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Two interacting Hofstadter butterflies
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The problem of two interacting particles in a quasiperiodic potential is addressed. Using analytical and
numerical methods, we explore the spectral properties and eigenstates structure from the weak to the strong
interaction case. More precisely, a semiclassical approach based on noncommutative geometry techniques is
used to understand the intricate structure of such a spectrum. An interaction induced localization effect is
furthermore emphasized. We discuss the application of our results on a two-dimensional model of two particles
in a uniform magnetic field with on-site interaction.@S0163-1829~97!02016-X#
ti
a
th
s

95
ct
th
l
pe

di
du

ib

d

a
t
ce

s-
of

a
a
it

th
he
on

in

a-
l
ng

ati-
ing
-
n-
in
ts.
im-
n
ke
r
las
for
for

h
on a
to
he
en
and
re
nd a
ive

ath
or-
s
tly
the
par-
ion
the
ave
nd
I. INTRODUCTION

The study of crystal electrons submitted to a magne
field has been extensive since the early works of Land1

and Peierls.2 These studies have led to deep insights in
physics of electrons in solids~interpretation of the de Haa
van Alphen effect,3 investigation of the Fermi surface . . .!.
The number of contributions on the subject between 1
and 1970 reveals the importance of magnetic field effe
Twenty years ago, Hofstadter numerically computed
spectrum of the Harper model4 and discovered its fracta
structure as a function of the normalized magnetic flux
lattice cell5 ~Fig. 1!.

The problem of a two-dimensional electron on a perio
lattice has been of special interest in solid state physics
ing the past fifteen years: superconducting6 and normal-metal
networks.7 Harper-like models have been used to descr
the quantum Hall effect8 in organic conductors, in Anyon
superconductivity9 and in flux phases for the Hubbar
model.10

If the lattice is given by the positions of the ions of
metal, the lattice spacinga is of the order of 1 Å, so tha
even with the highest magnetic fields that can be produ
now, namelyB'20 T, we geta5g/2p'0.531024 which
is fairly small and shows that in this situation a ‘‘semicla
sical’’ approximation will always be relevant. As a matter
fact, an effective Planck’s constant denoted byg propor-
tional to the applied magnetic field naturally appears as
adjustable variable of the problem. Therefore the weak m
netic field limit g°0 corresponds to the semiclassical lim
\°0. The corresponding classical phase space atB50 is
the quasimomentum space, namely, the Brillouin zone of
corresponding lattice. Topologically it is a two-torus and t
appearance of the magnetic field transforms it into a n
commutative two-torus.11

Wheneverg52pp/q, (p,qPN) the lattice Hamiltonian
H recovers some periodicity and Bloch’s theory applies. W
shall see then thatH can be represented as a self-adjo
550163-1829/97/55~15!/9524~10!/$10.00
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q3q matrix whose entries are periodic functions of the qu
simomentum components. Thus, ifg is close to any rationa
multiple of 2p, it is possible to compute the spectrum usi
semiclassical methods.

Based on these remarks, many theoretical and mathem
cal works were published during the past fifteen years us
a renormalization group analysis12 and pseudodifferential op
erators techniques.13 On the basis of the techniques of no
commutative geometry,11 another approach was developed
order to reformulate and extend the semiclassical resul14

The algebraic semiclassical approach is justified by the s
plicity of its application and its efficiency, for example, i
the computation of Landau levels both in Harper-li
models15 and in a model Hamiltonian on a triangula
lattice.16 The comparison between semiclassical formu
and exact calculations extracted from the various spectra
gP2pQ gives surprisingly accurate agreement even
relatively largeg ’s ~namely,g/2p<0.2).

While in the above formulation of the problem of Bloc
electrons in a magnetic field the particles are considered
two-dimensional lattice, it is possible to map it exactly on
a one-dimensional lattice with quasiperiodic potential. T
interesting property of such a lattice is the duality betwe
momentum and spatial coordinates pointed out by Aubry
André.17 This Aubry duality results in a delocalized structu
of the eigenstates characterized by an algebraic decay a
multifractal eigenspectrum. This leads to a quasidiffus
wave packet spreading on such a lattice.18,19

Recently, a number of authors have followed a new p
in the study of the combined effect of interaction and dis
der. Thea priori simple problem of two interacting particle
in a random potential20 has indeed revealed an unsuspec
large interaction induced delocalization effect. However,
opposite effect has been discovered in the case of two
ticles in a quasiperiodic potential. In this case, the interact
leads to the emergence of a pure-point component out of
spectrum of the noninteracting problem. These facts h
been firmly established by overconvincing numerical a
9524 © 1997 The American Physical Society
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55 9525TWO INTERACTING HOFSTADTER BUTTERFLIES
FIG. 1. Hofstadter’s butterfly
for rational values ofa5p/q up
to q529. For each value of the
magnetic fluxa5p/q, we gener-
ally haveq bands. Near energie
equal to64 and zero flux, we ob-
serve the emergence of Landa
levels.
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analytical results.21,22 It is one of the purposes of this pap
to again express these arguments in more detail.

