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Chaos in a quasiclassical hadronic atom
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We investigate the classical dynamics of the helium atom in which one electron is replaced by a heavy
particle with a negative charge, such as an antiproton. The general properties of motion and the conditions for
chaotic dynamics are studied via the derivation of the planetary map. The regime of strongly correlated motion
of two particles is also analyzed. The properties of quantum motion are briefly discussed.

PACS numbe(s): 36.10—k, 05.45+b

I. INTRODUCTION fore the problem at hand also provides a good opportunity to
study the properties of quantum chaos in the laboratory.

Recent experiments with anomalous metastable hadronic Until now, the investigations on the hadronic at¢in6]
helium atoms in liquid helium originated interest in the prop-were mainly carried out in regions where the frequency of
erties of atoms with nuclear charge=2 in which one elec-  the heavy particle motion is much less than that of the elec-
tron is replaced by a heavy negatively charged parfitle  tron motion. In this case the electron adiabatically follows
Even when this particle replaces an electron in tBesthte,  the slow motion of the heavy particle and the dynamics is
its corresponding principal quantum number is as high agualitatively the same as for the molecule in the Born-
n*~+M, whereM is the heavy particle magatomic units  Oppenheimer approximation. A more interesting situation
are usegl which can vary from 200(for muong up to  arises when the electron is in an excited state with relatively
2000 (for antiproton$. This means that the motion of heavy high principal quantum number. Indeed, in this case the fre-
particle is quasiclassical. The typical frequency of the Kepleiquency of its motionw,=n"2 can become comparable with
motion of this particle is w*=(a®M) Y2 where the frequency of the heavy particle and therefore the Born-
a=n*?/M is the orbit size. This frequency is small in com- Oppenheimer approximation becomes invalid. However, the
parison to that of electron motion inslstate. Such a situa- case in which the electron orbit remains sufficiently far from
tion corresponds to the usual Born-Oppenheimer approximahe heavy particle can be analytically treated in the same way
tion in molecular physics where the motion of nuclear coreas for molecular Rydberg statg4. In particular, in the latter
in the molecule is much slower than the electron motion. Incase the energy exchange between the heavy particle and the
this respect the hadronic atom shares features with both atlectron can be sufficiently large to produce a chaotic dy-
oms and moleculefl]. namics.

Due to the above properties, the hadronic atom lies at the In this paper we analyze the classical dynamics of this
intersection of two interesting fields of active research inthree-body problem in the general case. This problem, while
atomic and molecular physics. In atomic physics severasimilar to the traditional three-body gravitational problem,
laboratory experiments were recently performed on doublhas, however, an interesting peculiarity. Indeed, it effectively
excited Rydberg atomg2]. In molecular physics laboratory corresponds to the case with strongly different inertial and
and theoretical investigations were devoted to the analysis ajravitational masses. Because of this the dynamics of the
energy exchange between the Rydberg electron and rotaystem has many unusual features that are absent in the stan-
tional and vibrational degrees of freedom of molecular coredard three-body problem; it is therefore interesting to study
[3]. Recently light has been shed on the autoionization prothis situation in detail.
cess caused by the interaction between rotational and elec- The analysis of classical motion allows us to understand
tronic degrees of freedoid], while for doubly excited elec- the conditions for the appearance of chaos in this nonstand-
trons in atoms the existing analytical theoriese, e.g.[5])  ard object, which contains the features of an atom and a
need further developments. molecule at the same time. In the chaotic regime we analyze

The investigation of doubly excited states in the hadronthe conditions under which chaotic ionization of the hadron-
ic atom can provide the opportunity for a theoretical under-ic atom can take place via diffusive interchange of energy
standing of both the above problems. In addition, chaotidetween the electron and the heavy particle. We first consider
motion can take place in this doubly excited atom and therethe situation in which the light electron is outside the heavy

particle’s orbit(Sec. 1. In this case the inner particle’'s mo-
tion is only weakly affected by the electron and the problem
"Also at Istituto Nazionale di Fisica Nucleare, Sezione di Milano, can be treated following the approach developefin The

