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Universal Diffusion near the Golden Chaos Border

S. Ruffo* and D. L. Shepelyansky

Laboratoire de Physique Quantique, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse, France
(Received 6 July 1995

We study the local diffusion rat® in a Chirikov standard map near the critical golden curve.
Numerical simulations confirm the predicted exponent=5 for the power law decay oD as
approaching the golden curve via principal resonances with perjo@D ~ 1/¢%). The universal
self-similar structure of diffusion between principal resonances is demonstrated, and it is shown that
other resonances may also play an important role. [S0031-9007(96)00063-4]

PACS numbers: 05.45.+b

During the last few years intensive investigations havevhereD, = K?/87? is the quasilinear diffusion rate and
allowed one to understand the structure of critical invari-6y, = |y, — y,| is the distance of unstable periodic orbit
ant curves at the chaos border in Hamiltonian dynamiy, with rotation number, to the golden curve, along
cal systems with divided phase space [1,2]. Usually thehe symmetry line. The exponent= 2.14699... can be
analysis is carried out for two-dimensional (2D) area pre-determined from the exponent for 8y, ~ 1/¢Z found
serving maps, the paradigm being the Chirikov standarih [2] (v = 5/0).
map [3]. The critical invariant curve is characterized by The fast decay of the diffusion rate near the chaos bor-
the rotation number and its continued fraction expansionder r, means that a diffusing particle will never reach the
It has been shown that the small scale structure near iorder itself. This slow diffusion gives a long sticking tra-
variant curves with the same tail in this expansion is unijectory around stable islands on different renormalization
versal for all smooth Hamiltonians with two degrees oflevels. As a result, the statistics of Poincaré recurrences
freedom and for 2D maps [1,2,4]. Among all invariant P (integrated probability to return into a given region af-
curves, better studied are those with the golden rotatioter a time larger tham) decays withr asP(7) ~ 1/77.
numberr, = (+/5 — 1)/2, whose expansion is a series of Such decay was first observed in [7], where the aver-
1's. Thisr, is the most irrational number, and therefore age value of the exponept =~ 1.5 has been found. Fur-
it is believed that invariant curves with golden tails arether investigations have shown that the power law decay
locally the most robust ones. The structure of the criti-of P is a generic property of Hamiltonian systems with
cal golden curve has been studied by means of the renodivided phase space [8—10]. However, according to nu-
malization group approach, and it has been shown thaherical results, the power itself is not universal, vary-
the phase space structure is self-similar and universal ang in the rangel < p < 2. Moreover, different maps
small scales. with a golden chaos boundary give differept values

Different scaling exponents have been found in thig9], which seems to be in contradiction with the universal
critical regime, and they were successfully used to deself-similar structure of phase space near the golden bor-
termine the diffusion rate through the destroyed invariantler. Indeed, renormalization arguments give= 3 [11],
curve called a cantorus [3,5]. However, no flux passesvhich is in sharp contradiction with numerical results.
through the golden curve at the critical value of the per-One of the possible reasons for the above contradiction is
turbation parametek = K,. In this case the trajectory the sticking of particles near stable islarmgweerprinci-
has only a local diffusion rat®, which depends on its pal resonanceg,. However, attempts to take into account
distanceAr, to the golden curve. This diffusion char- these intermediate resonances gave: 2 [11], which is
acterizes the motion of a particle in the vicinity of the still too large compared to the numerical results for the
invariant curver, at different levelsn of convergents golden borded < p < 1.35[9]. Therefore the problem
rn = pn/qn Of the continued fraction expansion @f  of Poincaré recurrences remains unsolved, and more de-
(ri=1/1,rn,=1/2,r3 = 2/3,...). One can expect a tailed investigations of the phase space structure near the
power law dependence &f on the resonant approximant golden border should be performed (see also [12]). One
qn, Nnamely,D ~ ¢, ®. Chirikov gave a simple argument of the reasons why the properties Bfr) are so impor-
for « = 5[6]. According to him,D ~ (Ar,)*/t,, where tant is that the correlation function of dynamical variables
Ar, = |ry = ry|l ~ ¢, % andt, is the typical inverse fre- C(r) and the probabilityu(7) staying in a given region
guency(}, of small oscillations around the principal reso- for a timer > 7 are related taP(7),

