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Low-energy chaos in the Fermi–Pasta–Ulam problem

D L Shepelyansky†
Laboratoire de Physique Quantique, UMR C5626 du CNRS, Université Paul Sabatier, F-31062
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Abstract. A possibility that in the FPU problem the critical energy for chaos goes to zero
when the number of particles in the chain increases is discussed. The distribution for long linear
waves in this regime is found and an estimate for the new border of the transition to energy
equipartition is given.
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From 1955 the Fermi-Pasta-Ulam (FPU) problem [1] initiated much research and became
a cornerstone in modern statistical mechanics [2, 3]. The absence of energy equipartition
in the system of coupled nonlinear oscillators observed numerically in [1] pushed forward
the investigations of chaos as well as the analysis of completely integrable systems (see [3]
and references therein).

The first explanation of the striking result [1] was proposed by Chirikov and Izrailev [4]
on the basis of the Chirikov criteria of overlapping resonances [5]. According to [4] it is
necessary to exceed some critical energy value to obtain an overlapping of the resonances,
chaos and energy equipartition over linear modes. According to [4], in the case of low-
mode excitation (nonlinear sound waves), the critical energy increases with the number of
oscillators in the chain (or energy per oscillator is constant). Below this energy it was
argued that the resonances are not overlapped and the motion is close to an integrable one.
Since some of the initial conditions in [1] were below this border the energy equipartition
was absent [4]. The results of [4] were confirmed in the series of analytical and numerical
researches [6] where the authors also analysed the dependence of the Lyapunov exponents
on the energy. However, these researches showed that the relaxation to an equilibrium
distribution could be very long at small energies which makes it difficult to study the
transition from global chaos to integrable case.

In this paper the condition of resonance overlapping for long (sound) waves in the limit
of small energy is analysed. For long waves the dispersion law is very close to linear. Due
to that, for the system with a finite but large number of oscillatorsN there are some terms in
the nonlinear part of the Hamiltonian which are in the resonance even for very low energies.
Such resonances not being considered in [4] give a sharp decrease of the chaos border in
energy which goes to zero with the increase of the number of particles in the lattice. In this
sense the long-wave chaos can exist for arbitrarily small nonlinearity. The physical reason
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of this unusual phenomenon is connected with the linearity of unperturbed system. Due
to that, for the sound dispersion law which is typical for long waves, the KAM theorem
cannot be applied and chaos can appear for arbitrarily small nonlinear interaction. Such
kinds of phenomena have already been studied in different dynamical systems with a few
degrees of freedom [7–9]. In such a case the dynamics can be described by a renormalized
Hamiltonian independent on the strength of nonlinear interaction. In particular, the measure
of chaotic component remains unchanged with the decrease of nonlinearity. In the FPU-
problem a deviation of the dispersion law from the linear one gives rise to a critical chaos
border which is, however, extremely low and decreases with the number of particles in the
chain. The estimates for the chaos border allow us to understand under what conditions
energy equipartition sets in. Since generally chaotic systems have a divided phase space with
mixed chaotic and integrable components in this paper the energy equipartition is understood
in the following sense. Namely, it means that the energy is distributed approximately
homogeneously between all modes, however, it does not exclude that some relatively small
group of modes may have an integrable dynamics.

We start our analysis from theα-FPU problem with cubic nonlinearity in the
Hamiltonian:

H = 1

2

N∑
n=0

[pn
2+ (xn+1− xn)2] + α

3

N∑
n=0

(xn+1− xn)3 (1)

where the first sum gives the HamiltonianH0 of the linear waves and the second
sum represents the interactionHint. The boundary conditions are fixed asx0 = 0;
xN+1 = 0. The eigenmodes(Qk, Pk) of H0 are connected with the coordinatesxn, pk
by the equationsxn =

√
2/(N + 1)

∑
k Qk sin(qkn), pn =

√
2/(N + 1)

∑
k Pk sin(qkn)

with qk = πk/(N + 1), 1 6 k 6 N [2]. In this representationH0 can be written as
H0 =

∑
k (Pk

2+ ωk2Qk
2)/2 = ∑k ωkIk with the eigenfrequenciesωk = 2 sin(qk/2). The

action-angle variables(Ik, θk) are connected with(Pk,Qk) in the standard way [2].
It is convenient to write the total Hamiltonian in the action-angle variables(Ik, θk) of

the linear problem. Taking into account that the nonlinear coupling is small, we can keep
in Hint only the resonant terms corresponding to the resonant three-waves interaction. For
long waves, this condition corresponds tok3 = k2 + k1. All other terms can be eliminated
by averaging over fast oscillations with frequencies ofωk. After this procedure we obtain
the averaged Hamiltonian:

H̄ =
∑
k

ωkIk + α

2
√
N + 1

∑
k1,k2,k3

(ωk1ωk2ωk3Ik1Ik2Ik3)
1/2 cos(θk3 − θk2 − θk1)δk3,k1+k2 (2)

which can be written as̄H = H0+H̄int. Here the bar denotes averaging over fast oscillations
with ωk > ω1 = π/(N + 1). The term fast means thatω1 � δω whereδω is the typical
nonlinear frequencyδω ∼ ∂H̄int/∂θ ∼ α(E0/N)

1/2ωk. For a few low modes excited
around a givenk-value, we obtainδω ∼ α(E0/N)

1/2k/N whereE0 is the initial energy.
Following [4], where theβ-FPU model with quartic nonlinearity had been studied, we can
find the chaos border from the condition of the overlapping resonancesδω ∼ 1ω where
1ω ≈ ω1 ≈ π/N is the distance between the main resonances in (1). According to this
condition the global chaos appears forα̃ = αE0

1/2 > α̃CHI ∼
√
N/k.

The HamiltonianH̄ has additional integral of motionES = π
∑

k kIk/(N + 1) ≈ E0.
For long sound waves (k � N ) we can use approximate expression for the dispersion law
ωk = qk − q3

k /24 in H0 while in the term withH̄int it is sufficient to useωk = qk. By
using the new resonant phasesφk = θk − qkt we can transform (2) into the new resonant



Low-energy chaos in the Fermi–Pasta–Ulam problem 1333

Hamiltonian:

HR = −σ
M∑
k=1

k3Ik + 2µ
M∑
k1=1

M−k1∑
k2=1

(k1k2kk2+k1Ik1Ik2Ik2+k1)
1/2 cos(φk2+k1 − φk2 − φk1) (3)

whereσ = π3/(24(N + 1)3), µ = π3/2α/(4(N + 1)2) andM is the maximal number of
harmonics. It is convenient to introduce the new dimensionless timeτ = µt√ES(N + 1)/π
in which the dynamics is described by the renormalized resonant Hamiltonian

HRN = −ν
M∑
k=1

k3Jk + 2
M∑
k1=1

M−k1∑
k2=1

(k1k2(k2+ k1)Jk1Jk2Jk2+k1)
1/2 cos(φk2+k1 − φk2 − φk1) (4)

with one dimensionless parameter

ν =
√
πσ

µ
√
(N + 1)ES

= π2

6α
√
ES(N + 1)3/2

. (5)

The new actionsJk are connected with the old ones by the relationIk = ESJk(N+1)/π .
They are now normalized by the condition

∑M
k=1 kJk = 1.

Let us analyse now the dynamics of system (4). If initially only few modes are excited
around ak-value then the distance between the resonances is1ω ≈ νk3 while the width of
the resonance isδω ∼ k3/2Jk

1/2 ∼ k. From these estimates it is clear that the resonances
are overlapped [5] forν < νcr ∼ 1/k2 and then chaos arises. In the original variables this
means that the chaos border is given by

α
√
ES > α̃s ≈ k2

N3/2
or ν < 1/k2. (6)

This border, which takes into account the degenerate sound resonancesk3 = k2 + k1,
decreases with the growth ofN and isN2 times below the border of global chaosα̃CHI .
In the case of the excitation of low modes withk ∼ 1 the critical energy above which the
motion is chaotic isEc ∼ 1/(α2N3). Therefore, chaos arises at zero temperatureT = E0/N .

For a better understanding of the properties of system (4) a numerical investigation of
its dynamical motion was carried out. The initial conditions were usually fixed as three
excited modes withJ1 = J2 = J3 = 1

6 and different phasesφ. The calculations of the
maximal Lyapunov exponent show that above the border (6) the motion is characterized by
the positive exponentλRN that indeed demonstrates the existence of chaos in this regime.
Below the border the maximal Lyapunov exponent is zero (except exponentially narrow
chaotic layers). A typical example of the dependence ofλRN on the renormalized timeτ
is presented in figure 1. The energy distributionEk = kJk over linear modes is shown
in figure 2. To suppress the fluctuations, the values ofEk were averaged over timeτ in
the time interval [1000–2000]. Below the chaos border (6) the number of excited modes
remains the same as for the initial distribution. In contrast, above this border the energy is
distributed over some finite width1k which is much larger than the initial width. For the
high values ofk � 1k the distribution decays in an exponential way. In the whole interval
of k the energy distributionEk can be fitted by the effective distribution:

fk = A

l(exp(k/ l − γ )+ 1)
(7)

where the lengthl determines the effective number of excited modes,γ is some constant
which mainly effects the shape of the distribution for smallk andA is determined byγ
via the normalization condition