Milano, Italy. opposite case, when the heavy particle is far outside the inner
TAlso at Budker Institute of Nuclear Physics, 630090 Novosibirsk,electron, is characterized by a more complicated correlated
Russia. motion of the two particles and is analyzed in Sec. Ill. The
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intermediate case corresponding to the experimental situahe eccentricity iseh=(1—lﬁ/nﬁ)1’2, and |, is the orbital
tion of Ref.[1], when the sizes of both particles’ orbits be- momentum.

come comparable, is investigated in Sec. IV. Here we have Since the outer electron remains sufficiently far from the
found an interesting regime of strongly correlated motion ofinner particle we can expand the interaction terntliy fol-
both particles in which the ionization time becomes enor{owing the approach used [d]. Then the effective potential
mously large. Finally, the investigation of the classical dy-for the electron can be written &fr the helium atom with
namics allows us to make simple estimates for the quanturi=2)

case where effects of quantum suppression of chaotic diffu-

sion can play an important role, leading to a sharp increase 1 XeXp(t) + Yeyn(t) 1
of the lifetime of the hadronic atom. This opens the possibil- ~ V(re)=—— 3 ~-— FRCrEA 4
e e h e

ity of real laboratory experiments.

One of the most interesting properties of the hadronic )
atom is that the ground state of the heavy particle lies at 8Y means of a Kramers-Henneber(8t transformation the
very low energyE,~—MZ2/2. Because of this, radiative motion can also be described by the Hamiltonian
transitions from excited states to the ground state may lead to )
emission of very high frequency photons, thus opening inter- H= Pe £~|— S(OF )
esting perspectives foy lasers. 2 re e

In the analysis below we neglect the effects of the center
of mass motion since, for helium, the mass of the core isyhere the effective electric field is
significantly larger than that of the heavy particle. If the ratio
of these masses becomes comparable to one, then the rota-
tional motion of the core can lead to energy exchange with
the excited electron and this can be treated on the basis of the 5 5 _
approach developed i®]. However, this regime is outside =207 >, SP(XCOgSwpt),ysSin(swpt)).  (6)
the purpose of the present paper. ®

€(t) = (Xn(1),¥n(1))

If the inner particle performs a circular motion the problem is
equivalent to a hydrogen atom in a circularly polarized

The classical dynamics of the hadronic atom is describehonochromatic field of amplitude=a,wj, . The latter prob-

II. INNER HEAVY PARTICLE: THE “PLANETARY” MAP

by the Hamiltonian lem was shown to describe also the energy exchange in a
Rydberg molecule between the rotating core and the Rydberg
pﬁ pi Z Z 1 electron[4]. When the eccentricity of the inner heavy par-
H=om ™2 " r " o (1) ticle is not small, the high harmonics in the s will be
e

relevant. In particular, in the limit of a small orbital momen-
tum of the inner particle the harmonigg,y. are large up to

where the index refers to the heavy particle of massand = o3 X s
values ofs~s~3(l,/n,) ", while for s>s they are expo-

the indexe refers to the electronZ represents the nuclear - ) ) |
charge(for heliumZ=2). The total linear momentum of the nentially smgll. This estimate foIIows' frpm asymptotics of
two particles is an integral of motion. Bessel functions as discussed[ifi. It is interesting to re-

Let us start from the case in which the electron orbit is™ark that in the limit cask, =0 (when the particle moves on

much larger than the heavy particle orbit. In this case, as & line) the effective electric field becomes infinite at perihe-

first approximation, we can neglect the effects of the electron@: )
on the heavy particle, so that the latter moves on a given The requirement that the outer electron does not touch the
Kepler orbit with fixed frequencywy,=(Z/M)Y2a; 32, its inner orbit leads to certain restrictions. Indeed, as we know,

; ~ 2 2 ; from the solution of the hydrogen problem in a microwave
e”e,rgy bemng”h (MZ%)/(2n}), and the radius of the field, the energy exchange with the electftime kick ampli-
orbit is a,=n;/ (ZM). _ _ tude in the Kepler map descriptipris not exponentially

