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INTERACTIONS AND LOCALIZATION:

TWO INTERACTING PARTICLES APPROACH

D.L.Shepelyansky ∗

Laboratoire de Physique Quantique, Université Paul Sabatier,

118, route de Narbonne, 31062 Toulouse, France

It is shown that two repulsing / attracting particles in a random potential can propagate coherently

on a distance lc much larger than one-particle localization length l1 without interaction. In dimension

d > 2 this leads to delocalization of pairs formed by two repulsing / attracting particles. The results

of numerical simulations allow to understand some specific features of this effect.

I. INTRODUCTION

The problem of interacting particles in a random potential attracts more and more interest
during last years (see [1] and refs. therein). The situation at finite particle density is rather
complicated both for analytical and numerical analysis and therefore it is desirable to have
some relatively simple models which could be solved and would lead to a better understanding
of effects of interaction in the presence of disorder and localization.

One of the ways to analyse the effects of interaction is to treat them in a self-consistent way.
The simplified model of this approach can be described by nonlinear Schroedinger equation on
a discrete lattice with disorder

i
∂ψn

∂t
= Enψn − βV | ψn |2ψn + V (ψn+1 + ψn−1) (1)

where V is the intersites hopping matrix element, En are randomly distributed in the interval
(−W,W ) and β represents the dimensionless strength of self-consistent interaction. The model
(1) and other models of a similar type with nonlinearity and disorder had been studied in [2,3].
It had been found that below critical strength of nonlinearity |β| < βc ∼ 1 Anderson local-
ization persists while above βc the localization is destroyed and anomalous diffusive spearing
of probability along the lattice takes place [2,3]. Such type of transition is independent of the
sign of β and therefore it looks to be quite different from the results [4,5] according to which
repulsive interaction between particles (β > 1) in solid state systems leads only to a stronger
localization near the ground state.

The main physical reason for delocalization transition in (1) is due to destruction of inter-
ference phase by nonlinear term representing interactions in some kind of mean field approxi-
mation. A more realistic way to study the effect of decoherence due to interaction is to consider
only two interacting particles (TIP) on a disordered lattice. For a short range interaction a
mean field approach leads to a nonlinear equation of type (1). However, the investigation of



the TIP quantum problem gives somewhat different result [6]. According to [6] two repuls-
ing/attracting particles, being on a distance of one-particle localization length l1 from each
other, propagate together on a much larger length

lc ∼ l1
2M

U2

32V 2
(2)

where U is the strength of on site interaction between two particles, V is the one-particle
hopping element between nearest sites which determines the size of one-particle energy band.
The parameter M notes the number of transverse channels for the case when both particles
are moving in a thick wire, where by itself l1 ∝ M . Also in (2) it is assumed that the intersite
constant a = 1 and the total TIP energy is somewhere close to the center of the band so that
wavevector kF ∼ 1/a = 1. The same expression for lc was also derived in another way by
Imry [7] whose approach is based on the Thouless block picture and scaling of conductance.
The reason for the difference between the model (1)and TIP result (2) is not completely clear.
Probably, the mean field approximation is not exact enough.

The derivation of the result (2) is based on some assumptions which look quite natural but
still at the moment have not been rigorously justified. The main of them are the estimate
of interaction induced transition matrix elements which are assumed to have the same order
of magnitude and a partial neglect of correlations between TIP moving in the same random
potential. Therefore it was quite important to check the existence of the TIP effect (2). First
numerical simulations indicating the existence of enhancement for TIP localization length had
been presented in [6]. Much more advanced numerical investigations for TIP in one-dimensional
Anderson model had been done by Pichard and coworkers [8] and von Oppen and coworkers
[9]. Their results show that the exponent γ of power growth lc ∝ l1

γ is close to the theoretical
value γ = 2. The value of γ ≈ 2 was also found by the transfer matrix technique for a bag
model [6,8] in which particles do not interect if the distance between them is less than the bag
size B > l1. A model with strong attraction between particles in a well of size B ≪ l1 had
been first studied analytically by Dorokhov [10] who had found that the propagation length of
such strongly coupled particles could be enhanced. By an extrapolation to B ∼ l1 he argued
that in this case the localization length is proportional to l1

2. The case with a short range
repulsive/attractive interaction is much less evident and more detailed numerical simulations
are still required especially since the results [9] give first power of U for lc instead of U2 in (2).

