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We investigate the classical dynamics of the helium atom in which one electron is replaced by a heavy
particle with a negative charge, such as an antiproton. The general properties of motion and the conditions for
chaotic dynamics are studied via the derivation of the planetary map. The regime of strongly correlated motion
of two particles is also analyzed. The properties of quantum motion are briefly discussed.
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I. INTRODUCTION

Recent experiments with anomalous metastable hadronic
helium atoms in liquid helium originated interest in the prop-
erties of atoms with nuclear chargeZ52 in which one elec-
tron is replaced by a heavy negatively charged particle@1#.
Even when this particle replaces an electron in the 1s state,
its corresponding principal quantum number is as high as
n*'AM , whereM is the heavy particle mass~atomic units
are used!, which can vary from 200~for muons! up to
2000 ~for antiprotons!. This means that the motion of heavy
particle is quasiclassical. The typical frequency of the Kepler
motion of this particle is v*5(a3M )21/2, where
a5n* 2/M is the orbit size. This frequency is small in com-
parison to that of electron motion in 1s state. Such a situa-
tion corresponds to the usual Born-Oppenheimer approxima-
tion in molecular physics where the motion of nuclear core
in the molecule is much slower than the electron motion. In
this respect the hadronic atom shares features with both at-
oms and molecules@1#.

Due to the above properties, the hadronic atom lies at the
intersection of two interesting fields of active research in
atomic and molecular physics. In atomic physics several
laboratory experiments were recently performed on doubly
excited Rydberg atoms@2#. In molecular physics laboratory
and theoretical investigations were devoted to the analysis of
energy exchange between the Rydberg electron and rota-
tional and vibrational degrees of freedom of molecular core
@3#. Recently light has been shed on the autoionization pro-
cess caused by the interaction between rotational and elec-
tronic degrees of freedom@4#, while for doubly excited elec-
trons in atoms the existing analytical theories~see, e.g.,@5#!
need further developments.

The investigation of doubly excited states in the hadron-
ic atom can provide the opportunity for a theoretical under-
standing of both the above problems. In addition, chaotic
motion can take place in this doubly excited atom and there-

fore the problem at hand also provides a good opportunity to
study the properties of quantum chaos in the laboratory.

Until now, the investigations on the hadronic atom@1,6#
were mainly carried out in regions where the frequency of
the heavy particle motion is much less than that of the elec-
tron motion. In this case the electron adiabatically follows
the slow motion of the heavy particle and the dynamics is
qualitatively the same as for the molecule in the Born-
Oppenheimer approximation. A more interesting situation
arises when the electron is in an excited state with relatively
high principal quantum number. Indeed, in this case the fre-
quency of its motionve5n23 can become comparable with
the frequency of the heavy particle and therefore the Born-
Oppenheimer approximation becomes invalid. However, the
case in which the electron orbit remains sufficiently far from
the heavy particle can be analytically treated in the same way
as for molecular Rydberg states@4#. In particular, in the latter
case the energy exchange between the heavy particle and the
electron can be sufficiently large to produce a chaotic dy-
namics.

In this paper we analyze the classical dynamics of this
three-body problem in the general case. This problem, while
similar to the traditional three-body gravitational problem,
has, however, an interesting peculiarity. Indeed, it effectively
corresponds to the case with strongly different inertial and
gravitational masses. Because of this the dynamics of the
system has many unusual features that are absent in the stan-
dard three-body problem; it is therefore interesting to study
this situation in detail.

The analysis of classical motion allows us to understand
the conditions for the appearance of chaos in this nonstand-
ard object, which contains the features of an atom and a
molecule at the same time. In the chaotic regime we analyze
the conditions under which chaotic ionization of the hadron-
ic atom can take place via diffusive interchange of energy
between the electron and the heavy particle. We first consider
the situation in which the light electron is outside the heavy
particle’s orbit~Sec. II!. In this case the inner particle’s mo-
tion is only weakly affected by the electron and the problem
can be treated following the approach developed in@4#. The
opposite case, when the heavy particle is far outside the inner
electron, is characterized by a more complicated correlated
motion of the two particles and is analyzed in Sec. III. The
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intermediate case corresponding to the experimental situa-
tion of Ref. @1#, when the sizes of both particles’ orbits be-
come comparable, is investigated in Sec. IV. Here we have
found an interesting regime of strongly correlated motion of
both particles in which the ionization time becomes enor-
mously large. Finally, the investigation of the classical dy-
namics allows us to make simple estimates for the quantum
case where effects of quantum suppression of chaotic diffu-
sion can play an important role, leading to a sharp increase
of the lifetime of the hadronic atom. This opens the possibil-
ity of real laboratory experiments.