We will restrict ourselves to the case in which both par-gm 4 only if | < (3/wy,)Y3. On the other hand, the minimal
ticles move in a plane. Explicitly the Kepler motion of the yistance between the electron and the center is approxi-

inner heavy particle is given biy] mately 12/2, which should be larger than the size
an=(ZIM)¥¥(w;, ??) of the inner orbit. These two condi-
Xn(t)=ap| 2e,—22, xLcogswpt) |, tions lead to (8%2)(M/Z)*>1, which is always satisfied
s provided that the inner particle is sufficiently heavy.
. ) We will for simplicity consider orbits extended along the
yn(t)= _ZahES YsSin(swpt), x direction, the main contribution to the energy change dur-

ing one orbital period of the electron therefore coming from
thex component of the motion. In this case, in analogy with

where the Fourier components are _
[7], the energy change produced by one harmonic

Xs=s 1J.(se,), escosbunt) of effective electric fieldes=2a,wixs? is given
(1—e?)12 (3 by
Ys=| =<5 |Is(s&n),
° Séh ° 2mBen3AL (SKeg)sin(se), 7)
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where k= wp/we, W= ne‘3, and ¢ is the phase of the

heavy particlewpt, at the moment, when the electron is at
a perihelion. The numerical fact@ takes into account that

the y4 harmonics also contribute to the energy change. For

the circular casexs=ys, this factor is [1+13/(2n3)
+1.09(2wp) Y4 ] [4,7]. For linear polarizationy,=0 and
B=1, while in the general casg~1.5-2.

The contribution of all harmonics to the energy change is 21" 0.0 igg

then given by ZrﬁEseSnﬁAgK(s;cee)sin(s¢), which leads to

AEH(§)=4mBanwing 2, SA(se)AL(ske)sin(se).
®)

For a noninteger argumesk, the functionA, (ske,) is the
first derivative of the Anger function

A(X)= %J_ﬁ sin(v&é—xsiné)sing d¢; (9)

A,(X) coincides with the Bessel functiah,(x), whenv is
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FIG. 1. Plot of the functiong(¢) in (10). The inner heavy
particle is bound to a Kepler orbit with parameteag=0.002,
wn,=4, and[,=0.7. The initial conditions for the electron are
n.=1 andl.,=0.5. Dots are numerical data and the full line is the

an integer. From the asymptotic exponential decrease dheoretical curve8) with 3=1.8.

Bessel functions, it follows that only a finite number of terms

significantly contribute to the sur8), namely, those with

S<Sy,in Wheres,;, is equal to the minimum of the two values

s~3(n,/1y)2 ands~3[(«ny)/l]>. The latter cutoff makes
the sum effectively finite even in the cake=0 (linear mo-

Another interesting point is that, even when the frequency
ratio k<1, the functiong(¢) approximately retains the same
form. The physical reason might be that the inner particle
generates high harmonics witk,~3(l,/n;) "3 so that
shw, can be comparable to or even larger than In this

tion), which corresponds to an infinitely strong electric field. sense the situation is different from the case of monochro-
Due to that, even an infinitely strong electric field will not matic electric field where the conditioe= wn3<1 implies

lead to immediate ionization.
As we have seen, the energy chari§edepends on the

regular motion. In the present case the motion of the outer
electron can be chaotic evenxt<1. In other words, due to

phase¢ of the inner particle at the moment when the elec-the generation of high harmonics, the Born-Oppenheimer ap-
tron passes near a perihelion. The phase change between tpmximation may be invalid even when the frequency of the
consecutive passages is given by the Kepler motion and tHeeavy particle motion is much less than the electron fre-

electron’s dynamics can be described by the planetary magjuency. An example of the kick function far<1 is shown