We shall present in this work analytical and numeric
results derived from the two-particle Harper problem with
on-site interaction on a one-dimensional lattice. More p
cisely we devote the second section to the presentation o
algebraic semiclassical approach on the noninteracting p
lem U50. The corresponding spectrum is somehow an
tricate superposition of two Hofstadter butterflies. The aim
Sec. III is to study the small interaction regime where us
perturbation theory can be applied. The evolution of
spectrum as a function of the strength of the interaction w
be presented. After building the analytical framework in S
IV, we apply it to the computation of the levels in the stro
interaction regime. We show that for very largeU, the spec-
trum is divided into two parts: one corresponding to the n
interacting case and the second one, looking like a Math
spectrum corresponding to localized states strongly in
enced by the interaction. Based upon Aubry’s duality,17 it
can be proved that all the wave functions are localized in
regime as far as the Mathieu part of the spectrum is c
cerned. Finally, we discuss in Sec. V the problem of t
interacting particles on a two-dimensional lattice submit
to a magnetic flux.

II. NONINTERACTING MODEL

In his 1930s study of the electronic diamagnetism of m
als, Landau computed the energy spectrum of a free elec
subject to a uniform magnetic field.1 If B is uniform and
parallel to one axis, for example axis 3, the kinetic energy
written as

HL5
\2

2me
~K̃1

21K̃2
2! ~1!
l

-
he
b-
-
f
l
e
ll
.

-
u
-

is
-

d

t-
on

s

with K̃m5(Pm2qeAm)/\, m51,2 andA5(A1 ,A2) is the
vector potential satisfying curl(A)5B, qe is the electron
charge. Moreover, the quasimomentaK̃1 ,K̃2 satisfy

@K̃1 ,K̃2#5 iqeB/\. ~2!

Let us note that this commutation rule becomes canon
when replacing\ by qeB/\. This effective Planck constan
~divided by 2p) is proportional to the magnetic fieldB and
behaves as a varying physical parameter, quite naturally

The spectrum ofHL is En5E0\effv(2n11) with
E05\2/2me , \eff5qeB/\, andv51. Therefore

En5\vc~n11/2!, ~3!

wherevc5qeB/me is the cyclotronic frequency andn is the
Landau quantum number.

WhenB50, the electron energyE(k) for each conduc-
tion band is given by Bloch’s theory, where the quasim
mentum componentsk5(k1 ,k2) are defined modulo the re
ciprocal lattice such that for a simple square lattice in
tight-binding approximation E(k)52E0@cos(k1a1)
1cos(k2a2)#, wheream is the vector of the Bravais lattice in
them direction. The charge carriers energy is calculated
expandingE(k) near its extremum, denoted bykc , namely,

E~k!5E~kc!1\2~M21! i j kikj /21O~ uku3!, ~4!

where M stands for the effective mass matrix such th
M215D2E(kc)/\

2.
Thus Landau theory leads to a substituti

kiai°K̂ i51/\(P2qeA)ai when an external magnetic fiel
is applied. We have the following commutation rule:

@K̂ i ,K̂ j #5 iqeBaiaj /\52ipf i j /f052ipa5 ig, ~5!

wheref05h/qe is the flux quantum,f i j is the magnetic flux
through the cell generated by (ai ,aj ) anda5f i j /f0 is the
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9526 55BARELLI, BELLISSARD, JACQUOD, AND SHEPELYANSKY
normalized magnetic flux. For a crystal with periodic spa
ing, the Peierls operatorP(k) is represented by an effectiv
Hamiltonian,2 namely,

P~k!5(
m

hm~a!eimk, mPZ2, ~6!

wherehm(a) are smooth functions ofa. Thus

Heff~K̂1 ,K̂2!5(
m

hme
imK̂. ~7!