One of the most interesting properties of the hadronic
atom is that the ground state of the heavy particle lies at a
very low energyE0;2MZ2/2. Because of this, radiative
transitions from excited states to the ground state may lead to
emission of very high frequency photons, thus opening inter-
esting perspectives forg lasers.

In the analysis below we neglect the effects of the center
of mass motion since, for helium, the mass of the core is
significantly larger than that of the heavy particle. If the ratio
of these masses becomes comparable to one, then the rota-
tional motion of the core can lead to energy exchange with
the excited electron and this can be treated on the basis of the
approach developed in@4#. However, this regime is outside
the purpose of the present paper.

II. INNER HEAVY PARTICLE: THE ‘‘PLANETARY’’ MAP

The classical dynamics of the hadronic atom is described
by the Hamiltonian
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where the indexh refers to the heavy particle of massM and
the indexe refers to the electron;Z represents the nuclear
charge~for heliumZ52!. The total linear momentum of the
two particles is an integral of motion.

Let us start from the case in which the electron orbit is
much larger than the heavy particle orbit. In this case, as a
first approximation, we can neglect the effects of the electron
on the heavy particle, so that the latter moves on a given
Kepler orbit with fixed frequencyvh5(Z/M )1/2ah

23/2, its
energy beingEnh

'2(MZ2)/(2nh
2), and the radius of the

orbit is ah5nh
2/(ZM).

We will restrict ourselves to the case in which both par-
ticles move in a plane. Explicitly the Kepler motion of the
inner heavy particle is given by@7#
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where the Fourier components are

xs5s21Js8~seh!,

ys5F ~12eh
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the eccentricity iseh5(12 l h
2/nh

2)1/2, and l h is the orbital
momentum.

Since the outer electron remains sufficiently far from the
inner particle we can expand the interaction term in~1!, fol-
lowing the approach used in@4#. Then the effective potential
for the electron can be written as~for the helium atom with
Z52!
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By means of a Kramers-Henneberger@8# transformation the
motion can also be described by the Hamiltonian
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where the effective electric field is

eW~ t !5„ẍh~ t !,ÿh~ t !…

52ahvh
2(

s
s2„xscos~svht !,yssin~svht !…. ~6!

If the inner particle performs a circular motion the problem is
equivalent to a hydrogen atom in a circularly polarized
monochromatic field of amplitudee5ahvh

2 . The latter prob-
lem was shown to describe also the energy exchange in a
Rydberg molecule between the rotating core and the Rydberg
electron@4#. When the eccentricity of the inner heavy par-
ticle is not small, the high harmonics in the sum~6! will be
relevant. In particular, in the limit of a small orbital momen-
tum of the inner particle the harmonicsxs ,ys are large up to
values ofs' s̄'3(l h /nh)

23, while for s. s̄ they are expo-
nentially small. This estimate follows from asymptotics of
Bessel functions as discussed in@7#. It is interesting to re-
mark that in the limit casel h50 ~when the particle moves on
a line! the effective electric field becomes infinite at perihe-
lia.

The requirement that the outer electron does not touch the
inner orbit leads to certain restrictions. Indeed, as we know,
from the solution of the hydrogen problem in a microwave
field, the energy exchange with the electron~the kick ampli-
tude in the Kepler map description! is not exponentially
small only if l e,(3/vh)

1/3. On the other hand, the minimal
distance between the electron and the center is approxi-
mately l e

2/2, which should be larger than the size
ah5(Z/M )1/3(vh

22/3) of the inner orbit. These two condi-
tions lead to (32/3/2)(M /Z)1/3.1, which is always satisfied
provided that the inner particle is sufficiently heavy.

We will for simplicity consider orbits extended along the
x direction, the main contribution to the energy change dur-
ing one orbital period of the electron therefore coming from
thex component of the motion. In this case, in analogy with
@7#, the energy change produced by one harmonic
escos(svht) of effective electric fieldes52ahvh

2xss
2 is given

by

2pbesne
2Ask8 ~skee!sin~sf!, ~7!

