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Universal Diffusion near the Golden Chaos Border
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We study the local diffusion rateD in a Chirikov standard map near the critical golden curve.
Numerical simulations confirm the predicted exponenta ­ 5 for the power law decay ofD as
approaching the golden curve via principal resonances with periodqn sD , 1yqa

n d. The universal
self-similar structure of diffusion between principal resonances is demonstrated, and it is shown th
other resonances may also play an important role. [S0031-9007(96)00063-4]

PACS numbers: 05.45.+b
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During the last few years intensive investigations ha
allowed one to understand the structure of critical inva
ant curves at the chaos border in Hamiltonian dyna
cal systems with divided phase space [1,2]. Usually
analysis is carried out for two-dimensional (2D) area p
serving maps, the paradigm being the Chirikov stand
map [3]. The critical invariant curve is characterized
the rotation number and its continued fraction expansi
It has been shown that the small scale structure nea
variant curves with the same tail in this expansion is u
versal for all smooth Hamiltonians with two degrees
freedom and for 2D maps [1,2,4]. Among all invaria
curves, better studied are those with the golden rota
numberrg ­ s

p
5 2 1dy2, whose expansion is a series

1’s. This rg is the most irrational number, and therefo
it is believed that invariant curves with golden tails a
locally the most robust ones. The structure of the cr
cal golden curve has been studied by means of the re
malization group approach, and it has been shown
the phase space structure is self-similar and universa
small scales.

Different scaling exponents have been found in t
critical regime, and they were successfully used to
termine the diffusion rate through the destroyed invari
curve called a cantorus [3,5]. However, no flux pas
through the golden curve at the critical value of the p
turbation parameterK ­ Kg. In this case the trajectory
has only a local diffusion rateD, which depends on its
distanceDrn to the golden curve. This diffusion cha
acterizes the motion of a particle in the vicinity of th
invariant curverg at different levelsn of convergents
rn ­ pnyqn of the continued fraction expansion ofrg

sr1 ­ 1y1, r2 ­ 1y2, r3 ­ 2y3, . . .d. One can expect a
power law dependence ofD on the resonant approximan
qn, namely,D , q2a

n . Chirikov gave a simple argumen
for a ­ 5 [6]. According to him,D , sDrnd2ytn, where
Drn ­ jrg 2 rnj , q22

n andtn is the typical inverse fre-
quencyVn of small oscillations around the principal res
nanceqn. Then,Vn , qnDvn, whereDvn is the width
of resonanceqn [3]. In the critical case the Chirikov over
lap criterion [3] impliesDvn , Drn, which gives [6]

D ø AD0yq5
n , sDrnd5y2 , sdyndn , (1)
0031-9007y96y76(18)y3300(4)$10.00
ve
ri-
i-

he
e-
rd
y
n.
in-
i-

of
t

ion
f
e
re
ti-
or-

hat
on

is
e-
nt
es
r-

-
e

t
t

-

whereD0 ­ K2y8p2 is the quasilinear diffusion rate an
dyn ­ jyn 2 ygj is the distance of unstable periodic orb
yn with rotation numberrn to the golden curveyg along
the symmetry line. The exponentn ­ 2.14699 . . . can be
determined from the exponents for dyn , 1yqs

n found
in [2] sn ­ 5ysd.

The fast decay of the diffusion rate near the chaos b
der rg means that a diffusing particle will never reach th
border itself. This slow diffusion gives a long sticking tra
jectory around stable islands on different renormalizati
levels. As a result, the statistics of Poincaré recurren
P (integrated probability to return into a given region a
ter a time larger thant) decays witht asPstd , 1ytp .
Such decay was first observed in [7], where the av
age value of the exponentp ø 1.5 has been found. Fur-
ther investigations have shown that the power law dec
of P is a generic property of Hamiltonian systems wi
divided phase space [8–10]. However, according to n
merical results, the power itself is not universal, var
ing in the range1 , p , 2. Moreover, different maps
with a golden chaos boundary give differentp values
[9], which seems to be in contradiction with the univers
self-similar structure of phase space near the golden b
der. Indeed, renormalization arguments givep ­ 3 [11],
which is in sharp contradiction with numerical result
One of the possible reasons for the above contradictio
the sticking of particles near stable islandsbetweenprinci-
pal resonancesqn. However, attempts to take into accoun
these intermediate resonances gavep ­ 2 [11], which is
still too large compared to the numerical results for t
golden border1 , p , 1.35 [9]. Therefore the problem
of Poincaré recurrences remains unsolved, and more
tailed investigations of the phase space structure near
golden border should be performed (see also [12]). O
of the reasons why the properties ofPstd are so impor-
tant is that the correlation function of dynamical variabl
Cstd and the probabilitymstd staying in a given region
for a timet . t are related toPstd,

