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Breit-Wigner Width for Two Interacting Particles in a One-Dimensional Random Potential
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For two interacting particle (TIP) in a one-dimensional random potential, the dependence of the
Breit-Wigner widthI', the local density of states, and the TIP localization length on system parameters

are determined analytically. The theoretical predictionsIfare confirmed by numerical simulations.
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PACS numbers: 72.15.Rn, 71.30.+h

Recently, the problem of two interacting particles (TIP)dom matrices [1,8—10]. In the present work for calcula-
in a random potential has attracted the interest of differtion of I' we use the technique developed in [11] which
ent groups [1-6]. It has been shown that two repulsive Allows us to account all orders in the interaction.
attracting particles can propagate together on a distance We consider the 1D Hubbard model with Hamiltonian
I, much larger than the one-particle localization length

in absence of interaction. The first analytical studies [1,2] H=— VZ(aiﬂaaw +al ayiis)

for TIP with on site interaction on a one-dimensional (1D) no

one channel lattice gave the following estimdté¢/, ~ + UZaJr ala |Gt 1)
Tp ~ (U/V)l;, whereU is the strength of the interac- . St Tl

tion, V is the intersite hopping matrix elemeppt,~ 5A% ] , ] )
is the density of the two-particle states coupled by the inf1ere _‘1:1[ is a creation operator of the particle at the site
teraction, and” ~ U2/VI, is the interaction induced tran- 7 V' is the hopping matrix element, arid is the on site
sition rate between these states. The numerical investigiteraction. We assume that particles are distinguishable
tions [3,4] definitely confirmed existence of the strong en-2nd denote the type of particle by spin= *1/2. The
hancement of, due to interaction. However, a direct ver- Single particle eigenstate is plane walg) = —ze'”"
ification of the above estimate is quite difficult, even for With dispersione, = —2V cosp, —7 = p = w. We set
the modern computer facilities, due to the strong increaskttice spacing equal to unity. The size of the lattice is
of required basis with;. Also, the recent numerical re- denoted by.. _ _ _
sults of von Opperet al. [4] and Weinmann and Pichard ~ The Breit-Wigner width can be found in the following
[7] indicate in the 1D case almost linear growth of the en-Way. The forward scattering amplitude for particles
hancement factor fof. with U instead of expecte/?. ~ With different spins is given by a series of diagrams
Because of all these things, it would be important to havresented at Fig. 1. The solid line represents a particle,
a more rigorous derivation of the facty//, for this on a and the; wavy line li}s the matrix element of the interaction
first glance quite simple problem, at least in the 1D casel P3P4lUlp1p2) = T 8p,+p, p+p,- Because of the optical
To reach this aim we started from the computation of thdheorem width of the statdp,p;) = |p1)|p2) is related
rate T', which also characterizes the spread width of thd© the forward scattering amplitude:

Breit-Wigner distribution for eigenfunctions in the basis r/2=—Imf. @)

of eigenstates of noninteracting particles [8—10]. If the

parameter dependence Bfis known then the ratid, /[, One can easily check the coefficient in this relation
can be determined from the relatidgy/!; ~ I'p, which  considering Fig. 1(b), which gives the usual Fermi golden
has been checked in models of superimposed band rarile:
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(a) (b) ©

FIG. 1. Diagrams for the forward scattering amplituytlin (2)—(5).
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I p3pal Ul p1 p2)I? HereE is energy of the initial stat& = €; + e;.
I~ —2Imfy, = —2Im Y E — e — es + 10 The Born term in the amplitudg is given by Fig. 1(a)
Paba : N 3) and equalsf;, = U/L. Calculation of the diagram
=2 Z I p3palUlp1 p)PS(E — €3 — €4). Fig. 1(b) is also straightforward:

P3P4 |

fo =3 KpspalUlpipa)l* _ U_ZZ 1
v P3Da E — €3 — €4 +i0 L2 P3 E+ 2VCOSp3 + ZVCOS(p B p3)

U2 (7 Ldps/2m U?/L

- = = , 4
L? J_, [E + 2Vcosps +2Vcodp — p3)] JE2 — 16V2co8 p/2 “)
where p = p; + p» = p3 + p4 is the total quasimo-| function F(Z) is defined by
mentum. Higher orders in Fig. 1 correspond to simple
. . - ! arctanZ, foru = e,
iterations of the box Fig. 1(b). Therefore the summation F(Z2) = l 1. 147 = (9)
of the ladder is reduced to geometrical progression and 2lng=7, foru=e,
the result is 2 — e2](1 — &)
Z = .
U/L 2 2 _ 2
J(E.p) = 1 — U/\JE?2 — 16V2co8 p/2° ®) it e
p At small energy(e? < u?, 1) formula (8) gives:

The scattering amplitude depends only on the total energy a7V 1 u
—4V = E = 4V and the total momentum-7 < p < I=— naje ira (10)
7. The branch of the square root should be chosen in u
such a way that Iny = 0. so that at small interactiofe? < > < 1) it is linear in

With amplitude (5) one can easily calculate the Breit-the interaction. In the other limji> < €2,(1 — €*)] the
Wigner width using the optical theorem (2). But we arewidth (8) is quadratic in: with logarithmic correction:
interested in the average width at a given energy. So we sV ! 2 e 5

u € - €

have to average over momentym The density of the r~-=— = . (11
two particle states is of the form L (In4/e + 0.18¢) €

T Ldp, (™ Ldps The value ofl" in (10) is significantly larger than in (11)

p(E,p) = / f (p — p1 — p2) due to the growth of two-particle density of states (7) near
-7 2T —g 2
the center of the band.
X 8(E + 2V cosp; + 2V cosps) If we now add to the Hamiltonian (1) a single particle
L?/(872V) random potentialH,,,a = > w,al, a,, with a disorder

= . (6) homogeneously distributed in the intervalW = w, =
Jeos p/2 — E2/16V2 W, then the one-particle eigenstates in infinite lattice
become localized with localization length =~ 24(4V? —
€7)/W?2, wheree, is one-particle energy. However, as
soon as/; > 1, the above calculation of the average

It is nonzero only if square root is real. After integration
over momenta we find

B — i £ dp width remains valid. The reason for this is that> 1
p(E) = ,wp( P is the only condition which we need to formulate the
12 16V IE| scattering problem and to use the conventional diagram
~ 3 2V<In TE + 0.18 W) (7) technique. The distribution df depends on the relation
T

between the size of the bdx and the localization length

The integral in (7) cannot be exactly expressed in terms oft- If L = 41 all values ofI" are of the order of the
elementary functions. The presented approximate formul@verage value given by (8). For> [, the average value

is valid with accuracy better than 1% in the intervaliS Still given by (8). However, in this cadé vanishes for -
—4V < E = 4V. Now we can find the average width. the majority of the states. These are the states in which

particles are localized far from each other and practically

dp do not interact. On the other hand, the width for the states
FE=—2Im/ E, E, —/E T o . Yo .
(E) FE. p)p( p)27r P(E) with interparticle distance of the ordéris approximately
8Vu2/L the same as for the particles in a box of size= [,

(Z).  so thatT is given by Egs. (8) and (9) witl. replaced
by I;. The two-particle localization length. for such

(8) states is determined by the relatidryl; ~ I'(E)p(E),
Hereu = |U/4V| ande = |E/4V| is the interaction and with T' calculated atL ~ [;. This relation is valid if
energy expressed in units of bandwidbh= € = 1. The I'(E)p(E) > 1[1,2]. In the opposite casE(E)p(E) <

924

= F
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1 the above relation is not valid [8—10] and the interaction 10° ’ . .
can be treated in a perturbative way. In this regime
“Rabi oscillations” between two quasidegenerate levels
play an important role [7]. Above we have considered 10
the distinguishable particles. The generalization to the
identical particles is rather simple: the widthvanishes
if the coordinate wave function is antisymmetric, and it
is doubled in comparison with Eqgs. (8) and (9) if the
coordinate wave function is symmetric. 10°
To check the above theoretical formula fiorwe stud-
ied numerically the model (1) of two identical interact-
ing particles (symmetric coordinate wave function) in
the disordered potential on a ring of siZe which is
less or comparable with one-particle localization length 102 . ) .

Pwl(E)

I} = 24(V/W)?%. Using the Lanczos technique (see, for 0.2 -0.1 0.0 0.1 02
example, [12]) we determined the local density of states E
in the basis of noninteracting eigenstates: FIG. 2. Local spectral densitpy(E) computed for the TIP
eigenstates in the energy intervgt-0.1,0.1] for the case
pw(E — €n, — €n,) = Z|¢A(m1,m2)|28(E —E). L=150,U=1,V =1,andW = 04. The full line gives
2 the best Breit-Wigner fit (13) witlh® = 0.0073. The theoretical

(12)  prediction isI' = 0.0072.