N=N-+kg(s),
_ _ (10)
b=+ on(—2mwpN) 32

whereN=E/wn=—(2n20y) "1, k=2.6ew;, **=2.6a 01"
andg(¢)=AEq(¢)/(kwy). Herek has been defined in anal-

ogy with the problem of the hydrogen atom in a linearly

polarized microwave field with amplitude= ahwﬁ [7]. In
order to check the validity of the planetary mé&p0) we
numerically integrated the Hamiltoniadmh) in which we fixed

the motion of the inner heavy particle on the Kepler orbit

with a given a,w,. By computing the electron energy
changeAE, as a function of the different phases of the heavy
particle, taken at moments when the electron is at the peri- w

helion, we determined the functia{¢), which is presented
in Fig. 1. It would be difficult to give a closed analytical
expression for the functiog(¢). However, the theoretical
expression(8) with 8=1.8, given by the full line, is in fairly
good agreement with numerical data for 1. The important
feature is that the functiog(¢) is quite different from the

sine function and has a pronounced spiked shape. We would 3 2 -1
also like to mention that this shape is similar to the kick

function found in[9] for the dynamics of the Halley comet
under the influence of Jupiter.

in Fig. 2. While the shape of theoretical curve given(By
(10) is qualitatively similar to the numerically foungi( ¢),
further analytical analysis should be done to understand the
gquantitative difference between theory and numerics in the
regimex<<1.

For the particular case of circular motion of the inner
particle the functiorg has a sine shap&(¢)= Bsing]. In
this case the situation is similar to the microwave ionization
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FIG. 2. Same as Fig. 1, with,=0.1 andB=1.8.
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FIG. 4. Plot of the functiong(¢) for the full motion in the
helium atom(1). Initial conditions for the heavy particle of mass
0.8 L . . . . . . M=2000 aren,=1 andl,/n,=0.975. The initial conditions for
1 2 3 the electron aren,=6 andl./n,=0.75. Dots are numerical data
and the full line is the theoretical cury8) with g=1.8.

.o

_FIG. 3. Snapshot of the phase space for the planetary(@@p  gmple  eccentricity,,, leads to a slow variation of the kick
with the same parameters as in Fig. 1. Six orbits with differenty,, tion g (). On the other hand, since these variations are
initial energies are shown. slow compared to the frequency of the inner particle motion,
they will not qualitatively modify the description of energy
excitation given by the planetary map. A realistic example
Ror two-particle motion in the HamiltoniaflL), which can be

of excited states of hydrogen atdm| and to the autoioniz-
ation of molecular Rydberg states due to coupling betwee

the rotthatlonal andftft}:a elclact:on’s E‘OUM]' In?ee?}, mttr?ls | described by the mafi0), is shown in Fig. 4. Here only the
case ne energy ol the electron changes only when the €lefs,, o harmonicss [see(8)] contribute to the kick function

tron passes near the perihelion and this change is given b PR
the functiong(¢). As is well known[4,7], the border for the gY( ¢) and the map is similar to the Kepler map. The absence

- . o : ._of high harmonics in the functiog(¢) is due to the rela-
transition t% c5haot|c mquon is determined by the Condltlontively high value of the ratid,,/ny,. For lower values of this
K=6mBkwn2>1, that is,

ratio higher harmonics become more important, leading to a
spiked shape fog(¢). In this case, however, a numerical

1 ; S - .
2 evaluation of the functiog is more difficult to obtain due to
LWL > =71, 11 ) i :
e 508a ‘wj; ) the precession of the orbit of the heavy particle produced by

