inner electron (approximately 
3 times larger). Due to that the frequency of the inner electron motion must be much faster 
than the freguency of outer electron. Therefore, it is possible to expect that the the motion 
of outer electron goes in some effective averaged potential created by inner electron. In 
the following we will consider the one-dimensional model of the helium atom (or ion with 
charge Z) in which both electrons move on one line which pass through the nucleus. As we 
will see the geometrical configuration corresponds to the picture in which the inner electron 
makes fast oscillations almost as in the one-electron one-dimensional atom with the charge 
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Z. The one-dimensional classical atom orbit can be parametrically presented in the form 
[4, 51: o,.(t) = a(1 - cost), t = T ( t  - sint)/2n where a&) is the distance between 
the centre and the inner electron, a is the large half-axis of the ellipse and T is the period 
of motion (this solution is obtained from the standard equations [5] by taking eccentricity 
e = 1 ) .  At the same time the outer electron makes small oscillations on the same line in 
the minimum of averaged potential created by the inner electron and the charged centre. 
The graphic picture of such a one-dimensional configuration is presented in the figure in 
[l]. In the quantum system such a situation corresponds to the case when the inner electron 
in the excited state has one parabolic quantum number nl much larger than another nz (the 
limiting case is nl = n - 1, n2 = m = 0). For such states the orbital momentum I is of the 
order of 4 so that the eccentricity e = (1 - lZ/nZ)L/2 = 1 in the classical limit n >> 1 
(see also [4]). 

Table 1. Comparison of numerical data (31 (marked by subscript nu) with the theory of his 
paper (marked by subscript th). 

z 206 Rdl RdRa a n . h  

1.01 1.010 151.24 0.9999 I.0W 
1.10 1.103 16.243 1.0018 0.997 
1.50 1.550 4.2219 0.9948 1.WO 
2.00 2220 2.7024 09965 0.968 
3.00 3.673 1.9258 0.9950 0.944 
4.00 5.237 1.6579 0.9970 0.929 
5.00 6.870 1.5197 0.9995 0.919 

10.0 15.53 1.2746 1.0130 0.896 

To obtain an expression for the effective potential in the one-dimensional model of 
the Z ion we can assume that the inner electron is moving in the same way as in a 
Coulomb field with a maximal distance from the nucleus in the aphelion equal to 2a. 
Then using the solution for the Kepler motion we can average the interaction between 
the electrons Vint = l / ( x  - ai&)) over the period of motion of the inner electron and 
to obtain in this way an effective potential U,, in which the outer electron moves. Here 
x is the distance between the nucleus and the outer electron and ai.(?) gives the position 
of the inner electron at time t .  The averaging over Kepler orbit is given by the integral 
(!&) = l / T i l d t / ( x  -ai.@)), where T is the period of the motion. Using the standard 
parametric representation for the ‘eccentric anomaly’ in the Kepler motion [5 ]  we can write 
a&) = a ( l  - cos t )  and dt /T = (1 - cost)d$/2n where we took into account that in 
our one-dimensional case the eccentricity e = 1. This reduces the integral to the form 
(Viot) = 1/2n s F ( l  -cost)df/(x - a  + a  cost) in which it can be computed analytically. 
Finally we get effective potential which describes the motion of the outer electron: 

- Z X 

x a(x2 - 2ax)’12 
ueff = -- + 1 

a 
. -  

Here the first term gives the interaction of the outer electron with the charged centre while 
the other terms represent the averaged interaction (!&) between the elect” From the 
expression for Uer it is clear that the distance x between the outer electron and the nucleus 
is always larger than 2a due to strong repulsion between the electrons. For Z > 1 the 
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minimum of the effective potential for the outer electron is defined from the condition 
dUefi/dx = 0 and is given by 

The comparison of this theoretical value of this ratio with the numerical results (Rnu) [31 
demonstrates agreement within 1% accuracy (see table 1). This is comparable with the 
accuracy of the numerical data presented in [3]. Let US mention that the ratio R is energy 
independent. 