If several bands intersect the Fermi level, the interband c
pling due to the magnetic field is neglected and therefore

Heff52t~cosK̂11cosK̂2!, ~8!

where t is physically interpreted as a transfer term cor
sponding to the required energy for an electron to jump fr
one site to another~nearest neighbor! of the lattice.

For a wave functionc(n1 ,n2) defined on the two-
dimensional latticel 2(Z2), the magnetic field effect can b
seen through the magnetic translation operators such th

~U1c!~n1 ,n2!5e~2 iqe /\!E
~n121,n2!

~n1 ,n2!

AW •dlWc~n121,n2!,

~U2c!~n1 ,n2!5e~2 iqe /\!E
~n1 ,n221!

~n1 ,n2!

AW •dlWc~n1 ,n221!, ~9!

in an appropriate gauge we get

~U1c!~n1 ,n2!5c~n121,n2!,

~U2c!~n1 ,n2!5e2 ign1c~n1 ,n221!. ~10!

Because of the presence of the uniform magnetic field,
magnetic translation operators no longer commute, nam
in that case

U1U25eigU2U1 , ~11!

whereg is the normalized magnetic flux per lattice cell d
fined byg52pa52pf/f0 , f being the flux per unit cell
and f05h/qe the flux quantum. If we se
U15exp(iK̂1), U25exp(iK̂2) using the commutation rule
~11!, we obtain

@K̂1 ,K̂2#5
iqeBa1a2

\
52ip

f

f0
52ipa5 ig, ~12!

which corresponds to Eq.~5! in the particular casei51 and
j52.
Following Harper,4 the eigenvalue equation is written

E0@c~n11a,n2!1c~n12a,n2!1leiqeBn1a/\c~n1 ,n21a!

1le2 iqeBn1a/\c~n1 ,n22a!#52Ec~n1 ,n2!. ~13!

l represents the strength of the quasiperiodic potential.
Let us assume plane-wave behavior in one direction,

we setc(n1 ,n2)5* db eibn2f(n1) since the coefficients in
the previous equation only involven1:

c~n1 ,n2!5eibn2f~n1!
-

u-

-

e
ly,

.,

and the eigenequation becomes

f~n111!1f~n121!12lcos~2pan11b!f~n1!

5Ef~n1!, ~14!

where we included the additive energy due to the motion
the field direction in the eigenvalueE and where we change
the origin ofn1.

It is possible to characterize the properties of eigenfu
tions from Eq.~14! by looking at a special regime, name
l!1. Therefore, the hopping term is dominant and we c
treat the quasiperiodic potential part of the eigenvalue eq
tion as a perturbation. It is then easy to see that the solut
are given forl50 by Bloch wavesfk(n)5exp(ikn) with an
energyE52cosk. For 0,l!1, the perturbation theory al
lows us to perform an expansion of eigenvalues and eig
states inl such that

E~k!52cosk1(
m

lmem~k!,

fk~n!5eiknS 11(
m

lmfm~gn1b! D 5eiknum~gn1b!.

~15!

Evaluating the first- and second-order perturbation the
contributions and replacing the expressions~15! in Eq. ~14!
leads to

l~um111um21!12cos~gm1k!um5E~k!um . ~16!

The previous equation is known as the ‘‘almost Mathie
eigenvalue equation and the argument above is the Au
duality17 between momentum and coordinate representatio
As far as spectral properties are concerned one can be e
convinced that dealing with Bloch states means that
states are extended. Thanks to this duality,l↔1/l between
Eqs. ~14! and ~16!, it is quite natural to get localized state
for the almost Mathieu Hamiltonian at smalll ’s. More pre-
cisely, it has been proved that the almost Mathieu Ham
tonian has a pure point spectrum at smalll ’s and for almost
all b ’s.23 Conversely ifl@1, the almost Mathieu Hamil-
tonian has a purely continuous spectrum for almost
b ’s.24

Settingt51 in formula~8! and using the magnetic trans
lation operatorsU1 andU2 defined on the two-dimensiona
square lattice by Eq.~10!, the previous Harper equation ca
be written as the action of an effective Hamiltonian such t

Heff5U11U1211U21U221 . ~17!