the interaction with the electrdihis effect can be seen even

where a,=n2. Above the chaos bordefll) the phased  in Fig. 4 as a slow phase shift of the kick functigae)]. In
becomes random and diffusive ionization of the electronthis sense the one-dimensional planetary map gives an ap-
takes place with a diffusion ratd =AN%/At=k?(g?()). proximate description of the energy exchange between the
The ionization time can be estimated qu/D, where  particles and neglects the slow phase shift, which does not,
N,=E,/wy, is determined by the enerq)E,=(2n§)*1] re- hovx_/evgr, qualitatively change the dynamics of the electron
quired to ionize the electron from its initial statg. When  €Xcitation in energy.
eccentricityey, is not small, the chaos border can be signifi-
cantly decreased by the generation of high hr_:\rmonics ar_ld by lIl. OUTER HEAVY PARTICLE
the form of the functiong(¢). A more detailed analysis
should be carried out to derive analytical estimates for the Let us now consider the case in which the heavy particle
chaos border in such a case. An example of the phase plaiethe outermost one and stays sufficiently far from the inner
corresponding to the planetary map is shown in Fig. 3. electron. In such a situatiorr ;,=13/(2M)>nZ and

So far, the derivation of the planetary map has been obk=w./w,>1. Due to these two conditions
tained by assigning the motion of the inner particle. The(l,/n,)>(3/k)*3, so that the energy change of the heavy
physical ground for this approximation lies in the fact thatparticle after one orbital period is exponentially small.
when the mass of the inner particle is very large, its interacTherefore, it may seem, at first glance, that no energy ex-
tion with the light one can only lead to small changes in thechange should take place between the heavy particle and the
parameters of the inner orbit. The frequency of these variaelectron. The possibility arises, however, for an interesting
tions will be small in comparison to the frequency of the phenomenon; indeed the heavy particle induces an approxi-
heavy particle motion and therefore there will be no qualita-mately static, slowly varying field, near the center of the
tive changes on the electron dynamics. However, an expliciatom, where the electron moves. This quasistatic field will
numerical derivation of the map for two interacting particleslead to a precession of the electron orbit to a Stark frequency
is quite difficult, the reason being that the aforementionednuch smaller than that of electron motion, but comparable to
slow variation of the parameters of inner motion, for ex-the frequency of the heavy particle. As a consequence, this
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slow precession of the electron orbit can lead to an effective 0.0001

exchange of energy among the inner and the outer particle.  ;q4008 @g
The conditions under which this exchange can take place can 000006 "*»9%8
be derived as follows. The field strength induced by the ’ %ozg
heavy particle at the center of the atom is approximately 0.00004 ?gfﬁm
Estarc=ay, 2 and the Stark frequency of electron’s orbit pre- 0.00002 %ﬁ e
cession i&usra,kmesmk\/a_e; in order to have an effective en- glf 0o *fﬁgﬁ. <,
ergy exchange between the two particles it is necessary that o, %% '%.\
wsiEon~ (aiM) ~Y2 This leads to oooons | B8,
’ %
%
% <M. (12) -0.00006 S
ae -0.00008 %
Under this condition the energy of the heavy particle only 000017 2 1 0 i 2 3
changes near the perihelion and the value of the change can A A

be estimated as if an effective external monochromatic field FIG. 5. Plot of AE the relati .. Th
was applied with frequencyw~wsay and intensity G- 5 Plot ofAE, versus the relative angle=An—Ac. The

2 . . . ]Jnmal parameters for the outermost heavy partickhose mass is
€= 8,5, The latter estimate is due to the precession o

. . . . M = 2000) arenh=4\/ﬁ andly,/n,=—0.95. The innermost elec-
the dipole moment of the inner partiale- a, with frequency tron starts withn,=1 andl./n,=0.7. Two sets of data are shown,

Wstark- . . . .. one for the initial anglep=0 (triangleg, the other foro=m=
In analogy with the hydrogen atom in a microwave f'eldécircles).

it is convenient to introduce the rescaled frequency and fiel

; . B N v a2

|nten23|ty wo_az’Stafk/whN afanM and € =acwsail  he ellipse are of comparable size. In the general case the
(1/ag)~(ae/an)”. Here we implicitly assumed that the ec- 41y r, at the perihelion should appear in it rather than
centricity of heavy particle,, is small so that both axes of a,, hence the minimal distance of the heavy particle from

the elliptic orbit have approximately the same sige Then,  he center cannot indefinitely grow without eventually lead-
according to[7], the relative energy variation of the heavy jng the system below the chaos border. Therefore, only one

particle is possible way for ionization is left, consisting in an indefinite
AE, €0 a,\%® 1 increase of the mgxirr_lal distana‘h\_ while keeping the dis-
E—~ahAEh~2.6—2,§~ % W (13) tance at the perihelion approximately constant, so that
h @o ah eh— 1.