Cstd , mstd , tPstdyktl , 1ytp21, (2)

wherektl is the average return time. The above relatio
follow from the ergodicity of motion on the chaotic
component of the phase space [7–9]. The decay
© 1996 The American Physical Society
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correlations with powerpc ­ p 2 1 , 1 can lead to
a divergence of global diffusion rate and to stro
fluctuations in divided phase space.

In this Letter we investigate the behavior of local diff
sion rateD near the critical golden curve. Our first aim
was to verify Chirikov’s heuristic prediction (1) and to a
alyze the structure ofD at different renormalization levels
As a model we have chosen the Chirikov standard ma

ȳ ­ y 2 Kys2pd sins2pxd, x̄ ­ x 1 ȳ mod1 (3)

with a perturbation parameter corresponding to the c
cal golden curveK ­ Kg ­ 0.97163540631 . . . . To mea-
sure the local diffusion rateD ­ sDyd2yDt we apply the
efficient method used for the investigations of Arno
and modulational diffusion in Ref. [13] (t is the num-
ber of iterations). This method allows us to measu
very small diffusion rates (down to computer noise lev
with a relatively small number of iterations. Using th
method, we computeD at different resonant Fibonacc
approximantsrn ­ pnyqn of the critical curverg. We
use fromNp ­ 10 to Np ­ 100 trajectories near unsta
ble periodic orbits of periodqn (these points had been de
termined by MacKay [2]). Each trajectory is integrate
for about T ­ 1000qn iterations. The total intervalT
is divided intoNw ­ 10 windows, where the averagey
displacement was computed with the smoothing funct
f ­ sin2bsptNwyT d. Usually we takeb ­ 4, 6. Such
smoothing allows us to suppress regular oscillations b
factor ~ sNwyT d4b13 [13]. To control the accuracy o
our numerical computation ofD, we determineD also
near stable periodic orbits in the center of resonanceqn,
where our method gives a valueD , 10234, which corre-
sponds to the level of computer round-off error in doub
precision.

Our results in Fig. 1 confirm the theoretical predictio
(1) for the variation ofD over more than 20 orders o
magnitude. The numerical fit givesa ­ 4.99 6 0.02
and A ­ 0.0066, indicating no visible deviations from
the theory (1). We attribute the fluctuations at smallqn

values to the fact that, for a large number of iteratio
trajectories can exit from the chaotic layer correspond
to the initial qn. This effect disappears for largerqn,
where the local diffusion rate is sufficiently small, o
for a shorter number of iterations. Let us note th
the numerical value ofA is surprisingly small. Our
explanation for this fact is the following. Accordin
to [3] the action change after a half period of rotati
in the chaotic separatrix layer is quite small,Dy ,
4l2 exps2ply2d (here l ­ 2p is the frequency ratio).
This gives an order of magnitude estimate forA ­
Dsqn ­ 1dyD0 , sDyd2y2D0 , 0.003 and explains its
small value. A more accurate estimate ofA requires
taking into account higher orders of perturbation inK .
The measured diffusion rate in the chaotic compon
is well separated from diffusion in the stable regio
produced by numerical round-off errors (Fig. 1).
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FIG. 1. Local diffusion rateD near principal resonance con
vergentsrn ­ pnyqn to rg ­ s51y2 2 1dy2, D0 ­ K2ys8p2d;
chaotic component near unstable points with (a)T ­ 103qn,
Nw ­ 10, Np ­ 10 s3d; (b) T ­ 104qn, Nw ­ 100, Np ­
100 ssd; (c) regular component near stable points withT ­
103qn, Nw ­ 10, Np ­ 10 (triangles). The straight line shows
the theoretical slopea ­ 5.