The TIP effect in higher dimensions d have been studied in [7,11–13] where it has been
shown that in d > 2 TIP pairs can be delocalized below Anderson transition when all one-
particle states are exponentially localized. At the moment only few results have been obtained
for a number of particles larger than two [14,15] and for a finite density of particles [7,16] where
the existence of the Fermi level plays an important role.

II. TIP LOCALIZATION

The derivation of expression (2) can be done in the following way. It is convinient to rewrite
the Sroedinger equation for TIP in the basis of noninteracting eigenstates. In this basis the
diagonal part is given by the sum of one-particle eigenenergies ǫm1

+ ǫm2
. The transitions

between noninteracting eigenstates are only due to interaction and their matrix elements are
given by

Us = U
∑

n1,ñ1,n2,ñ2

R̃+
n1,ñ1,m1,m̃1

R̃+
n2,ñ2,m2,m̃2

R̃n1,ñ1,m
′

1
,m̃′

1
R̃n2,ñ2,m

′

2
,m̃′

2
δn1,n2

δñ1,ñ2
(3)



where indices n1,2, ñ1,2 mark correspondingly the positions of first and second particles along
and transverse a strip with M channels, m-s are the indices of eigenstates without interaction
which mark the maximum of a state along the strip. The matrix R gives the transformation
between the lattice basis and one-particle eigenstates so that R̃n,ñ,m,m̃ ≈ exp(−| n−m |/l1 −
iθn,ñ,m,m̃)/

√
Ml1 where θ randomly changes with indices.

Due to exponential decay of R only about (Ml1)
1/2 terms with random signs contribute

in sum (3) so that the typical value of Us for |m1 − m2| < l1 is Us ≈ U/(Ml1)
3/2 [2,6]. For

|m1 −m2| > l1 the matrix elements decay exponentially fast and at first approximation they
can be neglacted. Thefore, the total number of coupled states is b ∼ (Ml1)

2. All these states
are inside the energy band 4V so that the density of coupled states is ρc ∼ (Ml1)

2/V . Using
the Fermi golden rule we can now determine the interaction induced transition rate

Γ ∼ Us
2ρc ∼

U2

VMl1
(4)

The typical size of such transitions is of order l1 so that they give the TIP pair diffusion rate
along the strip

Dp ∼ l1
2Γ ∼ (U/V )2V l1/M ∼ (U/V )2D1 (5)

where D1 is one-particle diffusion rate on a short time scale. In all these estimates it was
assumed U < V and therefore we see that the diffusion rate due to interaction is not enhanced
(Dp ≤ D1) that is in agreement with the numerical results [6,12]. The diffusion of TIP pair
arises as the result of interparticle collisions which destroy quantum interference phase and give
coherent TIP propagation.

Knowing the diffusion rate Dp it is possible to find the localization length lc for a pair
in a way similar to that one used for dynamical localization in the kicked rotator [17,18].
Indeed, due to diffusion the total number of excited noninteracting eigenlevels grows as ∆N ∼
∆m1(M