The estimate for the chaos border can be obtained from the
o 1/3 :
standard conditiorz,>1/50w; ”° and gives IV. ORBITS OF COMPARABLE SIZE

8e 1 Finally, we will consider the case when the sizes of both
a, 6M orbits are comparable. Two different kinds of motion may

The derivati f th licit in thi : ite diffi occur in this case. The first possibility is that the motion of
I? Herlva lon 31 € exp ICIh map mf thIS (r:]ase IS qut'.el ! flt- the two particles is correlated in such a way that even if the
cull. However, the energy change of the heavy particle alteg;, o5 o the orbits are approximately the same, close colli-

one orbital period can be expressed b_y some func_:lt((m sions between them nevertheless never occur. An example of
of the anglep=\},— \ . between the main ellipse axis of the

heavy and light particles. An example of this function, ob-
tained by numerically solving systeft), is shown in Fig. 5.
The amplitudeA E,, of the energy variation is approximately
104, in satisfactory agreement with the estimatkd),
which gives an amplitude approximately equal tg 50 °.
The variation of anglep is finite due to the finite cone of s
permitted angle of precession of the electron. In Fig. 6 we
illustrate the precession of the electron orbit during a period
of the outer heavy particle.

In deducting the estimatél4) we assumed that the pre-
cession frequency remains constant during an orbital period -
of the heavy particle; this is approximately true only when
the heavy particle eccentricity is sufficiently small. Indeed,
when the orbit is noncircular, the induced static field in the
center decreases with the increasing of the particle distance
r, and reaches its maximal value at the perihelion. Therefore ™ % 4 2 0 2 4 6 3
the precession frequency also changes in a complicated way.

Because of this we believe that the real chaos border lies FIG. 6. Precession of the inner electron during a period of the
well below the estimated bordét4). The estimatél14) was  outermost heavy particle. Hene,/\M =2, |,/n,=0.95, n,=1,
obtained under the additional assumption that the two axes ¢§/n.=0.75, andM =2000.
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FIG. 7. (a) Stable and correlated motion of the heavy and light
particles. In this case particles never collide. Here
nn/\VM=n=1,1,/n,= —0.95,1,=0.30, andV = 2000.(b) Same
as(a), but for a longer time.

this kind of motion is shown in Fig. 7: the electron is re-
pelled by the heavy particle and electronic orbits preces
following the slow motion of heavy particle thus avoiding

collisions. Such a configuration remains stable during many

-4 -3 -2 -1 0 1 2 3 4

FIG. 8. Irregular, nonionizing, motion of both particles. Here
n,/YM=0.7 andl, /n,= —0.95, n,=1, | ,=0.10, andV = 2000.

both particles with negative charge are located on the same
side of the nucleus. The simplest orbit in this kind of con-
figuration corresponds to one-dimensional motion of both
particles on a line. In this case the fast moving electron re-
pels the heavy particle and creates a classically stable situa-
tion [11]. Other stable orbits exist in which small frequency
oscillations take place in the direction perpendicular to the
line. These oscillations share similar properties with the one-
dimensional case, and since in this case the outer particle is
heavy, such quasi-one-dimensional configurations are even
more stable than in the helium atom. In the opposite case
when the heavy patrticle is inside, the ratio of two frequencies
wlwp~+M/14 is comparable to one and the question of
stability of this configuration requires further investigations.
When the motion is not correlated and collisions between
particles can take place, then the heavy particle intersects the
electronic “cloud” and after each collision the change in
velocity of the heavy particle id\v,~v /M, so that the
relative energy change isAE,/E,~Av,/v,. Since
vi~vZ it follows that after each collision
3Eh/Eh~1/\/M. The electron motion is much faster than
the heavy particle motion and therefore the number of colli-

orbital periods of the heavy particle and it is quite possible

that both particles will never ionize. For certain initial con-
ditions this type of motion looks integrable, while in other

cases a more complicated motion without ionization is seen,

which is probably chaotic, even in the absence of direct col
lisions (Fig. 8. When collisions become closer the electron

transfers energy to the heavy particle, leading to its ioniza-

tion (Fig. 9).