738 53BENVENUTO, CASATI, AND SHEPELYANSKY



where k5vh /ve , ve5ne
23 , and f is the phase of the

heavy particlevhtp at the momenttp when the electron is at
a perihelion. The numerical factorb takes into account that
the ys harmonics also contribute to the energy change. For
the circular casexs5ys , this factor is @11 l e

2/(2ne
2)

11.09(2vh)
1/3l e] @4,7#. For linear polarization,ys50 and

b51, while in the general caseb'1.522.
The contribution of all harmonics to the energy change is

then given by 2pb(sesne
2Ask8 (skee)sin(sf), which leads to

DEe~f!54pbahvh
2ne

2(
s51

`

sAs8~seh!Ask8 ~skee!sin~sf!.

~8!

For a noninteger argumentsk, the functionAsk8 (skee) is the
first derivative of the Anger function

An8~x!5
1

2pE2p

p

sin~nj2xsinj!sinj dj; ~9!

An(x) coincides with the Bessel functionJn(x), whenn is
an integer. From the asymptotic exponential decrease of
Bessel functions, it follows that only a finite number of terms
significantly contribute to the sum~8!, namely, those with
s<smin wheresmin is equal to the minimum of the two values
s'3(nh / l h)

3 ands'3@(kne)/ l e#
3. The latter cutoff makes

the sum effectively finite even in the casel h50 ~linear mo-
tion!, which corresponds to an infinitely strong electric field.
Due to that, even an infinitely strong electric field will not
lead to immediate ionization.

As we have seen, the energy change~8! depends on the
phasef of the inner particle at the moment when the elec-
tron passes near a perihelion. The phase change between two
consecutive passages is given by the Kepler motion and the
electron’s dynamics can be described by the planetary map

N̄5N1kg~f!,
~10!

f̄5f1vh~22pvhN̄!23/2,

whereN5Ee /vh52(2ne
2vh)

21, k52.6evh
25/352.6ahvh

1/3

andg(f)5DEe(f)/(kvh). Herek has been defined in anal-
ogy with the problem of the hydrogen atom in a linearly
polarized microwave field with amplitudee5ahvh

2 @7#. In
order to check the validity of the planetary map~10! we
numerically integrated the Hamiltonian~1! in which we fixed
the motion of the inner heavy particle on the Kepler orbit
with a given ahvh . By computing the electron energy
changeDEe as a function of the different phases of the heavy
particle, taken at moments when the electron is at the peri-
helion, we determined the functiong(f), which is presented
in Fig. 1. It would be difficult to give a closed analytical
expression for the functiong(f). However, the theoretical
expression~8! with b51.8, given by the full line, is in fairly
good agreement with numerical data fork*1. The important
feature is that the functiong(f) is quite different from the
sine function and has a pronounced spiked shape. We would
also like to mention that this shape is similar to the kick
function found in@9# for the dynamics of the Halley comet
under the influence of Jupiter.

Another interesting point is that, even when the frequency
ratiok!1, the functiong(f) approximately retains the same
form. The physical reason might be that the inner particle
generates high harmonics withsh'3(l h /nh)

23 so that
shvh can be comparable to or even larger thanve . In this
sense the situation is different from the case of monochro-
matic electric field where the conditionk5vn3!1 implies
regular motion. In the present case the motion of the outer
electron can be chaotic even ifk!1. In other words, due to
the generation of high harmonics, the Born-Oppenheimer ap-
proximation may be invalid even when the frequency of the
heavy particle motion is much less than the electron fre-
quency. An example of the kick function fork!1 is shown
in Fig. 2. While the shape of theoretical curve given by~8!-
~10! is qualitatively similar to the numerically foundg(f),
further analytical analysis should be done to understand the
quantitative difference between theory and numerics in the
regimek!1.

For the particular case of circular motion of the inner
particle the functiong has a sine shape@g(f)5bsinf#. In
this case the situation is similar to the microwave ionization

FIG. 1. Plot of the functiong(f) in ~10!. The inner heavy
particle is bound to a Kepler orbit with parametersah50.002,
vh54, and l h50.7. The initial conditions for the electron are
ne51 andl e50.5. Dots are numerical data and the full line is the
theoretical curve~8! with b51.8.

FIG. 2. Same as Fig. 1, withvh50.1 andb51.8.
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of excited states of hydrogen atom@7# and to the autoioniz-
ation of molecular Rydberg states due to coupling between
the rotational and the electron’s motion@4#. Indeed, in this
case the energy of the electron changes only when the elec-
tron passes near the perihelion and this change is given by
the functiong(f). As is well known@4,7#, the border for the
transition to chaotic motion is determined by the condition
K56pbkvh

2ne
5.1, that is,

ahvh
2.