2l1)δE/V where M∆m1 ∼ M(Dpt)
1/2 gives the number of excited sites for the first

particle and the additional factorMl1 takes into account that the distance between two particles
is approximately l1. Also generally not all coupled nointeracting eigenlevels are excited but only
a fraction of levels in some energy interval δE. Usually, δE ∼ Γ [19] but similar to the case
of photonic localization [18] the actual value of δE does not enter in the final answer for
localization length. All ∆N levels are homogeneously distributed in the energy interval δE
and therefore the level spacing between them is ∆ν ∼ δE/∆N . Due to uncertainty relation
between frequency and time after the time t∗ defined from the relation ∆ν ∼ 1/t∗ the discrete
nature of the lines in the spectrum is resolved and the diffusion, which should have a continuous
spectrum, is stopped. This gives the localization time and the localization length

t∗ ∼M4l1
2Dp/V

2, ∆m1,2 ≈ ∆n1,2 ≈ (Dpt
∗)1/2 ≈ lc ∼M2l1Dp/V ∼ l1Γρc (6)

in agreement with (2). The last relation lc/l1 ∼ Γρc established in [6] is the same as for photonic
localization in a complex molecular spectrum [18] with the only difference that here the size of
transition is not the photon frequency but one-particle localization length. This relation shows
that the length lc is determined by two-particle spread width Γ which can be extracted from
the Breit-Wigner distribution of TIP eigenstates over eigenbasis of noninteracting particles (see
[19] and section V).

It is interesting to note that the final answer for lc/l1 looks in such a way as interaction
is enhanced by the squareroot from the number of components N1 ∼ l1 in one-particle eigen-
fuction (Ueff ∼ U

√
l1). A similar effect had been intensively studied for enhancement of weak

interactions in nulcei [20]. However, there even being enhanced the effect was small and did
not give large physical changes.



III. TIP DELOCALIZATION

Similar approach based on the uncertainety relation between frequency and time can be
used also in higher dimensions d. For that we should take into account that Us ∼ U/N1

3/2 with
N1 ∼ l1

d. Therefore Γ ∼ U2/(V N1) and the TIP diffusion rate Dp ∼ l1
2Γ ∼ V (U/V )2l1

2−d. It
is interesting to note that for d = 2 the diffusion Dp is independent on l1 while for d = 3 it
decreases with l1 which in its own turn increases when approaching the one-particle Anderson
transition. Due to diffusion the number of excited levels grows as ∆N ∼ (Dpt)

d/2l1
dδE/V .

The level spacing is ∆ν ∼ δE/∆N and should be compared with frequency resolution 1/t.
For d = 2 the ratio 1/(∆νt) ∼ (U/V )2l1

2 is independent on time and as usual in d = 2 the
localization length is proportional to the exponent of this ratio:

ln(lc/l1) ∼ (Ul1/V )2 > 1 (7)

Since in d = 2 the localization length l1 grows exponentially with decrease of disorder (ln l1 ∼
(V/W )2) the enhancement (7) is enormous.

In d = 3 the spacing ∆ν decreases faster than 1/t and therefore the TIP pair will be
delocalized if at the moment t′ ∼ l1

6/V , which is determined by two particle level spacing for a
block of size l1 and during which diffusion is always going on, the value of ∆ν is less than 1/t′.
This gives the condition of TIP pair delocalization in d = 3 while one-particle states are well
localized (see also [7,12]):

(U/V )2l1
3 > 1 (8)

While the results (7), (8) are qualitatively correct they however don’t take into account the
effect of possible pair size growth with time which for a first time was discussed in [12]. Indeed,
the above derivation of Γ and Dp is local and it assumes that the TIP pair size is always of the
order of l1. This would be correct for a bag model in which particles are confined in a bag of
size l1 with infinite walls. But for our short range interaction the separation of particles is not
excluded. Indeed, there are always matrix elements U− which give an increase of the pair size
n− = |n1 − n2|. Due to exponential decrease of the operlapping probability these transitions
decay exponentially with n− as U− ∼ U exp(−n−/l1)/l1

3d/2 that gave the reason to neglact
them in the above consideration. However, the existence of such transitions should definitely
produce a slow diffusive pair size growth [12] n−

2/t ∼ D− ∼ Dp exp(−2n−/l1). This gives
the logarithmic growth n− ∼ l1 ln t/2 which should also change the diffusion rate Dp of pair
propagation. Qualitatively the modification of Dp → D̃p can be understood in the following
way. Since the pair size becomes in ln t larger the probability of particles collisions which from
ergodicity is inversely proportional to the pair volume becomes in (ln t)d times smaller. The
probability of collisions is proportional to Γ so that finally D̃p ∼ Dp/(ln t)

d where we assumed
that still the typical size of transition is l1. Therefore, the average square of displacement of the
center of mass of the pair σ+ =< (n1 +n2)

2 > /4 grows in a subdiffusive way σ+ ∼ Dpt/(ln t)
d.

