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Abstract 

The results of analytical and numerical investigations of destruction of quantum localization of chaos by a nonlinear 
interaction are presented. Two different cases are considered. One is the one-particle case which corresponds to nonlinear 
wave propagation in disordered media. Another case corresponds to the destruction of localization by multi-particle self- 
consistent interaction at small but finite particle density. It is shown that delocalization and unlimited spreading over the 
lattice takes place above a critical value of nonlinear interaction. The spreading can be described by anomalous diffusion 
with the exponent smaller than in the diffusive case. 

1. Introduction 

One of the most interesting effects discovered in 

the domain of quantum chaos during last decade is 

the quantum localization of classical chaotic diffu- 

sion [1-4].  In many respects this phenomenon is 

analogous to Anderson localization in one/quasi- 

one-dimensional disordered lattice [3,4]. However, 
in the case of quantum chaos there is no randomness 

and diffusion on some initial time interval appears 

as the result of chaotic dynamics in the correspond- 

ing classical system. In this sense we have here a 

dynamical localization in a completely deterministic 

system. The basic model in which such phenomenon 

was studied is the model of kicked rotator [ 1-4] that 

is obtained by quantization of the Chirikov standard 

map [5]. This simple model was widely used not 

only for investigations of the properties of quantum 

chaos itself but also for explanation of localization 
in such physical systems as microwave ionization of 

hydrogen atom in a microwave field [6] and a linear 

wave propagation in a waveguide [7]. 

For waves an interesting question arises if the media 

through which the propagation takes place is a non- 

linear media. The same type of effect appears in the 

case of nonlinear interaction of an electron with the 

lattice. A model which allows to understand the prop- 

erties of such motion in the limit of large times has 

been introduced in [ 8 ]. Such type of behaviour is dis- 

cussed in the Section 2. In this case the packet width 

An growth is unlimited if the constant of nonlinear 

coupling exceeds some critical value. The growth it- 

self is described by some anomalous subdiffusion law. 

Another physical situation is discussed in the Section 

3. There we try to model the situation when localiza- 

tion is affected by multi-electron interaction which is 

taken into account in a self-consistent way. 
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2. One-particle model with nonlinear interaction 

To analyze the manifestation of nonlinear effects on 

the quantum localization of chaos for a one-particle 
case a simple model has been introduced in [8]. The 

model is given by the map: 

An = Z ( - i ) n - m J n - m ( k ) A m  
rn  

× exp(- i½Tm 2 + iAq~m), 

A,krn --/31Aml z. (1) 

For/3 = 0 it is the map for the kicked rotator [ 1-4] 

where the Bessel function Jn-m appears as the result 
of kick which gives ~ ( x )  = e x p ( - i k  cosx)~,. The 

bar denotes the new values of the amplitudes after 

one period of perturbation. The Fourier harmonics An 
are connected with the wave function by the relation 
~ ( x )  = ( 1 / v / ~ )  ~ , ,  einXA n. The shift of the phase 

of the amplitude An during the free rotation between 
kicks is determined by the unperturbed energies of the 

rotator En = n2/2 and the time interval between the 

kicks T. Finally the free propagation is simply given 

by multiplication of An by exp(- iTn2/2) .  The total 

probability is conserved and is equal to ~ n  IAnl 2 = 1. 

Here we have chosen the standard system of units 
[2,4] where h = 1 so that quasiclassical limit corre- 

sponds to T ~ h --+ 0 and k ,,~ 1/h ~ cxz so that the 

product kT gives the chaos parameter K = kT in the 
standard map. Chaotic classical diffusion takes place 

for K > 1 and for large values of K the diffusion rate 
in n is approximately equal to D = (An)2 / t  "~ k2/2 
[4] where the time t is measured in the number of 

kicks. In the quantum system the interference leads to 
suppression of classical diffusion and localization of 
chaos [2-4] .  Due to this localization the quasienergy 

eigenstates urn(n) decay exponentially with the level 
number n as urn(n) ~ e x p ( - l n  - mil l )  with the lo- 
calization length l = D/2  [4]. The total number of 
effectively excited levels An is determined by the lo- 
calization length An ,~ l. 