1

50bae
5/2vh

1/3, ~11!

where ae5ne
2 . Above the chaos border~11! the phasef

becomes random and diffusive ionization of the electron
takes place with a diffusion rateD5DN2/Dt5k2^g2(f)&.
The ionization time can be estimated asNI

2/D, where
NI5EI /vh is determined by the energy@EI5(2ne

2)21# re-
quired to ionize the electron from its initial statene . When
eccentricityeh is not small, the chaos border can be signifi-
cantly decreased by the generation of high harmonics and by
the form of the functiong(f). A more detailed analysis
should be carried out to derive analytical estimates for the
chaos border in such a case. An example of the phase plane
corresponding to the planetary map is shown in Fig. 3.

So far, the derivation of the planetary map has been ob-
tained by assigning the motion of the inner particle. The
physical ground for this approximation lies in the fact that
when the mass of the inner particle is very large, its interac-
tion with the light one can only lead to small changes in the
parameters of the inner orbit. The frequency of these varia-
tions will be small in comparison to the frequency of the
heavy particle motion and therefore there will be no qualita-
tive changes on the electron dynamics. However, an explicit
numerical derivation of the map for two interacting particles
is quite difficult, the reason being that the aforementioned
slow variation of the parameters of inner motion, for ex-

ample, eccentricityeh , leads to a slow variation of the kick
functiong(f). On the other hand, since these variations are
slow compared to the frequency of the inner particle motion,
they will not qualitatively modify the description of energy
excitation given by the planetary map. A realistic example
for two-particle motion in the Hamiltonian~1!, which can be
described by the map~10!, is shown in Fig. 4. Here only the
lower harmonicss @see~8!# contribute to the kick function
g(f) and the map is similar to the Kepler map. The absence
of high harmonics in the functiong(f) is due to the rela-
tively high value of the ratiol h /nh . For lower values of this
ratio higher harmonics become more important, leading to a
spiked shape forg(f). In this case, however, a numerical
evaluation of the functiong is more difficult to obtain due to
the precession of the orbit of the heavy particle produced by
the interaction with the electron@this effect can be seen even
in Fig. 4 as a slow phase shift of the kick functiong(f)#. In
this sense the one-dimensional planetary map gives an ap-
proximate description of the energy exchange between the
particles and neglects the slow phase shift, which does not,
however, qualitatively change the dynamics of the electron
excitation in energy.

III. OUTER HEAVY PARTICLE

Let us now consider the case in which the heavy particle
is the outermost one and stays sufficiently far from the inner
electron. In such a situationrmin5 l h

2/(2M )@ne
2 and

k5ve /vh@1. Due to these two conditions
( l h /nh)@(3/k)1/3, so that the energy change of the heavy
particle after one orbital period is exponentially small.
Therefore, it may seem, at first glance, that no energy ex-
change should take place between the heavy particle and the
electron. The possibility arises, however, for an interesting
phenomenon; indeed the heavy particle induces an approxi-
mately static, slowly varying field, near the center of the
atom, where the electron moves. This quasistatic field will
lead to a precession of the electron orbit to a Stark frequency
much smaller than that of electron motion, but comparable to
the frequency of the heavy particle. As a consequence, this

FIG. 3. Snapshot of the phase space for the planetary map~10!
with the same parameters as in Fig. 1. Six orbits with different
initial energies are shown.

FIG. 4. Plot of the functiong(f) for the full motion in the
helium atom~1!. Initial conditions for the heavy particle of mass
M52000 arenh51 and l h /nh50.975. The initial conditions for
the electron arene56 and l e /ne50.75. Dots are numerical data
and the full line is the theoretical curve~8! with b51.8.
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slow precession of the electron orbit can lead to an effective
exchange of energy among the inner and the outer particle.
The conditions under which this exchange can take place can
be derived as follows. The field strength induced by the
heavy particle at the center of the atom is approximately
eStark'ah

22 and the Stark frequency of electron’s orbit pre-
cession isvStark'eStarkAae; in order to have an effective en-
ergy exchange between the two particles it is necessary that
vStark*vh;(ah

3M )21/2. This leads to

ah
ae

,M . ~12!

Under this condition the energy of the heavy particle only
changes near the perihelion and the value of the change can
be estimated as if an effective external monochromatic field
was applied with frequencyv'vStark and intensity
e5aevStark

2 . The latter estimate is due to the precession of
the dipole moment of the inner particled'ae with frequency
vStark.