Here the power of ln t is the same as in [13] where it was obtained on the basis of supersymmetry
approach. However, the stickings in the regions with n− ≫ l1 can lead to quite large fluctuations
and therefore a more rigorous analysis of logarithmic corrections is still desirable.

The numerical simulations for TIP in 3d are very heavy and at the moment there are only
numerical results obtained in [12] for the model of two interacting kicked rotators in effective
2-3 dimensions. The evolution operator of the model is

Ŝ2 = exp{−i[H0(n̂) +H0(n̂
′) + Uδn,n′ ]}

× exp{−i[V (θ, t) + V (θ′, t)]} (9)



with n̂(′) = −i∂/∂θ(′). Here H0(n) is a random function of n in the interval [0, 2π] and it
describes the unperturbed spectrum of rotational phases. The perturbation V gives the coupling
between the unperturbed levels and has the form V (θ, t) = k(1+ ǫ cos θ1 cos θ2 cos θ3) cos θ with
θ1,2,3 = ω1,2,3 t. For incommensurate frequencies one can go to the extended phase space by
replacing H0(n) → H0(n)+ω1n1+ω2n2+ω3n3 where new actions n1,2,3 are conjugated to phases
θ1,2,3. We used ω1 = 2πλ−1, ω2 = 2πλ−2 with λ = 1.3247... the real root of the cubic equation
x3−x−1 = 0 and ω3 = 2π/

√
2. Then without interaction the effective dimension for one rotator

is d = 4 and at fixed ǫ > 0 the one-particle delocalization takes place for k > kcr. With switched
on interaction U the total dimension of the extended phase space is five for two rotators so that
it is possible to say that each rotator is moving in effective dimension deff = 5/2. According
to the above picture of TIP delocalization the pair in (9) can be delocalized due to interaction
for k < kcr. An example of such delocalization for second moments σ+ =< (n + n′)2/4 > and
σ− =< (n− n′)2 > is shown in Fig.1.

FIG. 1. Dependence of second moments on time in model (9) with k = 0.7, ǫ = 0.9 (kcr ≈ 1.15);

upper curve is σ+ ( U = 2 ), middle is σ− (U = 2), lower is σ+ ( U = 0). At t = 0 both particles are

at n = n′ = 0, basis is −250 ≤ n, n′ ≤ 250. Inset shows the dependence of σ−

1/2 on ln(t) (after [12]

b).

In agreement with the above theoretical arguments the pair size grows logarithmically with
time as n− ≈ √

σ− ∼ ln t. The behaviour of σ+ is consistent with σ+ ∝ t/ln t. In the
model (9) the interaction is only along one direction and therefore the probability of collision



decreases as 1/n− ∼ 1/ln t (and not as ln−3 t for real d = 3) that explains the dependence
σ+/t ∼ 1/n− ∼ 1/ln t (see also [12] b). The numerical results for two interacting kicked
rotators with incommensurate frequencies clearly demonstrate the effect of pair delocalization
below one-particle delocalization border.