In order to study the two interacting particles model on
quasiperiodic lattice we transform the previous eigenva
equation~14! into (l51),

@2cos~gn11b1!12cos~gn21b2!1Udn1 ,n2#fn1 ,n2

1fn111,n2
1fn121,n2

1fn1 ,n2111fn1 ,n2215Efn1 ,n2
,

~18!

whereb1,2 are related to the quasimomentum components
the noninteracting case. In the following we shall consid
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FIG. 2. Spectrum of the two-
particle Harper problem with
U50 obtained for rational values
of a5p/q up toq519.
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b1,25b. Here we chose the form of on-site interaction whi
only influences the symmetric configurations while the an
symmetric ones remain not affected byU. Due to that, we
shall only discuss symmetric configurations in the followin

In the most simple case of noninteracting partic
(U50), the spectrum can be computed as before an
shown in Fig. 2.

As we pointed out before,g52pa appears in our prob
lem as an effective Planck constant since the magnetic tr
lation operatorsU1 andU2 obey canonical commutation rule
in g. Therefore, we study the semiclassical limit by letti
g°0. It is also possible to perform calculations near a
tional value of the magnetic flux, namel
g85g22pp/q°0. The efficiency and the accuracy of o
calculations allow us to explain some features of the co
sponding spectra.

Wheng50, corresponding toB50, we recover the band
functionE(k), wherek5(k1 ,k2). To study the Landau lev
els, we expand the classical symbol of the Hamilton
around an extremum of the band function denoted bykc :

H~k!5H~kc!1
1

2
]m]nH~kc!kmkn1•••. ~19!

The quantization ofH(k) consists in replacing the magnet
translation operators by14

Uj5exp@ i ~kc j1AgKj !#, j51,2, ~20!

wherekc j are the bottom well coordinates andKj are opera-
tors satisfying Heisenberg’s commutation relatio
@K1 ,K2#5 i . The quantized ofH, denoted byH, is written as

H5(
m

h~m,g!ei ~mkc1AgmK!,

with mK5m1K11m2K2. In the weak field limit, one for-
mally expandsH in powers ofAg:
-

.
s
is

s-

-

-

n

H5(
m

H h~m,0!eimkc1 iAgh~m,0!eimkcmK

1gF ]h

]g
~m,0!eimkc2

1

2
h~m,0!eimkc~mK!2G J 1O~g3/2!,

~21!

which we rewrite as

H5H~kc,0!1gS ]H
]g

~kc,0!2
1

2
]m]nH~kc,0!KmKnD

1O~g3/2!. ~22!

The ]H/]g term takes into account a possible explicitg
dependence of the classical Hamiltonian, whereas]m]nH
represents the inverse effective mass matrix due to the b
function curvature. By a unitary transformation, the qu
dratic term can be written asv(K1

21K2
2)/2 wherev is re-

lated to the determinant of the Hessian mat
]m]nH(kc,0). We recognize here the harmonic oscillat
Hamiltonian. For this reason, the energy levels denoted
En are called ‘‘Landau levels’’ and are equal, to that order
g, to v(n11/2) leading to

En~g!5H~kc,0!1g~2n11!S det12D2H~kc,0! D 1/2
1gS ]H~kc,0!

]g D1•••1O~gN!. ~23!

The formula~23! has been checked numerically on se
eral models. To illustrate it, let us consider the two-parti
Harper Hamiltonian on the square lattice~18! near the maxi-
mum kc5(0,0) of the band function. Using Eqs.~20! and
~22! the quantized Hamiltonian is then expressed as an
pansion in powers ofg:
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H582g@~K1
~1!!21~K2

~1!!21~K1
~2!!21~K2

~2!!2#

1
g2

3
@~K1

~1!!41~K2
~1!!41~K1

~2!!41~K2
~2!!4#1O~g3!,

~24!

where theK (1,2) are quasimomenta for particle 1 and 2, r
spectively. Finally it gives the Landau levels:

En1 ,n2
~g!5822g~n11n211!1g2@~2n111!2

1~2n211!212#/161O~g3!, ~25!

wheren1 and n2 are the Landau quantum numbers asso
ated with particle 1 and 2, respectively. To check the ac
racy of this formula, we compared it to the data extrac
from the numerical spectrum obtained by exact diagonal
tion. Figure 3 shows the accuracy of such a semiclass
expansion in the description of the spectrum of the tw
particle Harper model wheng°0.

III. WEAK INTERACTION REGIME

We present here a simple perturbative treatment that
ables us to implement the already presented results for
weakly interacting case. The first-order contribution allo
us to understand the splitting of Landau bands at sufficie
weak interaction, and describes it qualitatively well. It mo
over enlightens the mechanism through which interaction
fects the system. Using the representation defined by
~20!, we write the unperturbed Hamiltonian as

Heff52cos~AgK1!12cos~AgK2!. ~26!