For non-zero /3 the phase shift of the amplitude 
of each level during the free rotation depends also 
on the probability on a given level. Due to that the 
equations of motion are nonlinear and the question 

arises what will be the influence of this nonlinearity on 
the localization of chaos. The nonlinear dependence of 

the phase shift is of the same type as in the nonlinear 

Schroedinger equation and corresponds to the case of 

four wave interaction in nonlinear media. It is also the 

same type of nonlinearity as in the Hubbard model. 
The analysis of the kicked nonlinear rotator model 

( 1 ) (KNR model) has been carried out in [ 8]. There 

it is shown that localization survives for the nonlin- 

ear interaction smaller than the critical value (/3 < 

/3c ~ 1). Above the critical value the localization 

is destroyed and unlimited excitation (spreading over 

unperturbed levels) takes place. This spreading is de- 

scribed by anomalous subdiffusion: 

(At/) 2 ~ T/34/514/St 2/5 (2) 

where y is some constant. 

On the first glance it seems surprising that unlim- 
ited growth of An is possible. Indeed, due to prob- 
ability conservation we can estimate the probability 

on the excited levels as Imnl 2 ~ l /An.  Therefore, the 
nonlinear phase shift decreases when the number of 

excited levels (modes) increases: m~n ~ /31A.I 2 
~3/An. However, at the same time the distance be- 

tween the linear frequencies (resonances) in the spec- 
trum is Aw ~ l / A n  since all quasienegies of the lin- 

ear problem (/3 = 0) are homogeneously distributed 
in the interval (0, 27"r). On the other side, the nonlin- 

ear width of the resonance is 6o~ ~ A~bn ~ ~3/An. 
Therefore, the Chirikov parameter of overlapping res- 

onances [5] is given by S = 6 w / A w  ~ /3 and is 

independent on An. For small overlapping parameter 

the resonances are isolated and localization is not de- 

stroyed. On the contrary for the strong resonance over- 
lapping (/3 > /3c) chaotic transitions between local- 
ized modes (resonances) take place leading to delo- 
calization and unlimited spreading. The law of spread- 
ing can be obtained from the estimate for the transi- 
tion rate from one localized quasienergy state in the 
linear case (/3 = 0) to another due to nonlinear inter- 
action: Fc ~ / 3 2 / ( A n ) 3  [8].  Since the size of the tran- 
sition is of the order of localization length l we get: 
(An)2 /At  = D/3 ,'~ 12Fc "~ 12/32/(An) 3 that finally 

gives the law (2). It is interesting to note that in fact 
the diffusion rate D~ is given by the same expression 
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as in the problem of the destruction of localization by ~,~w~ 

noise D ~ 12/tc [9] but now the coherence time t~ = 0 r ~ .  , , [ . ~ ~  
FC--I is determined by the nonlinear interaction and it ~ " 
grows with An. i ~ 

The numerical simulations carried out in [8] con- 20 ~ 
firmed the estimates presented above. They also allow i 
to understand the asymptotic behaviour in the model l 

of kicked nonlinear Schroedinger equation [ I 0 ] where 
the numerical results for the energy growth are in the 40 p 

good agreement with the law (2). [ 

The estimates presented above were made for the 60 ~ ' ~ - ~ - ,  

case when the classical motion is chaotic (K = k T  >> ~oo o 

1 ). Another situation arises in the case of integrable a 

motion (K = k T  << 1). Here the quantum tunneling 

between the resonances is affected by nonlinear in- 

teraction. The first investigations of this phenomenon 

have been done in [ I 1 ]. They showed that tunneling 
is strongly affected by nonlinearity. However, in the 

KNR model (1) the chain of integrable islands is in- 

finite and at the moment it is not quite clear what will 

be the asymptotic regime of spreading in this case (the 
case of [ 11 ] corresponds only to two resonant levels). 

The obtained results for the destruction of localiza- 

tion by nonlinear interaction are of a general nature 

and can be also applied for the case of particle motion 
on a discrete random lattice with nonlinear interac- 

tion. Such situation can be described by the equation 
for the Anderson model with nonlinear interaction: 

iO~n/cgt = En~n - fll~tnl2~n + ~Pn+l + ~n-1 (3) 

where En are randomly distributed in the interval 
( -W,  W) with W < 1. The nonlinear term takes into 

account the nonlinear self interaction of the elec- 

tron via the lattice. In the case when the localization 
length l > 1 the same type of arguments as for the 

KNR model (1) could be applied giving tic. ~ l 
and the same anomalous subdiffusion (2) in delo- 
calized phase should take place [8]. It will be very 
interesting to check these theoretical predictions in 
numerical simulations. It is also interesting to note 
that the chosen power for nonlinear interaction (I~p, 14 
in the Hamiltonian) is the critical one. Indeed, for 
the power higher than 4 the overlapping parameter S 
will decrease with the growth of An that will make 
impossible unlimited growth of An. 
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Fig. 1. (a)Probabil i ty  distribution Wn over  unperturbed levels n 

for wave propagation in the KNR model (1)  (see the text) after 
107 kicks with k = 5, T = 1, /3 = 0.1, NF = 50, NL = 250; (b)  

the same as in (a)  but after 3 107 kicks a n d / 3  = 1. 