IV. OTHER MODELS

Let us now discuss other different models of TIP in a random potential. A different type
of situation corresponds to the case with short but finite radius of interaction R < l1. In
d dimensions the sum similar to (3) should be taken over Rd nearby sites. All these terms
have random signs and therefore the effective value of Us becomes Rd/2 times larger Us ∼
URd/2/N1

3/2 where N1 ∼ l1
d is the number of components in one-particle eigenfunction. As

the result, the enhancement parameter is η ∼ [(U/V )2Rd]l1
d that is Rd times larger than for

on site interaction. As before the enhancement parameter determines the ratio lc/l1 ∼ η in
d = 1, ln lc/l1 ∼ η in d = 2 and the TIP pair delocalization border η > 1 in d = 3. However,
it should be taken into account that similar to the case R = 1 the maximal value of η cannot
be larger than N1. Indeed, in this case the interaction is too strong and it starts to deform
the noninteracting density of state. Also it is clear that interaction creates some effective wire
along the diagonal on the lattice of two-particle index (n1, n2) and the number of channels in
this wire cannot be larger than the number of one-particle components N1. Therefore, if the
parameter (U/V )2Rd becomes larger than 1 it should be replaced by 1. For the case of small
energies when kF ≪ 1/a = 1 the number of independent components is proportional to kF l1
and the number of terms in the sum for Us is of the order of (kFR)d so that the enhancement
is η ∼ kF l1(U/V )2(kFR)d.

The above result can be used also for analysis of TIP problem with a long range interaction.
For concreteness let us consider two particles on a distance r12 with Coulomb interaction α/r12
in d = 3 random potential. Without interaction one-particle eigenfunctions are spreaded over a
size of localization length l1. Interaction two-particle states mixing appears only in the second
order of expansion over small parameter l1/r12 which corresponds to dipole-dipole interaction
Udd ∼ αl1

2/r12
3. Indeed, the first term gives only some locally homogeneous field which does not

destroy localization. Due to localization the effective radius R of interaction which determines
the number of terms in the sum for Us is R ∼ l1. Therefore, as above the enhancement factor in
d = 3 is η ∼ [(Udd/V )2l1

3]l1
3 and TIP delocalization takes place for η > 1. As before the term

in the square brackets is supposed to be less than 1. It is easy to see that TIP can be delocalized
even when two particles are very far from each other r12 ≫ l1. Due to the homogeneous local
field between particles they will diffusively approach to each other in the case of attraction
(α < 1) or separate up to distance r12 where η ∼ 1 in the case of repulsion (α > 1).

We also can consider other type of TIP problem in which two particles are moving in
parallel strips with independent disorder in each strip. The number of channels in the strips
is M1 and M2 while the localization length for each particle without interaction is l1 and l2
correspondingly. We will assume that M2 ≥ M1 and l2 ≥ l1 and that interaction is local
with Uδn1,n2

δñ1,ñ2
where n1,2 are the indices along the strips while ñ1,2 mark the transverse

direction. To estimate the interaction induced transition matrix elements it is necessary to
take into account that the number of terms contributing to the sum for Us similar to (3) is
of the order of l1M1 and therefore Us ∼ U/(l2M2

√
l1M1). The density of coupled states is

ρc ∼ l1l2M1M2/V and the transition rate Γ ∼ U2/(V l2M2). The diffusion rate of the first
particle is D1 ∼ l1

2Γ ∼ U2l1
2/(V l2M2). In a way similar to the one used above we obtain the

localization length lc1 for the first particle



lc1/l1 ∼ Γρc ∼ (U/V )2l1M1 (10)

Surprisingly, lc1 does not depend on the characteristics of the second particle. The localization
length for the second particle is lc2 ≈ l2 if l2 ≫ lc1 and lc2 ≈ lc1 if l2 ≪ lc1.

It is possible to modify slightly the model taking interaction independent on the transverse
direction Uδn1,n2

and putting M1 = 1 (see also [15]). Then the number of terms in the sum
of type (3) is in M2 times larger. Therefore, we have the transition rate Γ ∼ U2/(V l2), the
diffusion rate D1 ∼ U2l1

2/(V l2) and lc1/l1 ∼ (U/V )2l1M2. Such kind of situation in higher
dimension corresponds to the model (9) where interaction depends only on one direction and
where l1 ∼ l2. Therefore the TIP diffusion rate in (9) is D1 ∼ V (U/V )2l1 and it grows when
approaching one-particle delocalization border that is in agreement with numerical data (see
[12]b, Fig.13). It is interesting to note that a similar type of model effectively describes the case
of three interacting particles in a 1d chain where M2 ∼ (U/V )2l1 and three-particle localization
length is lc1/l1 ∼ (U/V )4l1

2 > 1 [15].