In the semiclassical limitg°0, we expand~26! in a
power series around a minimum of potent

FIG. 3. Comparison between semiclassical calculations~25!
~full curves! and the exact numerical spectrum~points! for Landau
sublevels in the two-particle Harper model on the square lat
when U50. Data are extracted in the region of energies co
sponding to the maximum (0,0) of the band function.
-

i-
-
d
-
al
-

n-
he
s
ly
-
f-
q.

qN5p/Ag12pN/Ag, NPZ. Keeping only terms up to the
second order ing we end up with a harmonic oscillator. I
this approximation and in the continuous case the o
particle wave functions of the unperturbed Hamiltonian a
therefore given by

cn~y!5HnS y

Ag
D expS 2

y2

2gDYA2nn!Agp. ~27!

Here,Hn(x) is a Hermite polynomial, the indexn refers to
the Landau level,y5x2qN in terms of the minimum of
potentialqN around which the harmonic approximation h
been performed, andx is the spatial coordinate. This expre
sion is of course valid, providedg and ux2qNu!1, i.e., in
the small magnetic field regime, and not too far away from
potential minimum. Extending our expansion to higher po
ers ing would allow us to increase the range of validity
this expression. We could indeed write the exact normali
wave functions in an expansion ing as

wn~y!5expS 2
y2

2g D Fc0HnS y

Ag
D 1gc1Hn

~1!S y

Ag
D 1•••G .

~28!

For the purpose of discretization, we introduce a contin
ous variablejPR labeling the well, and a discrete onel
PZ numbering the sites. Theny5j2 lAg since in the cho-
sen representation, the intersite spacing isa5Ag. The set
$wn% builds a quasiorthogonal basis in the sense that foj
Þj8, due to the Gaussian envelop of the states we have

(
l

wn~j2 lAg!wm~j82 lAg!5O„exp~21/g!…dm,n .

~29!

These functions are periodic inj with period 1/Ag. In the
semiclassical limit the norm ofwn is

iwni25 (
l52`

`

uwn~j2 lAg!u251/AgE dyuwn~y!u251/Ag.

~30!

Consequently, to get normalized one-particle wave functi
on the discrete latticel (Z) we must multiply thew ’s by a
factor g1/4. We thus can write the symmetrized two-partic
unperturbed wave functions as

fn,m
j,j8~ l ,l 8!5Ag

2
@wn~j2 lAg!wm~j82 l 8g!

6wm~j2 lAg!wn~j82 l 8g!#

3@12dm,n~121/A2!#. ~31!

We are now able to compute the first-order correction
the energy. Because of the exponentially localized chara
of Eq. ~28!, two particles located on different wells hav
only an exponentially small overlap, and as a conseque
do practically not interact. Therefore the first-order intera
tion induced correction to the energy is nonzero only
symmetric wave functions withj5j8. We have

e
-
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DE~1!5U(
l

(
l 8

„fn,m
j,j8~ l ,l 8!…2d@j2j81~ l 82 l !Ag#

5Udj,j8E dy„wm~y!wn~y!…2~22dm,n!

1O„exp~21/g!…. ~32!

From Eq.~28!, the dominant term in the last integral is o
an orderO(Ag) so that we finally have

DE~1!;Udj,j8Ag. ~33!

The numerical factor can be estimated from the harmo
approximation~27! which leads to

DEh
~1!5Udj,j8A g

2p
5Udj,j8Aa ~34!

for states with Landau quantum numbers~0,0! and ~0,1!.
This result shows that the interaction primarily acts on tw
particle states with a high double-site occupancy. In w
follows we shall call such states ‘‘pair states.’’ States
which the particles are located around different poten
minima practically do not respond to the interaction. The
fore, switching on the interaction does not modify most
the spectrum as can be seen on Fig. 4.

From Eqs.~25! and~34! and for small enough interaction
the shifted part of the spectrum is given by

En1 ,n2
~g!;81UA g

2p
22g~n11n211!1g2@~2n111!2

1~2n211!212#/16. ~35!