In analogy with the hydrogen atom in a microwave field
it is convenient to introduce the rescaled frequency and field
intensity v05vStark/vh'Aae/ahM and e05aevStark

2 /
(1/ah

2)'(ae /ah)
2. Here we implicitly assumed that the ec-

centricity of heavy particleeh is small so that both axes of
the elliptic orbit have approximately the same sizeah . Then,
according to@7#, the relative energy variation of the heavy
particle is

DEh

Eh
;ahDEh;2.6

e0
v0
2/3;S aeahD

5/3 1

M1/3. ~13!

The estimate for the chaos border can be obtained from the
standard conditione0.1/50v0

1/3 and gives

ae
ah

.
1

6M1/3. ~14!

The derivation of the explicit map in this case is quite diffi-
cult. However, the energy change of the heavy particle after
one orbital period can be expressed by some functionf (w)
of the anglew5lh2le between the main ellipse axis of the
heavy and light particles. An example of this function, ob-
tained by numerically solving system~1!, is shown in Fig. 5.
The amplitudeDEh of the energy variation is approximately
1024, in satisfactory agreement with the estimate~13!,
which gives an amplitude approximately equal to 531025.
The variation of anglew is finite due to the finite cone of
permitted angle of precession of the electron. In Fig. 6 we
illustrate the precession of the electron orbit during a period
of the outer heavy particle.

In deducting the estimate~14! we assumed that the pre-
cession frequency remains constant during an orbital period
of the heavy particle; this is approximately true only when
the heavy particle eccentricity is sufficiently small. Indeed,
when the orbit is noncircular, the induced static field in the
center decreases with the increasing of the particle distance
r h and reaches its maximal value at the perihelion. Therefore
the precession frequency also changes in a complicated way.
Because of this we believe that the real chaos border lies
well below the estimated border~14!. The estimate~14! was
obtained under the additional assumption that the two axes of

the ellipse are of comparable size. In the general case the
value r h at the perihelion should appear in it rather than
ah , hence the minimal distance of the heavy particle from
the center cannot indefinitely grow without eventually lead-
ing the system below the chaos border. Therefore, only one
possible way for ionization is left, consisting in an indefinite
increase of the maximal distanceah while keeping the dis-
tance at the perihelion approximately constant, so that
eh→1.

IV. ORBITS OF COMPARABLE SIZE

Finally, we will consider the case when the sizes of both
orbits are comparable. Two different kinds of motion may
occur in this case. The first possibility is that the motion of
the two particles is correlated in such a way that even if the
sizes of the orbits are approximately the same, close colli-
sions between them nevertheless never occur. An example of

FIG. 5. Plot ofDEh versus the relative anglew5lh2le . The
initial parameters for the outermost heavy particle~whose mass is
M52000) arenh54AM and l h /nh520.95. The innermost elec-
tron starts withne51 andl e /ne50.7. Two sets of data are shown,
one for the initial anglew50 ~triangles!, the other forw5p
~circles!.

FIG. 6. Precession of the inner electron during a period of the
outermost heavy particle. Herenh /AM52, l h /nh50.95, ne51,
l e /ne50.75, andM52000.
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this kind of motion is shown in Fig. 7: the electron is re-
pelled by the heavy particle and electronic orbits precess
following the slow motion of heavy particle thus avoiding
collisions. Such a configuration remains stable during many
orbital periods of the heavy particle and it is quite possible
that both particles will never ionize. For certain initial con-
ditions this type of motion looks integrable, while in other
cases a more complicated motion without ionization is seen,
which is probably chaotic, even in the absence of direct col-
lisions ~Fig. 8!. When collisions become closer the electron
transfers energy to the heavy particle, leading to its ioniza-
tion ~Fig. 9!.

We found numerically that the stable configurations de-
scribed above exist only when the orbital momentum of the
heavy particle is close to its maximal value (l h'nh). As
soon as the ratiol h /nh decreases~less than approximately
0.8) this synchronized motion does not occur any more and
one of the particles is eventually ionized~Fig. 9!. It is quite
remarkable that in real laboratory experiments stable con-
figurations of the hadronic atom were indeed observed only
with l h'nh @1#.