V. SUPERIMPOSED BAND RANDOM MATRICES

Under some approximations the TIP problem can be reduced to some kind of band random
martix (BRM) model. Indeed, if to write the Hamiltonian in the noninteracting eigenbasis
then it will be represented by a matrix with a strong diagonal (ǫm1

+ ǫm2
∼ V ) and weak

(Us ∼ U/l1
3/2 ≪ V ) but broad BRM with approximately b diagonals where b ∼ l1

2 is the
number of noninteracting eigenstates coupled by direct transitions and for concreteness we
discuss 1d case. Normalizing the nondiagonal elements in a usual way (amplitude ±1/

√
2b+ 1)

and ordering the levels which are in the strip of size ∼ l1 along levels with m1 ≈ m2 the
Hamiltonian matrix will be reduced to a superimposed BRM (SBRM) with diagonal fluctuations
in the interval ±Wb withWb ∼ V

√
l1/U [6]. By transfer matrix technique it is easy to investigate

the dependence of localization length lsb in SBRM on different parameters. It was shown [6]
that for Wb <

√
b the length scales approximately as lsb ≈ 0.5(b/Wb)

2 while in the perturbative
regime Wb >

√
b it is lsb ∼ b/ln(Wb

2/b). This result can be understood in a way similar
to (6) [6]. Indeed, the density of coupled states is ρc ∼ b/Wb and then the transition rate
Γ ∼ (1/

√
b)2b/Wb ∼ 1/Wb. As the result, the number of transitions is lsb/b ∼ Γρc ∼ b/Wb

2 > 1.
Taking into account that for TIP b ∼ l1

2,Wb ∼ U
√
l1/V and lc ∼ lsb/l1 we can see that the

result for SBRM leads to the same expression (2) for lc.
If the transition rate Γ ∼ 1/Wb is larger than the level spacing 1/ρc then an eigenstate

contains many unperturbed sites with diagonal energies En being in the interval of size Γ near
the eigenvalue Eλ. In other words the local density of states ρW (E−En) =

∑
λ |ψλ(n)|2δ(E−Eλ)

has the spread width Γ and is described by the well-known Breit-Wigner distribution [19]:

ρBW (E − En) =
Γ

2π((E −En)2 + Γ2/4)
; Γ =

π

3Wb
(11)

The numerical results [19] confirm that the local density of states ρW is well fitted by (11). This
result is correct both for infinite matrix and for matrix of finite size N < lsb. The Breit-Wigner
distribution leads to a peaked structure of eigenfunctions since only levels within |En−Eλ| < Γ
are populated. The number of peaks determines the inverse participation ratio (IPR) ξ ∼ Γρ.
For delocalized case N ≪ lsb the level density is ρ ∼ N/Wb so that ξ ∼ N/Wb

2 ≪ N is
much smaller than the system size. In the localized case N ≫ lsb the value of N should
be replaced by lsb and then the IPR ξ ∼ lsb/Wb

2 is much less than the localization length
lsb [19]. These results have been also ontained on a more rigorous basis by supersymmetry



approach in [22,21]. For original TIP problem this means that the IPR in the noninteracting
eigenbasis ξc ∼ (U/V )4l1

2 > 1 is much less than the number of lattice sites l1lc contributing in
an eigenfunction [19]. Similarly, if one-particle eigenfunction is ergodic in a d-dimensional box
of size L then still the IPR value in noninteracting eigenbasis is much smaller than the total
Hilbert space: ξc ∼ Γρ ∼ Ld(U/V )2 ≪ L2d [19]. The existence of Breit - Wigner distribution
leads to a deviation of the number variance Σ2(E) from the random matrix behavior for energies
E > Γ where the rigidity of levels disappeares [23].