We found numerically that the stable configurations de-
scribed above exist only when the orbital momentum of the

heavy particle is close to its maximal valug,€ny). As
soon as the ratid, /n;, decreasegless than approximately
0.8) this synchronized motion does not occur any more an
one of the particles is eventually ioniz€ig. 9). It is quite

remarkable that in real laboratory experiments stable con-

8

d

figurations of the hadronic atom were indeed observed only _10 5 0 5 10

with | h==Np [1]

Another configuration with correlated motion corresponds FIG. 9. Example of unstable motion. Hene,/M=1.4,

to the casdalso considered in the helium atdmO]) when

Ihw/np=-0.71,n.,=1,1,=0.7, andM =2000.
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sions./ at each passage is approximately equal/ﬁ_ As quence of kicks will be irregular so that quantum interfer-
a consequence, the relative energy change for the heavy p&nce effects will be destroyed and quantum diffusion will be
ticle after one orbital period is./ 7M. lonization will occur ~ close to classical. It would be interesting to carry out explicit

quires M orbital periods of the heavy particle. Therefore Of the properties of quantum motion in the different regions
long-lived states can exist even when direct collisions bediscussed above and for a deeper understanding of manifes-
tween the light and the heavy particle take place. In thd@tions of classical chaos in quantum dynamics.

above estimate we refer to the case in which the electron and !N €losing this paper we would like to mention another

the heavy particle orbits have comparable size hpdn, ~ Ntrguing question related to the electron scattering on the

andl.~n.. In this case the ratio between the velocities oflt@dronic ion(a similar problem arises for the scattering of an
e e-

et partces, o o e rder of LW and nereore SC17 0 10BN molecir bieuch & process o
the slow motion of the heavy particle does not strongly ef- P

fects the dynamics of the light electron. cess dls_,cussed above and is described by_the planetary map.
The estimate for the absorption cross section of the electron

on such an ion can be obtained in a way similar to the scat-

V. CONCLUSION tering process of electrons on protons in the presence of a

The above picture is related to the classical dynamics oficrowave field 12]. Indeed, in this case the electron can be
the system. The analysis of the dynamics in the classical cag@ptured only if its orbital momenturiy<(3/wy) " and its
allows us to understand also the basic features of quantu@nergy isEe<kwp=~anwp>. Sincelo~pv,, wherep is the
motion. Indeed the planetary map description can be quarimpact parameter of the electron and its asymptotic ve-
tized in the same way as for the Kepler niap. As a con- locity at infinite distance, we obtain for the absorption cross
sequence, quantum effects can lead to localization of classsection
cal diffusion, with a localization length ,~k*(g®). When )
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this localization length is smaller than the number of “pho- O~ TP —~ > ~Ma2 (15)
tons” N, =(2n2wy,) ! required for ionization, then classical a v, w?E, anw? h-
ionization is suppressed and the quantum atom has a very
long lifetime. In the opposite case, whe@> N,, diffusive  As can be seen the cross secti@b) is much larger than the
ionization takes place and approximately follows the classimere geometrical cross section-aZ . Therefore the process
cal description. of creation of neutral excited atoms can be very effective. It

A more unusual situation arises when the heavy particle iss possible that such an increase of the cross section can be
the outermost one. Here the frequency of precession of thimteresting for the process of muon catalysis. Finally, our
inner electron, which produces the kick functiffp) for the  analysis of different dynamical regimes in hadronic atom can
heavy particle, is not constant and depends on the motion dfe useful for a better understanding of recent experimental
the heavy particle itself. It is therefore likely that the se-investigationd13].
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