Another physical situation where the discussed 

phenomenon can take place is the wave propagation 

through random nonlinear media. In this case there is 

also the question about the distruction of localization 

of linear waves by nonlinearity which arises due to 

dependence of dielectric constant on the wave ampli- 
tude. This problem is also connected with the question 

about the wave penetration through a finite layer with 
a random nonlinear media (see e.g. the review [ 12] ). 
One of the first attempts to resolve this problem was 
made in [ 13,14]. However, there the authors consid- 
ered only the properties of stationary solutions in the 

equation of type (3) that led them to the conclusion 

that the probability of penetration through the layer 

can decay in a power law instead of the exponential 

decay in the linear case. In fact the significance of 
the stationary solutions is very questionable, as it 
was also noted in [12]. Due to nonlinearity these 
solutions become unstable and the properties of real 
time-dependent dynamics become absolutely differ- 
ent. According to the results of this section and Ref. 
[8] the scenario of wave propagation through the 
nonlinear layer is the following. For small nonlinear- 
ity the probability penetration decreases exponentially 
with the length of the layer. However, when the non- 
linearity exceeds some critical value delocalization 
happens and the slow probability propagation of type 
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(2) starts. After some time the front reaches the other 
side of the layer and approximately after this time the 

probability distribution inside the layer becomes uni- 

form. This scenario has been confirmed recently [ 15] 

in the numerical simulations with the model (3). 
Here I would like to discuss another numerical 

investigation of wave propagation through nonlinear 

layer based on the KNR model (1). The model is 

described by the map ( 1 ) in which after each kick the 

value A0 = 1 is fixed. Also for n < 0 only free propa- 
gation takes place that was reached by putting in this 

region T =/3  = 0 in the interval - N F  < n < 1. The 
nonlinear layer was located in the interval 0 < n < 

NL and its size was much larger than the localization 

length in the linear case. All probability outside the 

interval [ - N F ,  NL] was completely absorbed after 
one kick. The boundary and initial conditions chosen 

in this way model the situation in which some pertur- 

bation excites the waves on the boundary of nonlinear 

layer n > 0 while free wave propagation takes place 

for n < 0 (this is reached by putting T = /3 = 0). 

The numerical results for the probability distribution 

w~ = IA~I 2 after large number of kicks (t ~ 10 7) are 
presented on the Fig. 1 for subcritical /3 < fic and 

supercritical/3 > /3c cases. The data clearly demon- 
strate the exponentially small penetration in the first 
case (Fig. la) while in the second one (Fig. lb) 

a plateau with approximately constant probability 

is formed inside the nonlinear layer. These results 

clearly confirm the above described scenario of wave 

propagation in nonlinear random media. 

3. Multi-particle model with nonlinear interaction 

In the previous section we analyzed the dynamics 

of one particle in a random potential with nonlinear 
interaction. Formally such problem corresponds to the 
case of zero density since the size of the system can 
be infinite while the particle is only one. This problem 
corresponds to the nonlinear wave propagation or to 
nonlinear interaction of the electron with the lattice. 
Absolutely another situation takes place in the solid- 
state multi-particle problems. There we have many 
particles with finite density which are localized in a 

random potential. One of the way to take into account 

the interaction between particles is the mean field ap- 
proximation or self-consistent field. In this approxi- 

mation the energy En on a site n in (3) depends on 
the local particle density at this site p.  = ~ u  I ~ ]  2 

where /z is the particle index. In the case of small 

density we can assume that the variation of E n due to 

local density fluctuations will be linear in p.  so that 

now Eq. (3) will have the form 

pn = ~ Ig,~l 2 
/z 

(4) 

where fl is some parameter measuring nonlinear in- 

teraction. Such multi-particle model at finite density 

P = (Pn) takes into account the changes of local po- 
tential due to local density fluctuations but neglects 

the correlations between nearest particles. In this sense 

the model also neglects the statistics of the particles 

assuming that the density is small, average energy of 
particles is high enough and due to that the particles 

can be treated as nonidentical. 
From comparison of (3) and (4) it is easy to note 

that the model (3) is in fact the one-particle limit of 

model (4). For the model (3) the rigorous mathemat- 

ical results [ 16] shows that there is some finite value 

of /3  below which localization remains. The simple 
arguments based on the resonance overlapping allow 

to estimate the critical value of nonlinear interaction. 