∑
Ek ≈

∫
fk dk = 1. For the case of figure 2, the optimal

value is γ = 2.65. It is interesting to note that the fitting (7) describes quite well the



1334 D L Shepelyansky

Figure 1. Maximal Lyapunov exponentλRN in (4) as a
function of timeτ : full curve: ν = 0.01,HRN = 0.544,
λRN > 0; broken curve: ν = 1, HRN = −5.45,
λRN → 0 (values ofλRN are multiplied by 5). For
figures 1–4 only three modes were initially excited with
J1 = J2 = J3 = 1

6 .

Figure 2. Averaged energy distributionEk = kJk over
linear modesk: full circles correspond to the case of
the full curve in figure 1 and open circles correspond
to the case of the broken curve in figure 1. The full
curve gives the fitting distribution (7) withl = 4.05;
γ = 2.65,A = 0.3678.

distribution Ek in the large interval 0.03 < ν < 0.0005 with the sameγ and different
l. This fact is demonstrated in figure 3 where six distributions are superimposed in the
rescaled variableslEk andk/l. The fitting (7) allows us to determine the dependence of the
length l on ν. This dependence is presented in figure 4 and is approximately given by the
equationl = 0.42/

√
ν. The same functional dependence onν takes place for the quantity

1/E1 which characterizes the width of the distribution1k for smallk. The existence of the
same scaling onν for l and 1/E1 confirms once more that the distributionEk has only one
scaling parameterl.

The obtained scaling ofl from ν can be understood on the following grounds. The
nonlinear resonance width in (4) isδω ∼ ∂HRN/∂Jk ∼ k3/2

√
Jkk

1/2 with k ∼ l. The last
termk1/2 gives the result of summation overk terms with random phases contributing inδω.
A typical distance between the resonances is1ω ∼ νk3. The number of excited modes is
determined by the chaos border given by the resonance overlapping:δω > 1ω. According
to this estimate the number of excited modes is1k ∼ l ∼ 1/

√
ν that is in agreement with

the numerical dependence from figure 4 and the previous estimate (6). Using the expression
for ν we can find the effective number of excited linear modes expressed via the original
variables:

1k ∼ l ∼ (α2E0N
3)1/4. (8)

From this expression it follows that for fixedα andE0 the number of excited modes is
quite large but still1k/N � 1.

In the same way we can obtain an estimate for the maximal Lyapunov exponentλRN
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Figure 3. Normalized energy distributionlEk as
function of k/l for the six different values ofν from
figure 4 (points). The full curve gives the fitting (7)
with γ andA from figure 2.

Figure 4. Dependence onν for: lengthl obtained from distributions of figure 3 (points); average
energy of first modeE1 (squares);λRN (open circles). The straight line shows the theoretical
dependencel ∼ 1/

√
ν.

in the renormalized Hamiltonian (4). Indeed,λRN ∼ δω ∼ k3/2
√
kJk with k ∼ l and

λRN ∼ k ∼ 1/
√
ν. Using the relation between the timet for the original system (1) and

the time τ in the renormalized Hamiltonian (4) we obtain the estimate for the maximal
Lyapunov exponent3 in the system (1):

3 = πα
√
ESλRN

4(N + 1)3/2
∼ α3/2E0

3/4

N3/4
. (9)

The numerical data for the dependence ofλRN on ν are presented in the figure 4.
Unfortunately, in the given interval ofν the variation ofλRN is not quite monotonic
and further numerical investigations are required for the verification of the theoretical
dependenceλRN ∼ 1/

√
ν (see the discussion below). Let us mention that the sign of

ν in (4) is not important and the results are qualitatively the same forν < 0 when the
absolute value ofν should be used in the estimates.

The comparison of3 with the distance between main resonances1ω shows that for
sufficiently largeN the nonlinear resonance widthδω ∼ 3 becomes larger than1ω ∼ 1/N .
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The condition3 > 1ω shows that the main resonances in (1) will be overlapped for

α
√
E0 > α̃eq ≈ 1/N1/6. (10)

Above this border the nonresonant terms neglected in the derivation of (2) give the
overlapping of the main resonances and forαE0 > 1/N1/3 the equipartition over all linear
modes modes can be expected. So, in the limit of largeN the equipartition can appear at
zero energy and zero temperature. The time required to reach the equipartition is inversely
proportional to3. Here it is important to note that chaos only appears for3 > 0, however,
3 > 0 does not imply ergodicity and is not directly related with the properties of probability
distribution in thek-space.