For the case when the outer electron is located in the minimum of U c ~  we can easily 
find the total energy of the atom. For that we substitute the value of xdo from (2) in the 
expression (1) and taking into account that the energy of the inner electron is - Z / k  we 
get 

Ea = (-22 + 3Z1l3 - 2)/2a.  (3) 

This formula allows us to determine the size of the inner orbit 2a for a given energy and 
given Z. The comparison with the numerical results [3] at Eat = -1 (table 1) demonstrates 
5-10% agreement. The reason due to which (3) is less accurate than (2) is probably 
connected with some oscillations of the outer electron (about 3%) that are well averaged 
when we compute the minimum position xd0 (which was defined as the average value for 
the data presented in [3]) while the contribution of this uncertainty in the Ea is apparently 
more important. Analogous to the derivation of (3) it is easy to find that the ionization 
energy for the outer electron is I = ( z  + 2 - 3z1/3)/2a. 

Another point which can be seen from the data of table 1 is that the agreement becomes 
worse for larger values of Z. Also numerical results of [3] show that the stable position 
for the outer elecaon seems to disappear for Z > 12.5. This could be understood from the 
comparison of the frequency of inner electron aiM = z1/2/a3/2 with the frequency moat of 
small oscillations of outer electron near the minimum xdn: 

For not large values of Z this ratio is quite large which justifies the averaging approximation 
over inner electron motion. For helium S = 13.4 that is in a good agreement with the 
numerical value 14.78 of [6]. However, with the increase of Z the ratio in (4) decreases 
and it becomes equal to the golden mean value 1.618 at Z M 11. Due to that for large 
Z > 11 the average field approximation starts to be violated and the point'x- becomes 
unstable. This is probably the reason why the numerical experiments show disappearance 
of the stable state for Z 

It is interesting to note that for Z < 1 the effective potential still has the stable point 
at x d o  given by (2) but this point now corresponds to the maximum of the potential and 
is unstable. In this case xdn  is negative. This means that the outer electron for Z > 1 
is now located on the other side of the nucleus (let us say at the left-hand side, while the 
inner electron remains on the right-hand side from the centre). If we replace the electron 
on the left by a positron then the sign of the potential will be changed to the opposite one. 
In that case the effective potential for the positron has a minimum at xdn and therefore 
such a configuration for this unusual 'ion' is stable. Such a 'posion' consists of the nucleus 
with charge Z < 1, electron moving at the right side and positron located at the minimum 

12.5. 
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given by (2 )  at the left side. The ratio of the electron frequency to the frequency of small 
oscillations of the positron is equal to S = 4Z/fi(1 - Z2/3)2.  For Z close to 1 this ratio is 
large and utilization of averaging over fast electron oscillations is well justified. However, 
for 2 < 0.2 the ratio S becomes less than I. This indicates that for Z 0.2 the ‘posion’ 
becomes unstable and fast ionization takes place. Let us mention that the ‘posion’ structure 
is quite different from the standard positronium (Z = 0). In the posion the positron is fixed 
and the electron is doing fast oscillations around the ion 2. While in the positronium both 
particles are always moving in the symmetric way around the centre of mass. Since only 
relative charge is important the discussed situation can be realized for charged particles 
when the charge in the centre lZtl is less than the charge of the particles lZ,l moving 
around the centre. 

In conclusion, the analytical approach based on the derivation of effective potential by 
averaging over fast oscillations of the inner electron allowed us to determine the equilibrium 
positions for the slow outer electron which are in 1% agreement with the numerical results 
[3]. The effective potential (1) is quite similar to the molecular potential and therefore the 
appearance of the molecular series of levels discussed in [7] (corresponding to excitations 
in this potential) seems to be quite natural. The conditions of applicability of this averaged 
potential are also defined (S >> 1). It is shown that for the charge Z 1 the ion has a 
stable configuration if the slow (‘outer’) electron is replaced by a positron (‘posion’). 
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