Above we analysed SBRM with bounded fluctuations of matrix elements. It is interesting
to look what will happen if the nondiagonal matrix elements Hnn′ have a Cauchy distribu-
tion: Hnn′ = tan(φn,n′)/

√
2b+ 1 where φn,n′ is a random phase in the interval [0, π] while the

fluctuations on the diagonal are still bounded −Wb < Hnn < Wb. One of the reasons to be
interested in such kind of fluctuations is due to numerical results [8,24] which have shown that
the distribution of interaction induced matrix elements Us for TIP problem on 1d lattice has
very long power tails. There are some numerical and analytical indications [24] that Us can be
discribed by a Cauchy distribution with a typical width U/l1

2 and a cutoff at Us > U/l1.

FIG. 2. Dependence of localization length lsb in SBRM with Cauchy fluctuations on the strength

of diagonal fluctuations Wb for different band widths with 2b + 1 = 41(X); 81 (triangle); 161 (open

square); 321 (full square). Full line shows the slope -1.

The transfer matrix numerical investigations for SBRM with off diagonal Cauchy fluctuations
defined above show that localization length in this case scales as lsb/b ≈ 3b/Wb > 1 (see Fig.2).



The 1/Wb behaviour is similar to the case of Lloyd model however its analytical derivation still
should be done. If to map this result on the TIP case assuming that there Us has the Cauchy
distribution with width U/l1

2 then it would give lc/l1 ∼ Ul1 [24] in agreement with numerical
result [9] for the center of the band. However, for a serious application to the TIP problem
more rigorous investigations are required.

VI. CONCLUSIONS

Above we discussed the effect of interaction induced enhancement of localization length or
delocalization mainly for only two or few particles. In the real physical situation the density of
particles is finite and the situation is much more complicated. However, it is possible to think
that an effect similar to TIP effect can take place for quasi-particles. The first estimates for such
a case have been done by Imry [7]. They indicate that in 3d case a mobility edge for pairs of two
quasi-particles near Fermi energy is lower than one-particle mobility edge. According to Imry
such difference in one- and two-particle edges can be responsable for anomalous dependence
of conductance on temperature observed in the experiments [25]. However, more detailed
investigations in this direction are required to clearify the situation. An interesting approximate
numerical approach has been developped [16] for finite density case and applied for 1d chain.
There the enhancement of lc can take place only sufficiently far from Fermi energy in agreement
with [7]. However, the 3d case still remains open for investigations. The TIP effect can be also
important for photo-conductance when an excited pair of quasi-particles is sufficiently far from
Fermi edge and suppression of interaction due to small phase volume disappeares.

Another interesting question is if the TIP effect can take place in Luttinger liquid. On the
first glance it seems to be not the case since the dynamics for Luttinger liquid is in some sense
completely integrable while for TIP a quite important element was associated with the ergodic
structure of eigenfunctions and nonintegrability. However, a more detailed analysis is required
to answer this question.

The author is grateful to the Technion, The Weizmann Institute of Science and the Godfrey
Fund at University of New South Wales for hospitality during the process of work on the above
problem. The useful discussions with S.Fishman, V.Flambaum, Y.Imry and O.Sushkov are also
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INTERACTIONS ET LOCALISATION :

APPROCHE PAR UN MODÈLE DE DEUX PARTICULES EN INTERACTION

On montre que deux particules avec répulsion ou attraction dans un potentiel aléatoire peuvent

se propager de façon cohérente sur une distance beaucoup plus grande que la longueur de localisation

d’une particule sans interaction. En dimension d > 2 ceci conduit à une délocalisation des paires

formées par deux particules avec répulsion ou attraction. Les résultats des simulations numériques

permettent de comprandre certaines caractéristiques spécifiques de cet effect.
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