Another configuration with correlated motion corresponds
to the case~also considered in the helium atom@10#! when

both particles with negative charge are located on the same
side of the nucleus. The simplest orbit in this kind of con-
figuration corresponds to one-dimensional motion of both
particles on a line. In this case the fast moving electron re-
pels the heavy particle and creates a classically stable situa-
tion @11#. Other stable orbits exist in which small frequency
oscillations take place in the direction perpendicular to the
line. These oscillations share similar properties with the one-
dimensional case, and since in this case the outer particle is
heavy, such quasi-one-dimensional configurations are even
more stable than in the helium atom. In the opposite case
when the heavy particle is inside, the ratio of two frequencies
v l /vh'AM /14 is comparable to one and the question of
stability of this configuration requires further investigations.

When the motion is not correlated and collisions between
particles can take place, then the heavy particle intersects the
electronic ‘‘cloud’’ and after each collision the change in
velocity of the heavy particle isDvh;ve /M , so that the
relative energy change isDEh /Eh;Dvh /vh . Since
Mvh

2;ve
2 it follows that after each collision

DEh /Eh;1/AM . The electron motion is much faster than
the heavy particle motion and therefore the number of colli-

FIG. 7. ~a! Stable and correlated motion of the heavy and light
particles. In this case particles never collide. Here
nh /AM5ne51, l h /nh520.95, l e50.30, andM52000.~b! Same
as ~a!, but for a longer time.

FIG. 8. Irregular, nonionizing, motion of both particles. Here
nh /AM50.7 andl h /nh520.95, ne51, l e50.10, andM52000.

FIG. 9. Example of unstable motion. Herenh /AM51.4,
l h /nh520.71, ne51, l e50.7, andM52000.
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sionsN at each passage is approximately equal toAM . As
a consequence, the relative energy change for the heavy par-
ticle after one orbital period isAN /M . Ionization will occur
when the relative energy change is order of one, which re-
quiresAM orbital periods of the heavy particle. Therefore
long-lived states can exist even when direct collisions be-
tween the light and the heavy particle take place. In the
above estimate we refer to the case in which the electron and
the heavy particle orbits have comparable size andl h;nh
and l e;ne . In this case the ratio between the velocities of
the two particlesvh /ve is of the order of 1/AM and therefore
the slow motion of the heavy particle does not strongly ef-
fects the dynamics of the light electron.

V. CONCLUSION

The above picture is related to the classical dynamics of
the system. The analysis of the dynamics in the classical case
allows us to understand also the basic features of quantum
motion. Indeed the planetary map description can be quan-
tized in the same way as for the Kepler map@7#. As a con-
sequence, quantum effects can lead to localization of classi-
cal diffusion, with a localization lengthl f;k2^g2&. When
this localization length is smaller than the number of ‘‘pho-
tons’’ NI5(2ne

2vh)
21 required for ionization, then classical

ionization is suppressed and the quantum atom has a very
long lifetime. In the opposite case, whenl f.NI , diffusive
ionization takes place and approximately follows the classi-
cal description.

A more unusual situation arises when the heavy particle is
the outermost one. Here the frequency of precession of the
inner electron, which produces the kick functionf (w) for the
heavy particle, is not constant and depends on the motion of
the heavy particle itself. It is therefore likely that the se-

quence of kicks will be irregular so that quantum interfer-
ence effects will be destroyed and quantum diffusion will be
close to classical. It would be interesting to carry out explicit
quantum numerical computations for a better understanding
of the properties of quantum motion in the different regions
discussed above and for a deeper understanding of manifes-
tations of classical chaos in quantum dynamics.

In closing this paper we would like to mention another
intriguing question related to the electron scattering on the
hadronic ion~a similar problem arises for the scattering of an
electron on a rotating molecular ion!. Such a process is in
some sense the time reversed version of the ionization pro-
cess discussed above and is described by the planetary map.
The estimate for the absorption cross section of the electron
on such an ion can be obtained in a way similar to the scat-
tering process of electrons on protons in the presence of a
microwave field@12#. Indeed, in this case the electron can be
captured only if its orbital momentuml e,(3/vh)

1/3 and its
energy isEe,kvh'ahvh

4/3. Sincel e;rve , wherer is the
impact parameter of the electron andve its asymptotic ve-
locity at infinite distance, we obtain for the absorption cross
section

sa;pr2;
l 2

v
e

;
1

vh
2/3Ee

.
1

ahvh
2;Mah

2 . ~15!

As can be seen the cross section~15! is much larger than the
mere geometrical cross sections;ah

2 . Therefore the process
of creation of neutral excited atoms can be very effective. It
is possible that such an increase of the cross section can be
interesting for the process of muon catalysis. Finally, our
analysis of different dynamical regimes in hadronic atom can
be useful for a better understanding of recent experimental
investigations@13#.
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