The amazing agreement between the numerically c
puted spectrum obtained by exact Lanczos diagonaliza
and Eq.~35! is shown in Fig. 5 whereU50.4. It is a confir-
mation of our reasoning: pair states form the shifted par
the spectrum. Because these states are much fewer
states where particles are located in different wells,
shifted spectrum is much less dense. In this sense the i

FIG. 4. Spectrum of the two-particle Harper model with on-s
interaction atU50.4 up toq523.
ic

-
t
r
l
-
f

-
n

f
an
e
er-

action splits the butterfly into two parts. One of them is pra
tically not affected by the interaction and corresponds to
states where particles are far from each other. The sec
one is shifted and relays to the situation where particles fo
pair states. Here, the interaction results in a global shift
the spectrum. In this way, new states appear in the in
gaps of the noninteracting spectrum@see Figs. 4, 6, and Fig
1~b! in Ref. 21#. Direct analysis of eigenstates shows that t
corresponding states are exponentially localized.21 We shall
come back to this point later on for the case of strong int
action.

IV. STRONG INTERACTION REGIME

The strongly interacting regime needs a special treatm
quite analogous to the one presented in Sec. II. As we
see, Schur’s complement formula can be successfully
plied to construct an effective Hamiltonian. The latter is th
expanded in a power series ing to deliver highly accurate
formulas. From the weakly interacting regime we learn
that particles located on different potential minima do n
respond to each other: for such pairs, the interaction is s
pressed by an exponentially small term of ord
O„Uexp(21/g)…. Therefore, this picture remains valid eve
for largeU ’s, the relevant parameter being the magnetic fl
Pair states on the other hand undergo an energy increa
orderDE'U. Therefore when the strength of the interacti
U.0 increases, one part of the spectrum is almost not
fected. Another spectral structure appears, initially look
like a shifted butterfly~see Fig. 4 whereU50.4), then evolv-
ing to a shifted Mathieu spectrum as the interaction gro
bigger and bigger~see Figs. 6, 7, and 8 whereU55, 10, and
20, respectively!.

In this section, we present an analytical approach t
allows us to understand completely the mechanism driv

FIG. 5. Comparison between semiclassical calculations
tended by perturbation theory~35! ~full curves! and an exact nu-
merical spectrum~points! for the two-particle Harper model with
on-site interaction atU50.4.
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this evolution of the spectrum. Further details like the sp
ting of the Landau bandn150, n251 will also be computed,
even though the physics is less transparent there~see Fig. 7!.
We shall concentrate our semiclassical calculation near
band function maximumkc5(0,0) corresponding to the en
ergyz'U14 in the spectrum. The two-particle Hamiltonia
can be expressed in the following way:

HTIP5(
m,n

@2cos~gm1b!12cos~gn1b!#

3um^n&^m^nu1U(
m

um^m&^m^mu

1 (
mÞn

um^n&@^m^n11u1^m^n21u

1^m11^nu1^m21^nu#. ~36!

The strategy is based on the so-called Schur complem
formula. Our HamiltonianHTIP is a self-adjoint operator act

FIG. 6. Spectrum of the two-particle Harper model in the int
mediate regimeU55 up toq523.

FIG. 7. Spectrum of the two-particle Harper model in t
strongly interacting regimeU510 up toq523.
-

he

nt

ing on a Hilbert space that can be decomposed asH5P
%Q. Let P and Q be the orthogonal projections on eac
subspace of that decomposition, namely,

P5(
m

um^m&^m^mu,

Q5I2P5 (
mÞn

um^n&^m^nu.

In other words,P is the eigenprojection on pair states a
Q is its orthogonal. Ifz is an eigenvalue ofHTIP and does not
belong to the spectrum ofQHTIPQ then it is also an eigen
value of the following effective Hamiltonian:

HTIP
eff ~z!5PHTIPP1PHTIPQ

1

z2QHTIPQ
QHTIPP.

~37!

WhenU is large the dominant term in the effective Ham
tonian given by the Schur complement formula~37! corre-
sponds to the pair states. The semiclassical approach w
troduced in Sec. II remains valid so tha
HTIP
eff (z)5HTIP

eff @z01gz11g2z21O(g3)#. The implicit equa-
tion to be solved is then

HTIP
eff ~z!5z01gz11g2z21O~g3!, ~38!

with

HTIP
eff ~z!5HTIP

~0! ~z!1gHTIP
~1! ~z!1g2HTIP

~2! ~z!1O~g3!.
~39!

The expansion of the dominant term reads

PHTIPP5U14cos~AgK2!

5U1422gK2
21

g2

6
K2
41O~g3!, ~40!

and if we considerU large,z is large too so that

- FIG. 8. Spectrum of the two-particle Harper model in t
strongly interacting regimeU520 up toq523.
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1

z2QHTIPQ
5
1

z
1
QHTIPQ

z2
1
QHTIPQQHTIPQ

z3
1O~z24!.