nancegq,. Then,Q, ~ ¢,Aw,, whereAw, is the width - - - p—1
of resonance, [3]. In the critical case the Chirikov over- C_(T) w(7) TP(T)/<_T> L/ (2)_
lap criterion [3] impliesAw, ~ Ar,, which gives [6] where(7) is the average return time. The above relations
follow from the ergodicity of motion on the chaotic
D = ADy/q> ~ (Ar,)*"* ~ (8yn)", (1) component of the phase space [7—9]. The decay of
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correlations with powerp. = p — 1 <1 can lead to 0
a divergence of global diffusion rate and to strong
fluctuations in divided phase space.

In this Letter we investigate the behavior of local diffu-
sion rateD near the critical golden curve. Our first aim
was to verify Chirikov's heuristic prediction (1) and to an-
alyze the structure db at different renormalization levels.
As a model we have chosen the Chirikov standard map

y=y— K/Q2m)sin2mx), X =x+ 3y mod (3)

with a perturbation parameter corresponding to the criti-
cal golden curv& = K, = 0.97163540631.... To mea-
sure the local diffusion rat® = (Ay)?/At we apply the 0 1 R 3 4 5
efficient method used for the investigations of Arnold log qn
and modulational diffusion in Ref. [13]s (is the num- - o
ber of iterations). This method allows us to measurd /G- 1. Local diffusion rateD hear principal resonance con-
very small diffusion rates (down to computer noise level)'e"9eNs» = Pu/qn 10 rg = (572 = 1)/2, Do = K /(8737 )
chaotic component near unstable pomts with TaF 10 Gn»
with a relatively small number of iterations. Using this y " 19§, = 10 (x); (b) T = 10*g,, N, = 100, N, —
method, we computd at different resonant Fibonacci 100 (o) (C) regular component near stable points V\/]Ih:
approximantsr, = p,/q, of the critical curver,. We  10°g,, N,, = 10, N, = 10 (triangles). The straight line shows
use fromN, = 10 to N, = 100 trajectories near unsta- the theoretical sloper = 5.
ble periodic orbits of perloqn (these points had been de-
termined by MacKay [2]). Each trajectory is integrated The above result shows the global structure of the
for aboutT = 1000¢q, iterations. The total interval’  diffusion rate D while approaching the chaos border
is divided intoN,, = 10 windows, where the average via resonant approximanig,. However, an interesting
displacement was computed with the smoothing functiomuestion concerns the behavior @& betweenr, =
f = si?f(xtN,,/T). Usually we take8 = 4,6. Such  p,/q, andr,+;. The comparison oD on these scales
smoothing allows us to suppress regular oscillations by ahould reflect the self-similar structure of phase space
factor « (N,,/T)*#*3 [13]. To control the accuracy of on different renormalization levels. To check this self-
our numerical computation ab, we determineD also  similarity we measureD on two symmetry linesx =
near stable periodic orbits in the center of resonapge 0,0.5. The symmetry linex = 0.5 crosses the main
where our method gives a valie ~ 10734, which corre-  part of the chaotic layers and contains mainly unstable
sponds to the level of computer round-off error in doublepoints, while the other line = 0 passes mainly through
precision. stable islands. The known structure of periodic orbits on
Our results in Fig. 1 confirm the theoretical predictionsymmetry lines of map (3) [2] allows us to find the basic
(1) for the variation ofD over more than 20 orders of renormalization intervals on stable = 0 and unstable
magnitude. The numerical fit givea = 4.99 = 0.02 x = 0.5 lines.
and A = 0.0066, indicating no visible deviations from For the unstable line the first renormalization level
the theory (1). We attribute the fluctuations at smgll  interval is Ay, = |y; — y7|, where y, is the y value
values to the fact that, for a large number of iterationspf the unstable periodic orbit with rotation number
trajectories can exit from the chaotic layer correspondingn the line x = 0.5. The next intervalAy, = |ys —
to the initial g,. This effect disappears for larger,, yo| lies on the other side of the golden curve. The
where the local diffusion rate is sufficiently small, or mth interval isAy,, = |y3u—2 — Y3m+4l. This m series
for a shorter number of iterations. Let us note thatselects the subsequentvalues which we will denote
the numerical value ofA is surprisingly small. Our by n, = 3m — 2. Intervals with odd values oiz lie
explanation for this fact is the following. According above the invariant curve, and those with evenn
to [3] the action change after a half period of rotationlie below. The period 6 in the renormalization levels is
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in the chaotic separatrix layer is quite smally ~ related to the periodicity 6 of unstable fixed points on
4)?>exp(—mA/2) (here A = 27 is the frequency ratio). the symmetry line as it follows from [1,2]. The self-
This gives an order of magnitude estimate far=  similarity of the phase space implies that the dependence