The above result shows the global structure of t
diffusion rate D while approaching the chaos borde
via resonant approximantsqn. However, an interesting
question concerns the behavior ofD between rn ­
pnyqn and rn11. The comparison ofD on these scales
should reflect the self-similar structure of phase spa
on different renormalization levels. To check this se
similarity we measureD on two symmetry linesx ­
0, 0.5. The symmetry linex ­ 0.5 crosses the main
part of the chaotic layers and contains mainly unsta
points, while the other linex ­ 0 passes mainly through
stable islands. The known structure of periodic orbits
symmetry lines of map (3) [2] allows us to find the bas
renormalization intervals on stablex ­ 0 and unstable
x ­ 0.5 lines.

For the unstable line the first renormalization lev
interval is Dy1 ­ jy1 2 y7j, where yn is the y value
of the unstable periodic orbit with rotation numberrn

on the line x ­ 0.5. The next intervalDy2 ­ jy4 2

y10j lies on the other side of the golden curve. Th
mth interval isDym ­ jy3m22 2 y3m14j. This m series
selects the subsequentn values which we will denote
by nm ­ 3m 2 2. Intervals with odd values ofm lie
above the invariant curverg and those with evenm
lie below. The period 6 in the renormalization levels
related to the periodicity 6 of unstable fixed points o
the symmetry line as it follows from [1,2]. The self
similarity of the phase space implies that the depende
of diffusion D on the position insidemth interval should
be approximately the same as insm 1 1dth interval, after
q5

nm
rescaling. At largerm values the self-similarity is

expected to become better and better. To numerica
check this self-similarity we computed the diffusion ra
at 320 homogeneously distributed points in the interv
3301
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Dym for m ­ 1, . . . , 6. To compare different intervals we
rescale the diffusion rate definingDR ­ q5

nm12
Dm, where

Dm is the diffusion atmth level. The position inside each
interval is denoted byDyR ­ js y 2 y3m22djyDym for y
betweeny3m22 andy3m14 s0 # DyR # 1d.

The comparison of renormalized diffusion rateDR

on two levelsm ­ 4 and m ­ 6 on the unstable line
is shown in Fig. 2. The diffusion rate is self-simila
in agreement with the universal phase space struct
near the golden curve. The minimal diffusion rateDR

on levels m ­ 4, 6 is determined by computer noise
and is different on the two levels due to the differe
normalization factors. The rare fluctuations in the upp
diffusion plateau are presumably due to exits of trajecto
from the initial chaotic layer. Points with a high diffusion
rate have a chaotic component, while those with minim
diffusion correspond to trajectories in stable islands. T
self-similarity was also observed at otherm levels, both
when intervals were on the same side or on opposite si
of the golden curve. This self-similarity becomes bett
with the growth ofm. The sharp separation between tw
levels of diffusion allows us to determine the leading res
nances in each renormalization interval. The biggest g
in the diffusion is for periodic orbit (labeledb in Fig. 2)
with rotation numberrb ­ fh111jm21, 1, 2, 1g, where the
triplet of 1’s in curly brackets is repeatedm 2 1 times.
This rotation number is not from the series of princip
resonances given by the continued fraction expansion org

and labeled byi in Fig. 2 s ri ­ fh111jm21, 1, 1, 1, 1, 1gd.
While the resonancerb is significantly larger than
the principal oneri, there are also other resonance
which are of comparable or smaller size thanri :
rc ­ fh111jm21, 1, 2, 1, 1, 1, 1g, rd ­ fh111jm21, 1, 2, 2, 2,
1g, re ­ fh111jm21, 1, 2, 2, 1g, rg ­ fh111jm21, 1, 1, 1, 3,

FIG. 2. Renormalized diffusion rateDRyD0 vs rescaled po-
sition DyR in the mth level interval of the renormalization
scheme on the unstable symmetry linex ­ 0.5; m ­ 4 (full
curve) andm ­ 6 (dashed line with crosses). The letters ind
cate the drops of diffusionDR (see text). Other parameters ar
as in Fig. 1(a).
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2, 1g, rh ­ fh111jm21, 1, 1, 1, 22, 1, 1, 1g, rl ­ fh111jm21,
1, 1, 1, 1, 1, 2, 1, 1g. It is interesting to remark that most of
these rotation numbers have continued fraction expansi
containing mainly 1’s and 2’s, which is in qualitative
agreement with the conjecture made in [9].