Here E, is the eigenenergy of TIP, while,, , are one-
particle eigenenergies. The dependencepgfon E is
well described by the Breit-Wigner distribution

(see inset in Fig. 4). At moderaté/V > 0.3 values in

the presence of numerical fluctuations the dependence of

I on U is hardly distinguishable from a linear one (see the

pw(E) = — r (13) normal scale in Fig. 4). In our opinion this is the reason
2w[E? 4+ T'%/4]° why the linear behavior itV had been attributed in [4] also

to the states away from the band center. As for the result

an example of which is shown in Fig. 2. The comparisonmc Ref. [7], the system size was too smdll = 25) and the

of numerically obtained™ with theoretical prediction (8) main : :

: : ) - part of the data (Fig. 4 with/V < 0.4) corresponds
and (9) in t_he reglmd“(E)_p(E) > 1ls Shgwn_lr] Figs. 3 to the different regimd’p < 1. In this perturbative case
and 4 for different energies as the function if interaction.

The theory gives good agreement with numerical results
for 15 = L = 300 and variation of scaled widtlh'L/V ' : T
by more than 2 orders of magnitude. For the states witF
the energy close to the band centér= 0) (Fig. 3), the 30 F ]
dependence ofF p on U is almost linear foly < V [see
(7) and (10)]. Therefore the TIP localization length
according to the relation./I; = CI'p = 2CL,(U/V)/m
also varies linearly witlU. Here we took the values df 2.0
andp atL = [; and introduced the numerical coefficient E g
C to take into account the uncertainty of this choice.
According to the numerical results [4] at the center of E
the band. /I, = 0.21;(U/V), which is in good agreement 10
with the above theoretical expression and gides- 1/4. -
For energies away from the band center and smal
interaction|U| < |E| the enhancement factor according
to (7)and (11)is./l; = LU?*In(2E/U)/(4mw*VE), where 0.0 : :

0.0 0.5 1.0
we have used the above value®f The dependence on u/av

U is almost quadratic in agreement'WIth_ the first esumatel‘:lG. 3. Scaled Breit-Wigner widtl'L/V as a function of the
[1,2]. However, due to th? logarithmic correction, to rescaled interactioguv computed in the energy interval/V €
observe clearly thé/?> behavior one should go to really [-0.1,0.1]. The system size i = 15 (W/V = 1, empty
smallU values and, since the conditidip > 1 should be circles),L = 25 (W/V = 1, empty squares), = 40 (W/V =
also satisfied, this can be reached only for quite large valuds6, empty diamonds),L = 60 (W/V = 0.5, full circles),
of [, or L. In this respect our numerical approach based o, = 80 (W/V = 0.5, full squares)L = 100 (W/V = 0.5, full

. . diamonds),L = 150 (W/V = 0.4, full triangles up),L = 200
the measurement df is more efficient than the one used (W/V = 035, full triangles down). The solid line gives the

in [4]. It allows us to see the behavioF* In U away from  theoretical prediction (8) and (9) multiplied by 2 to take
the band center in agreement with the theory (8) and (93ymmetrization into account. Inset shows log-log scale.
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7.0 y y T of that, the averaging over all momenga, on the en-
ergy surface reproduces correctly collision frequency and

6.0 finally I' even if one uses the plane wave basis without
disorder. In some sense such an approach assumes that

501 the eigenstates are ergodic and then the frequency of col-
lisions andI’ are fixed by the sum rule. One of the ar-

a0 guments in support of this interpretation in the 1D case is

E that inside the sizé ~ [, the real eigenfunctions are quite

3.0 close to the plane waves. The situation in 2D and 3D sam-
ples with sizel. < I; looks to be less obvious. However,

20 there the standard estimates with ergodic eigenstates [1,2]
givelI’ ~ U?/(VLY) and, since the result is again inversely

10 proportional to the volume, one can expect that the correct
averaging over momentum in the plane wave basis will

00,0 05 1.0 15 2.0 also reproduce the correct ergodic result.