D(g, = 1)/Dy ~ (Ay)?/2Dy ~ 0.003 and explains its of diffusion D on the position insidenth interval should
small value. A more accurate estimate #frequires be approximately the same as(in + 1)th interval, after
taking into account higher orders of perturbation&n q,51 rescaling. At largenn values the self-similarity is
The measured diffusion rate in the chaotic componenéxpected to become better and better. To numerically
is well separated from diffusion in the stable regionscheck this self-similarity we computed the diffusion rate
produced by numerical round-off errors (Fig. 1). at 320 homogeneously distributed points in the intervals
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Ay, form = 1,...,6. To compare different intervals we 2,1], p, =[{111},,-1,1,1,1, =2,1,1,1], p; =[{111},,—1,
rescale the diffusion rate definingz = CIZMDm: where 1,1,1,1,1,2,1,1]. Itis interesting to remark that most of
D,, is the diffusion atnth level. The position inside each these rotation numbers have continued fraction expansions
interval is denoted bAygr = |(y — y3m-2)|/Ay., for y  containing mainly 1's and 2's, which is in qualitative
betweenys,,—» andys,,+4 (0 = Ayz = 1). agreement with the conjecture made in [9].
The comparison of renormalized diffusion rafeg In Fig. 2 we also see other types of resonances, namely,
on two levelsm = 4 and m = 6 on the unstable line p, = p,/q. = [{111},,-1,1,4,1] and p; = ps/qs =
is shown in Fig. 2. The diffusion rate is self-similar [{111},,-1,1,1,1,3,1]. However, they have a different
in agreement with the universal phase space structurgructure than previous ones, displaying two and three
near the golden curve. The minimal diffusion rddg  intersections with unstable line = 0.5 giving rise to
on levels m = 4,6 is determined by computer noise double(a) and triple(f) drops in diffusion. Indeed, the
and is different on the two levels due to the differentperiodic orbit inside resonancge, (ps) has period2g,
normalization factors. The rare fluctuations in the uppef3q;). These orbits are not present in the limit— 0,
diffusion plateau are presumably due to exits of trajectoryand correspond to a new chain of islands in the chaotic
from the initial chaotic layer. Points with a high diffusion layer around resonancgs, (ps). An important conse-
rate have a chaotic component, while those with minimabtjuence of the analysis of the structure of these resonances
diffusion correspond to trajectories in stable islands. Thés that, in spite of the fact that the renormalization group
self-similarity was also observed at otharlevels, both  describes quite well the convergence to golden curve, we
when intervals were on the same side or on opposite sidese that, on each renormalization level, resonances other
of the golden curve. This self-similarity becomes betterthan those of the main series of, and even some which
with the growth ofm. The sharp separation between twoare not present &k = 0, occupy a sizable part of phase
levels of diffusion allows us to determine the leading resospace. The existence of such nonstandard resonances
nances in each renormalization interval. The biggest gamight explain the lack of universality of the exponenin
in the diffusion is for periodic orbit (labeled in Fig. 2)  (2) and the numerical value gf significantly less thaa.
with rotation numberp, = [{111},,-1,1,2, 1], where the Indeed, very long Poincaré recurrences can be originated