In Fig. 2 we also see other types of resonances, nam
ra ­ payqa ­ fh111jm21, 1, 4, 1g and rf ­ pfyqf ­
fh111jm21, 1, 1, 1, 3, 1g. However, they have a different
structure than previous ones, displaying two and thr
intersections with unstable linex ­ 0.5 giving rise to
doublesad and triples fd drops in diffusion. Indeed, the
periodic orbit inside resonancera s rfd has period2qa

s3qfd. These orbits are not present in the limitK ! 0,
and correspond to a new chain of islands in the chao
layer around resonancesra s rfd. An important conse-
quence of the analysis of the structure of these resonan
is that, in spite of the fact that the renormalization grou
describes quite well the convergence to golden curve,
see that, on each renormalization level, resonances o
than those of the main series ofrg, and even some which
are not present atK ­ 0, occupy a sizable part of phase
space. The existence of such nonstandard resonan
might explain the lack of universality of the exponentp in
(2) and the numerical value ofp significantly less than2.
Indeed, very long Poincaré recurrences can be origina
by sticking of orbits not only near the main resonanc
rn but also around these nonstandard resonances and
chains of islands around them. The general descript
of the phase-space structure should take into account
presence of these resonances. An interesting questio
which is the strongest cantorus on a given renormalizati
level which will determine the transition time betwee
different renormalization levels. According to Fig. 2
all drops in D are associated with periodic orbits an
not to invariant curves, which is in agreement with th
conjecture thatrg is the last invariant curve.

We have also studied local diffusion on the stable lin
x ­ 0.0 (Fig. 3). The size of the renormalization interva
n is defined asDyn ­ jyn 2 yn12j and the variable
DyR ­ js y 2 yndjyDyn. The structure of diffusion is
also self-similar. As expected, the main part of th
renormalization interval is occupied by stable island
The largest resonances with rotation numberr0

a ­ fh1jng
andr

0
i ­ fh1jn, 1, 1g correspond to the main series ofrg.

There are also other resonances:r0
c ­ fh1jn, 3, 1g, r

0
d ­

fh1jn, 3, 1, 1g, r0
e ­ fh1jn, 2, 1g, r

0
f ­ fh1jn, 2, 1, 1, 1g,

r0
g ­ fh1jn, 2, 1, 1g, r

0
h ­ fh1jn, 2, 2, 1g. Again, the

biggest resonances have only 1’s and 2’s in the continu
fraction. Some of the resonances seen onx ­ 0.0 are
also observed onx ­ 0.5, and one can easily establish
correspondence. The resonancer

0
b has the same rotation

number asr0
a, but it corresponds to a different orbit. This

orbit, which does not exist forK ­ 0, corresponds to a
chain of nine islands around the golden resonancer0

a,
and its rotation number around the main sequence ch
is 1y9.
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FIG. 3. Renormalized diffusion rateDRyD0 vs rescaled posi-
tion DyR in thenth level interval of the renormalization schem
on the stable symmetry linex ­ 0.0; n ­ 8 (full curve) and
n ­ 10 (dashed line with crosses). The letters indicate
drops of diffusionDR (see text);T ­ 2 3 104qn, Nw ­ 10,
Np ­ 10.

The above analysis allows us to understand so
important properties of the local diffusion rateD near the
critical invariant curverg. The self-similar structure o
D also shows the importance of nonstandard resonan
different from principal approximantsrn ­ pnyqn of rg.
These nonstandard resonances are also self-simila
different renormalization levels. However, their sizes
phase space are comparable or sometimes even la
than those of principal resonances. Therefore trajecto
can be trapped for a long time around these nonstan
resonances and diffuse very slowly to internal cha
boundaries surrounding islands of these resonances. S
the sizes of nonstandard and principal resonances
comparable, the contribution of internal chaos bounda
to Poincaré recurrences may be relevant, and thus
decay ofPstd may be nonuniversal. The determinatio
of the asymptotic behavior ofPstd also requires a
better understanding of transition rates between differ
renormalization levels, which are not directly related
local diffusion and should be studied in more deta
e
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Finally, let us mention that forDK ­ K 2 Kg . 0
the scales withqn , qcr , 1yDK are unaffected [6,9]
and the diffusion on them is still given by (1). Fo
scales withqn . qcr the diffusion rate is approximately
D , AD0yq5

cr . The average diffusion rate is1ykDl ,R1
0 drnyDn , r

23y2
cr , DK3. The scaling power is in

agreement with the result in [5] with better than1%
accuracy.
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