luliav We acknowledge fruitful discussions with V.V. Flam-
FIG. 4. Same as in Fig. 3 for energy inten@lVv € [1,1.2].  baum, M.Yu. Kuchiev,and P. G. Silvestrov. We also thank
The system size i& = 15 (W/V = 1, empty circles)L =25  the Centro Svizzero di Calcolo Scientifico for allocation
(W/V =1, empty squares an®/V = 0.5, empty diamonds), of CPU time on their NEC SX-3. One of us (O.P.S.)
ém?tg‘/o tr(igvrgle: %g\v,vr%“zptj 6%'3("‘)?/'/9‘? B Sa”%’”/ Vcii:lgg)’ thanks Laboratoire de Physique Quantique, Université
L =80 (W/V = 0.5, full,squares),L — 100 (W/V — 0.5, full Pau_l _S_abatler for h(_)spltallty an_d financial support during
diamonds),L = 100 (W/V = 0.5, negative U, crosses), = the initial state of this work. This research was supported
150 (W/V = 0.4, full triangles up),L = 200 (W/V = 0.35, in part by the National Science Foundation under Grant
full triangles down), and. = 300 (W/V = 0.25, full triangles ~ No. PHY94-07194, NSF through a grant for the Institute
left). for Theoretical Atomic and Molecular Physics at Harvard
University and the Smithsonian Astrophysical Observa-
the typical energy scale which determines the change itory and the Fonds National Suisse de la Recherche.
level statistics is determined by Rabi oscillation frequency
in a pair of quasidegenerate states, which is proportional
to U [7]. Also, one should keep in mind that the. reSUIFS UMR C5626 du CNRS, Université Paul Sabatier, 31062
there are integrated over the whole energy ba_ndllncludlng Toulouse Cedex, France.
the center of the band where the dependenck @linear TAlso at Budker Institute of Nuclear Physics, 630090
even forl'p > 1. Novosibirsk, Russia.
Turning back to our numerical data (Fig. 4), we would  *On leave from School of Physics, The University of New
like to mention that there is a significant difference from South Wales, Sydney 2052, Australia.
the theory for negativé/ < —V. Generally, we should [1] D.L. Shepelyansky, Phys. Rev. Le@3, 2607 (1994).
expect such difference fdi/| > V when the spectrum [2] Y. Imry, Europhys. Lett30, 405 (1995).
is composed from two separated energy bands and thd3] K. Frahm, A. Mdller-Groeling, J.-L. Pichard, and
density of states is not described by (7), while foi| < D. Weinmann, Europhys. LetB1, 405 (1995); Phys. Rev.
V the widthI is independent of sigi/ in agreement with 4 :;ett' IR (1)598 (1935)\'/\/ i d J Miller Phvs. R
the theory. We note that such asymmetry for attraction[] - von ppen, . TVeWg, and J. MUIer, Fhys. wev.

. ; Lett. 76, 491 (1996); F. von Oppen and T. Wettig,
and repulsion away from the band center and relatively Proc. Int. Conf. on Correlated Fermions and Transport

*On leave from Laboratoire de Physique Quantique,

strong interaction/ =~ V has been seen in [4] for the in Mesoscopic Systems, XXXIst Rencontres de Moriond
ratio /./l;. Also a change in the behavior &f has been (1996).
observed in [7] forlU > V. [5] F. Borgonovi and D. L. Shepelyansky, Nonlineary877

In summary, taking diagrammatically into account the (1995); J. Phys. | (France), 287 (1996) .
effects of interaction, we have derived the analytical for- [6] K. Frahm, A. Miiller-Groeling, and J.-L. Pichard, Phys.
mula for the Breit-Wigner widtH™ which determines the Rev. Lett.76, 1509 (1996).
enhancement factat./l; ~ ['p > 1 for TIP in 1D ran- [7] D. Weinmann and J.-L. Pichard, Phys. Rev. L&, 1556
dom potential. The analytical calculations were done in 8 l(Dng%)' d and D.L. Sheel kv, Phys. R
the basis of free plane waves without disorder being in [ P- Jacquod and D.L. Shepelyansky, Phys. Rev. Lt.

; . 3501 (1995).

good agreement with the numerical results for exact prob-

| . ion f h bvi - [9] Y.V. Fyodorov and A.D. Mirlin, Phys. Rev. B52,
em. Our interpretation for such nonobvious agreementis” * p11 550 (1995).

the following. Forl; > 1 the TIP collisions are local and 10} k. Frahm and A. Miiller-Groeling, Europhys. Le&2, 385
are well described in the plane waves basis. On the other ~ (1995).

side, the frequency of collisions according to ergodicity is[11] O.P. Sushkov (unpublished).

determined only by the volume of the system. Becaus§l?] E. Dagotto, Rev. Mod. Phy$6, 763 (1994).

926