triplet of 1's in curly brackets is repeated — 1 times. by sticking of orbits not only near the main resonances
This rotation number is not from the series of principalr, but also around these nonstandard resonances and the
resonances given by the continued fraction expansiep of chains of islands around them. The general description
and labeled by in Fig. 2 (p; = [{111},,-1,1,1,1,1,1]).  of the phase-space structure should take into account the
While the resonancep, is significantly larger than presence of these resonances. An interesting question is
the principal onep;, there are also other resonanceswhich is the strongest cantorus on a given renormalization
which are of comparable or smaller size than: level which will determine the transition time between
pe=[{111},,-1,1,2,1,1,1,1], pys=[{111},,-1,1,2,2,2, different renormalization levels. According to Fig. 2
1], pe = [{111},-1,1,2,2,1], p, = [{111},,-1,1,1,1,3,  all drops in D are associated with periodic orbits and
not to invariant curves, which is in agreement with the
conjecture that, is the last invariant curve.
We have also studied local diffusion on the stable line
x = 0.0 (Fig. 3). The size of the renormalization interval
n is defined asAy, = |y, — y,+2| and the variable
. Ayr = [(y — yu)I/Ay,. The structure of diffusion is
1 also self-similar. As expected, the main part of the
i renormalization interval is occupied by stable islands.
i The largest resonances with rotation numpér= [{1},]
— andp; = [{1},, 1, 1] correspond to the main series of
] There are also other resonance$:= [{1},,3,1], p; =
4 k: ] {33,110 po = [{1h.2.1] pp = [{1}0, 2,1, 11,
a b ce 5 il- py =[{1}.2.1,1], pjp = [{1},.2.2,1].  Again, the
-0 biggest resonances have only 1's and 2’s in the continued
0 0.2 0.4 0.6 0.8 1 .
fraction. Some of the resonances seenxos 0.0 are
Ayg also observed or = 0.5, and one can easily establish a
correspondence. The resonangehas the same rotation
FIG. 2. Renormalized diffusion rat®g/D, vs rescaled po- number ap!, but it corresponds to a different orbit. This
sition Ay in the mth level interval of the renormalization orbit, which does not exist fok = 0, corresponds to a

scheme on the unstable symmetry line= 0.5; m = 4 (full hain of ni island d th Id
curve) andn = 6 (dashed line with crosses). The letters indi- chain of nine islands aroun e golden resonapte

cate the drops of diffusioly (see text). Other parameters are and its rotation number around the main sequence chain
as in Fig. 1(a). is1/9.
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L B L S L R L Finally, let us mention that forAK = K — K, > 0
the scales withg, < g, ~ 1/AK are unaffected [6,9]
and the diffusion on them is still given by (1). For
scales withg, > ¢ the diffusion rate is approximately
D ~ ADy/q>.. The average diffusion rate is/(D) ~
o dra/D, ~ ra’> ~ AK3. The scaling power is in
agreement with the result in [5] with better thdfe
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accuracy.
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FIG. 3. Renormalized diffusion ratey /D, vs rescaled posi- . . . . . . P
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n = 10 (dashed line with crosses). The letters indicate the  di Firenze. Electronic address: ruffo@vaxf.fi.infn.it
drops of diffusionD; (see text);T =2 X 10*g,, N,, = 10, TAlso at Budker Institute of Nuclear Physics, 630090
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