~41!

Expressing the different contributions in Schur’s formula a
expanding in powers ofg leads to

HTIP
~0! ~z!541U1

8

z
1
32

z2
1
176

z3
1O~z24!,

HTIP
~1! ~z!5

22~z318z164!

z3 FK2
21

z214z134

z318z164
K1
2G ,

HTIP
~2! ~z!5

z318z1256

z3 FK2
41

z214z170

z318z1256
K1
4G

12
z18

z3
~K1

2K2
21K2

2K1
2!28

z18

z3

116
~z18!2

z3~z318z164!
~K1

21K2
2!. ~42!

Finally, we have to solve Eq.~38! to get the coefficients
z0 , z1, andz2. The corresponding equations for those co
ficients are at most of degree four. We shall give here
equation thatz0 has to satisfy at the orderO(z24),

41U1
8

z0
1
32

z0
2 1

176

z0
3 5z0 . ~43!

In a very similar way used for the computation ofz0, the
analytical expressions ofz1 andz2 can be derived from Eqs
~38!, ~42!, and~43!. The good agreement with the exact n
merical spectrum can be seen on Fig. 9 forU550. Here the
numerical values for the sublevels are forn1,250,
z(g)554.159720.2826g10.0356g2, for n1,25(0,1),
z(g)554.159720.8480g10.2084g2, for n1,25(1,1),

FIG. 9. Comparison between semiclassical calculations~full
curves, see text! and exact numerical spectrum~points! for levels in
the two-particle Harper model forU550.
d

-
e

z(g)554.159721.4133g10.5539g2. A similar computation
can be done near the band function minimumkc5(p,p)
corresponding to the energyz'U24.

The structure of the pair states forU@1 can be under-
stood in the following way: the diagonal term correspondi
to the energy of particles located on the same site
4lcos(gn1b)1U. The transition amplitude on the diagon
n1,25n is given by the amplitude of the hopping via virtu
states withn12n2561 and energy denominator 1/U. There
are two such paths so that the effective amplitude
Veff52/U. The same expression can be derived by the Sc
formalism ~see Sec. IV!. After dividing the Hamiltonian by
Veff we arrive to the eigenfunctions equation in the form
Harper ~14! with l replaced byleff5U@1. Sinceleff@1
whenU@1, the pair states are always within the localiz
phase of the Harper equation showing exponential local
tion. In Fig. 10, we show a typical eigenstate of the Mathi
part of the spectrum forU550 andg/2p534/55. The fact
that it is localized confirms the pure-point character of t
corresponding spectrum.

Above we showed that in the case of strong interacti
we haveleff@1. This explains the appearance of a pu
point component in the spectrum. However, we think th
this pure-point component will even appear for small valu
of the interaction. Our argument is the following: witho
interaction, the system obeys Aubry’s duality while the pre
ence of the interaction introduces Aubry’s duality breakin
Indeed, from Eq.~18! it is easy to see that the interaction ac
in the coordinate space and the symmetry with momen
space disappears whenUÞ0. Formally, this argument is no
sufficient to prove the existence of a pure-point spectrum
arbitrary smallU. However the ensemble of numerical da
we have here and in Refs. 22 and 21 confirms this con
ture.

WhenU is large, the unshifted part of the spectrum loo
very much like the spectrum atU50. The main difference
can be found by looking carefully at the Landau levels~see
Fig. 11!. The reminiscence of the existence of the interact
is seen through the appearance of a splitting of Landau s
levels. This splitting only exists when Landau quantum nu
bers are differentn1Þn2 and the two particles are located
the same well. Such a behavior is illustrated by Fig. 11. T
other sublevels are described by the semiclassical form

FIG. 10. Semilog plot ofW5uf( l ,l 8)u2 for a localized state
(E550.25,230< lnW<21).
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obtained in the caseU50 ~25!. To derive this splitting using
semiclassical analysis, we again apply the Schur complem
formula. Dealing with the unshifted butterfly leads us to co
sider as the dominant termQHTIPQ such that Eq.~37! be-
comes

HTIP
eff ~z!5QHTIPQ1QHTIPP

1

z2PHTIPP
PHTIPQ.

~44!

Applying the same scheme as before produces an a
tional shift from the unperturbed energy given in first ord
in g by

udE~g!u54
g

U14
. ~45!