For the model (4) with finite density no rigorous re- 
sults are known. Probably it is possible to obtain result 
analogous to [ 16] in the regime when the particles are 
well separated and pl << 1. However, the case pl > 1 
is much more delicate and it will be interesting to have 
some mathematical proofs in this domain. One of the 
reasons for that is that the model (4) corresponds to 
the case of finite density and is much more close to 
the multi-particle solid-state problems than the model 

(3). 
The situation with finite density can be numerically 

simulated in the model of kicked rotator by the fol- 
lowing kicked multi-rotator (KMR) map: 
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Fig. 2. (a )  The square width of  the distribution over  unperturbed levels o- = ( ( A n )  2} in the kicked multi-rotator model  ( 5 )  as a function 
o f  time t measured in the number of  kicks: k = 5, T = 1, /7  = 0.03. The size o f  the system is N = 801, the number o f  particles (rotators) 
is M = 80;  ( b )  the same as (a )  but in log - log  scale. 



5o 

A~,, = Z(-i)n-mJn_m(k)A~m 
?11 

× exp ( - i~Tm 2 + iAOSm), 

~a".,I 2 (5)  
# 

Here the index /z corresponds to different rotators 

(particles). For /3 = 0 all this rotators are decou- 

pled and localization takes place for each of  them. At 

nonzero /3 there is the nonlinear phase shift AqS, at 

a given level for each amplitude Aa,  which is deter- 

mined by the local particle density on this level p ,  = 
~ u  [AU"]2" This phase shift gives a self-consistent 

coupling between different rotators which can lead to 

delocalization. 

The nonlinear interaction in the kicked multi-rotator 

model (5) is of  the same type as in (4) and this makes 

both models quite similar. However, the model (5) 

is very efficient in the numerical simulations and al- 

lows to analyze long time dynamics with many parti- 

cles. Let us mention another numerical advantage of  

self-consistent approximation: the time of  computa- 

tion grows only linearly with the number of particles. 

To model the situation with the constant particle 

density the numerical experiments with the map (5) 

were made on a ring in the momentum space n of  size 

N with M rotators on it. The average density was equal 

to p = M/N. Initially rotators were homogeneously 

distributed on a ring so that each of  them was located 

on one of  the unperturbed levels. To characterize the 

spreading over unperturbed levels the average square 

width of  the distribution o- = ((An) 2) was calculated 

a s  

o- = ( l / M )  ~ [ ~ Z  ]An~12(n- (nU))2' 
/z n 

where 

(n ~) = ~ nlA~n l 2 
tz 

were average positions of  the rotators. The average 
displacement of  each rotator was near zero, normal- 
ization condition had the form ~-~n IAnU[ z = 1. 

The typical examples of  the square width o- growth 
are presented on Figs. 2, 3. The case of  Fig. 2 corre- 
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sponds to the localized case of  one-particle problem 

M = 1 (Fig. 3 in [8] ). Here we see that multi-particle 

interaction at finite density p = 0.1 leads to a definite 

destruction of  localization. However, another impor- 

tant feature of  Fig. 2a is that the growth of  o- is not 

diffusive. Approximately it can be characterized by 

anomalous subdiffusion (see Fig. 2b) with the expo- 

nent l, = 0.5 (o- ~ t~). In some sense it is possible 

to say that interaction destroy localization but a sup- 

pression of  diffusion remains. This suppression is also 

observed for a much stronger nonlinear coupling on 

Fig. 3 in the region where localization was destroyed 

in the one-particle case (Fig. 1 in [8] ). The exponent 

of  anomalous diffusion ~, = 0.85 in this case is larger 

but still is definitely less than 1. 