It is interesting to note that some conditions of [1] considered usually as integrable
(figure 1 in [3]) haveν ≈ 0.13. Direct computation in (4) for thisν value with corresponding
initial conditions gives, however,λRN = 0. This makes the question arise about a more
exact determination of the border of chaos|νcr |.

Let us now briefly discuss the properties of chaos in theβ-FPU model with quartic
interactionHint = β

∑
n(xn+1− xn)4/4. As in theα-case we should keep only the resonant

terms for four waves withk1 + k2 = k3 + k4. The resonance nonlinear width can be
estimated in the same way as in [4, 2]δω ∼ βE0ωk/N . The overlapping of the main
resonances happens forβE0 > N/k [4, 2]. However, for the resonant Hamiltonian, only
the deviation ofωk from the sound lawπk/N is important, so the distance between the
resonances can be estimated as1ω ∼ k3/N3†. This gives the border of slow chaos
βE0 > k2/N which is much below the standard border [4, 2]. Above this border the
number of excited low linear modes isk ≈ 1k ∼ √βE0N and the maximal Lyapunov
exponent is3 ∼ (βE0/N)

3/2 ∼ δω. The overlapping of the main resonances takes place
for 3 > 1/N or βE0 > N1/3. Above this border all linear modes are excited leading to
energy equipartition. In a difference from theα-model this border grows withN but the
critical temperatureT = E0/N still goes to zero.

The above theoretical estimates were based on the comparison of the splitting between
linear modes and nonlinear spread width. As in the case of the Chirikov criteria such
an approach cannot exclude a possibility that the system under investigation is completely
integrable or is very close to some of them. This point is very crucial for theα-FPU problem
since at low energy it is very close to the Toda lattice (see [2]). Due to that generally we
should expect that in contrast to the above estimates and numerical data the dynamics
of α-FPU problem will be integrable. To understand this apparent contradiction with the
numerical data additional simulations had been carried out. Namely, the total number of
harmonicsM has been increased up toM = 120 for the parameters of figure 1(a). While
the simulations become very heavy in such a case they give approximately lnτ/τ decay of
λRN up to λ ≈= 0.02 at maximally reachedτ = 400. This indicates that in a real system
with very largeM the Lyapunov exponent will be zero. At the same time such a change
of M did not affect the averaged energy distribution (see figure 2). For a better check of
this point a number of numerical simulations with the original Hamiltonian (1) have been
done withN up to 151 and the initial conditions corresponding to figure 1(a) with fixed
ν = 0.01. ForN = 61 the renormalized Lyapunov exponent (see (9)) was stabilized around
λRN ≈ 0.13 (the timetmax in the simulations wastmax≈ 9×105); for N = 101 the exponent
was also stabilized aroundλRN ≈ 0.065 (tmax≈ 9× 106). However, in both of these cases
the averaged energy distributionEk significantly increased at high modes as opposed to

† Here for1ω we used the estimatek3/N3 which is correct for the majority ofk. But for somek values (e.g.
neark1 = k2 = k3 = k4) this distance isk2/N3 that gives a wider spreading with1k ∼ βE0N , 3 ∼ (βE0)

2/N

and equipartition borderβE0 ∼ 1. However, the chaos originating from these resonances should be much slower.
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Figure 5. Same as in figure 2 obtained from the Hamiltonian (1) (see text).

figure 2. ForN = 151 during allt < tmax ≈ 6× 106 the value ofλRN was decreasing
as lnτ/τ reachingλRN ≈ 0.04 at tmax. At the same time the averaged distributionEk was
practically the same as in figure 2 (see figure 5). These additional data show that in the
low-energy limit the dynamics of theα-model is not chaotic (λRN = 0) as it can be expected
from the comparison with the Toda lattice, despite the fact that the energy distribution (see
(7)) is correctly given by the above estimates derived from the renormalized Hamiltonian.
The reason why the renormalized dynamics is so sensitive to the maximal value ofM is
still not quite clear. It is possible that the important effects of coupling to high modes
can be understood from a nonlinear wave equation in the continuous limit (see [10]). Very
recently, the properties of the Lyapunov exponent in the system (1) withN up to 128 were
studied [11].

The situation for theβ-model can be more interesting. Indeed, apparently this model
is not close to any integrable system and the above renormalization approach and estimates
should give correct chaos borders. The picture of low-energy chaos developed here is
qualitatively close to the one in [12]. However, additional investigations of this regime are
still highly desirable. They should clarify some uncertainties in the estimate of1ω†. Also
the question of coupling to high modes can play a very crucial role [13].
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