This shift is valid for the second Landau sublev
(n150, n251), its accuracy is shown in Fig. 11 and the tw
splitted subbands are given byE(g)5824.1666g and
E(g)5824g up to order 1 ing.

V. TWO INTERACTING PARTICLES
ON A TWO-DIMENSIONAL LATTICE

Even though the studied model was derived from a mo
of two-dimensional electrons, its effective dimension is 1:
we already pointed out, Eq.~18! was derived assuming tha
the particle propagates as a plane wave in one direction.
assumption, though reasonable in the one-particle mo
could be violated by interaction induced quantum interf
ences in the two-particle case. Therefore the question of
survival of interaction induced localization effect for two in
teracting particles in two dimensions remains an open pr
lem. In this section we would like to discuss briefly th
situation. For two interacting particles moving on a tw

FIG. 11. Semiclassical calculations~45! ~full curve! and exact
numerical spectrum~points! for the splitting of then150, n251
Landau sublevel in the two-particle Harper model forU520.
nt
-

di-
r

l

el
s

is
el,
-
he

b-

dimensional square lattice submitted to a uniform magn
flux, the eigenvalue equation reads

eigy1cx111,y1 ,x2 ,y2
1e2 igy1cx121,y1 ,x2 ,y2

1cx1 ,y111,x2 ,y2

1cx1 ,y121,x2 ,y2
1eigy2cx1 ,y1 ,x211,y2

1e2 igy2cx1 ,y1 ,x221,y2
1cx1 ,y1 ,x2 ,y2111cx1 ,y1 ,x2 ,y221

1Ũdx1 ,x2dy1 ,y2
cx1 ,y1 ,x2 ,y2

5Ecx1 ,y1 ,x2 ,y2
, ~46!

where (x1,2,y1,2) are integers denoting the positions on t
square lattice andŨ is the on-site interparticle interaction
For Ũ50, the previous equation can be reduced to the o
dimensional Harper equation we discussed above Eq.~18!.
With interaction, the same equation~18! can be obtained in
the ansatz of plane waves propagating in one direction w
renormalized interactionU.22 While this plane-wave ap-
proximation is a standard approach for the one-part
Harper problem, it has to be handled with care in the int
acting case. Indeed this plane-wave ansatz breaks the
metry of the original problem~46!. This symmetry can be
seen in the limit of strong interactionU@1. In this case,
there should be two energy bands: one corresponding to
pair states when particles are located on the same site
energyE'U and the other withE'1 for the states in which
the two particles avoid each other. In the higher energy ba
the eigenvalue equation for the pair states up to the term
order 1/U has the form

2

U
~e2igyfx11,y1e22igyfx21,y1fx,y111fx,y21!

1Ufx,y5Efx,y . ~47!

Here the term 2/U represents the transition amplitude for pa
states. Its derivation is similar to the case of two interact
particles in the one-dimensional Harper model. Indeed if o
keepsx15x2 then the hopping term is given byVeff52/U
because there are two paths with virtual ener
U (y1,2→y1,211) which contribute to the hopping term i
the y direction. Similarly the hopping in thex direction is
Veff52e62ig/U.

This representation shows that the symmetry between
two directions or the Aubry duality is not broken by th
interaction. The main reason is that the symmetry of
interaction is invariant under rotations on the square latt
In the limit of largeU, this property can be seen through E
~47!. However the symmetry~Aubry’s duality! should also
be preserved for small interaction. Due to that, we exp
that similarly to the Harper model withl51, the interaction
will not generate a pure-point component in the spectru
However this conjecture has to be directly checked in furt
analytical and numerical studies.

VI. CONCLUSIONS

In this paper we have emphasized a localizing effect d
to the combined action of an on-site interaction and a qu
periodic potential. Unlike in the random potential case,20 ex-
tended unperturbed states are localized by the interac
and this localization occurs at arbitrarily small attractiv
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repulsive interaction. We successfully identified the mec
nism responsible for this effect as a decoupling of a Math
like model from the original two-particle Harper model
the limit of large interaction. Our conjecture is that a simi
mechanism will also work for smallU due to an interaction
induced breaking of Aubry’s duality. This breaking happe
in one-dimensional incommensurate models, howeve
two-dimensional magnetic models, we expect that the in
action will not break the duality and that a pure-point co
a-
u-

r

s
in
r-
-

ponent in the spectrum will not arise. Further verifications
these conjectures are required.
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