These numerical results put an interesting question 

why in the system with many particles (M ~ 100) 

interacting in the nonlinear self-consistent way dif- 

fusion is zero. Indeed, this result looks to be unusual 

for multi-particle system where any finite temperature 

gives finite diffusion coefficient (conductance).  Anal- 

ogously, any finite noise in kicked rotator leads to a 

finite diffusion rate [9] .  One of  the possible reasons 

for this diffusion suppression is that the increase of  the 

distribution width An = ,fff  leads to the decrease of  

fluctuations of  the nonlinear phase shift A~b. The av- 

erage value A~b is not important while the fluctuations 

decrease as 1 / V # ~  where A/z ~ pAn is the effective 

number of  particles which determine the local density 

at a given value of  n. However, such simple estimate 

gives only the value of  phase shift at a given moment 

of time while one needs to know effect of  nonlinear 
decoherence over many iterations. 

4. Concluding remarks 

The results presented above allow to understand the 
effects of  nonlinear interactions on localization. Two 
main situations have been considered. One-particle 

case (Section 2) corresponds to a wave propagation in 
a random nonlinear media. Nonlinearity can appears 

as the result of  dependence of  dielectric constant on 
the wave amplitude [ 12]. Another physical situation 
in which such effect can appear is a particle propaga- 



D.L. Shepelyansky / Physica D 86 (1995) 45-52 51 

(9" 

12000 

10000 

8000 

6000 

4000 

2000 

2000 4000 6000 8000 10000 12000 14000 16000 18000 

O" 

t 

104 

5 

2 

10 3 

5 

2 

102101 

o .°°'° 
• ° . ° ° °  

• ° 

2 5 10 2 2 5 10 ~ 2 5 10 4 

b 

Fig. 3. (a,b) The same as (a,b) of Fig. 2 but with /3 = 1, N = 1601, M = 160. 

tion in a disordered lattice where nonlinearity arises 

as the result of nonlinear deformation of the lattice 

by the particle. For investigation of this problem we 
used the model of kicked nonlinear rotator ( 1 ) which 
is very efficient in numerical simulations. The anal- 
ogy of this model with solid state problems [3,4] and 
the problem of linear wave propagation in waveguides 
[7] allows to understand physics of these problems. 

The obtained numerical results and analytical esti- 

mates (see also [8] ) show that there is a critical level 
of nonlinear interaction. Below it localization is pre- 

served and penetration of a wave through a random 
nonlinear layer decreases exponentially with its length. 
Above this level localization is destroyed and slow 
propagation of a wave front through the layer takes 
place finally leading to a homogeneous amplitude dis- 
tribution inside the layer. This picture is quite different 
from a power law decay inside the layer which was 
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discussed in [13,14].  The reason due to which the 

power law decay is absent is because it was obtained 

on the basis of  stationary solutions which become un- 

stable in a nonlinear case. In such situation only anal- 

ysis of  t ime-dependent solutions can give a correct 

picture of  wave propagation through a nonlinear layer. 

The presented picture of  nonlinear wave localization 

is in agreement with the rigorous mathematical results 

[ 16] according to which localization is not destroyed 

if nonlinear perturbation is sufficiently small. How- 

ever, the results [ 16] are obtained in the spirit of the 

KAM theorem and can be used only for unrealisti- 

cally small perturbations. The estimates based on the 

Chirikov criteria of  overlapping resonances allow to 

obtain much more realistic estimates for the critical 

perturbation strength above which delocalization takes 

place. However, even in the delocalized phase some 

manifestation of  localization remains since the rate of  

wave spreading is very slow and it is characterized by 

anomalous subdiffusion. 

Another type of  nonlinear interaction and its influ- 

ence on localization was considered in Section 3. This 

situation corresponds to a case of  multi-particle non- 

linear interaction in the case when particles are ho- 

mogeneously distributed on a random lattice (density 

of  particles is finite) and they interact with each other 

in a self-consistent way. For example, such situation 

takes place when parameters of  the lattice depend on 

the local density value at a given site. At  my knowl- 

edge, no rigorous mathematical results analogous to 

[ 16] are known for such case. Numerical investiga- 

tions of  the kicked multi-rotator model (5)  show that 

in the many particle case delocalization takes place 

in the domain where one-particle model had localiza- 

tion. However, the most surprising result is that even 

in the case with many particles and strong nonlinear- 

ity the spreading is still described by a slow anoma- 

lous subdiffusion. So that the suppression of  diffusion 

remains. This result for multi-particle self-consistent 

interaction looks to be in a contradiction with the fact 

that any finite temperature gives finite rate of  diffusive 

spreading (conductance) over the lattice. Further an- 

alytical and numerical investigations are required for 

a better understanding of  this regime. 
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