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Low-energy chaos in the Fermi—Pasta—Ulam problem

D L Shepelyansky

Laboratoire de Physique Quantiqgue, UMR C5626 du CNRS, UnigePaul Sabatier, F-31062
Toulouse Cedex 4, France

Received 14 November 1996, in final form 12 June 1997
RecommendedybE B Bogomolny

Abstract. A possibility that in the FPU problem the critical energy for chaos goes to zero
when the number of particles in the chain increases is discussed. The distribution for long linear
waves in this regime is found and an estimate for the new border of the transition to energy
equipartition is given.
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From 1955 the Fermi-Pasta-Ulam (FPU) problem [1] initiated much research and became
a cornerstone in modern statistical mechanics [2,3]. The absence of energy equipartition
in the system of coupled nonlinear oscillators observed numerically in [1] pushed forward
the investigations of chaos as well as the analysis of completely integrable systems (see [3]
and references therein).

The first explanation of the striking result [1] was proposed by Chirikov and Izrailev [4]
on the basis of the Chirikov criteria of overlapping resonances [5]. According to [4] it is
necessary to exceed some critical energy value to obtain an overlapping of the resonances,
chaos and energy equipartition over linear modes. According to [4], in the case of low-
mode excitation (nonlinear sound waves), the critical energy increases with the number of
oscillators in the chain (or energy per oscillator is constant). Below this energy it was
argued that the resonances are not overlapped and the motion is close to an integrable one.
Since some of the initial conditions in [1] were below this border the energy equipartition
was absent [4]. The results of [4] were confirmed in the series of analytical and numerical
researches [6] where the authors also analysed the dependence of the Lyapunov exponents
on the energy. However, these researches showed that the relaxation to an equilibrium
distribution could be very long at small energies which makes it difficult to study the
transition from global chaos to integrable case.

In this paper the condition of resonance overlapping for long (sound) waves in the limit
of small energy is analysed. For long waves the dispersion law is very close to linear. Due
to that, for the system with a finite but large number of oscillatérthere are some terms in
the nonlinear part of the Hamiltonian which are in the resonance even for very low energies.
Such resonances not being considered in [4] give a sharp decrease of the chaos border in
energy which goes to zero with the increase of the number of particles in the lattice. In this
sense the long-wave chaos can exist for arbitrarily small nonlinearity. The physical reason
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of this unusual phenomenon is connected with the linearity of unperturbed system. Due
to that, for the sound dispersion law which is typical for long waves, the KAM theorem
cannot be applied and chaos can appear for arbitrarily small nonlinear interaction. Such
kinds of phenomena have already been studied in different dynamical systems with a few
degrees of freedom [7-9]. In such a case the dynamics can be described by a renormalized
Hamiltonian independent on the strength of nonlinear interaction. In particular, the measure
of chaotic component remains unchanged with the decrease of nonlinearity. In the FPU-
problem a deviation of the dispersion law from the linear one gives rise to a critical chaos
border which is, however, extremely low and decreases with the number of particles in the
chain. The estimates for the chaos border allow us to understand under what conditions
energy equipartition sets in. Since generally chaotic systems have a divided phase space with
mixed chaotic and integrable components in this paper the energy equipartition is understood
in the following sense. Namely, it means that the energy is distributed approximately
homogeneously between all modes, however, it does not exclude that some relatively small
group of modes may have an integrable dynamics.

We start our analysis from the-FPU problem with cubic nonlinearity in the
Hamiltonian:

¢ 2 21, ¢ s 3
H = Q;[pn + (xn+l - xn) ] + 5; (xil+1 - )C,,) (1)

where the first sum gives the HamiltonialH, of the linear waves and the second
sum represents the interactiaff,;. The boundary conditions are fixed ag = 0;
xy+1 = 0. The eigenmodesQ;, P;) of Hy are connected with the coordinates, px
by the equationsy, = /2/(N +1) Y ; Qcsinlgin), pn = +2/(N+1) ), Pcsin(gin)
with g, = 7wk/(N + 1), 1 < k < N [2]. In this representatiorH, can be written as
Ho = Y, (P® + wi?0:%)/2 = Y, wi I with the eigenfrequencies; = 2sin(g;/2). The
action-angle variable@l,, 6;) are connected witliP;, Q) in the standard way [2].

It is convenient to write the total Hamiltonian in the action-angle variablesd;) of
the linear problem. Taking into account that the nonlinear coupling is small, we can keep
in Hin; only the resonant terms corresponding to the resonant three-waves interaction. For
long waves, this condition correspondsitp= k, + k;. All other terms can be eliminated
by averaging over fast oscillations with frequenciesopf After this procedure we obtain
the averaged Hamiltonian:

- o
H= Zwklk + Z (wklwkgwk31k11k21k3)l/2 COOk, — Ok, — Oky) ks ky+ko 2
% 2N +1,%%

which can be written a& = Ho+ Hi,. Here the bar denotes averaging over fast oscillations
with wy > w1 = /(N + 1). The term fast means that > Sw wheredw is the typical
nonlinear frequencyw ~ 9Hiy/30 ~ a(Eo/N)Y?w,. For a few low modes excited
around a giverk-value, we obtairSw ~ «(Eo/N)Y?k/N where Eq is the initial energy.
Following [4], where the3-FPU model with quartic nonlinearity had been studied, we can
find the chaos border from the condition of the overlapping resonahces Aw where
Aw ~ w1 ~ /N is the distance between the main resonances in (1). According to this
condition the global chaos appears 0= a EgY? > ey ~ v/N/k.

The HamiltonianH has additional integral of motiof'y = 7 > kIk/(N +1) =~ E,.
For long sound wavesc(« N) we can use approximate expression for the dispersion law
wr = qx — q/24 in Hy while in the term with Hiy it is sufficient to usew, = g;. By
using the new resonant phasgs= 6, — ¢;t we can transform (2) into the new resonant
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Hamiltonian:
M M—ki
= —GZ I+ 21 ) > (kakaki ik, Ty Ty iy 140) V> €Oy 1k, — i, — B, 3)
k=1 k=1

whereo = 73/(24N + 1)%), u = 7%« /(4(N + 1)?) and M is the maximal number of
harmonics. It is convenient to introduce the new dimensionlesstimeut/Es(N + 1)/7
in which the dynamics is described by the renormalized resonant Hamiltonian

M M—ki
Hgn = —vZ BI4+2) "> (kakaka + k1) Jiy o Jip10,) % €Oy ty — br, — 1) (8)
k=1 ki=1 k=1
with one dimensionless parameter
JTo B n?

®)

u/(N+DEs  6ay/Es(N +1)%2

The new actiongd;, are connected with the old ones by the relatipe= EgJ;(N+1) /7.
They are now normalized by the conditign,”, kJ; = 1.

Let us analyse now the dynamics of system (4). If initially only few modes are excited
around ak-value then the distance between the resonancAsiss vk® while the width of
the resonance 8w ~ k%2J,%? ~ k. From these estimates it is clear that the resonances
are overlapped [5] for < v, ~ 1/k? and then chaos arises. In the original variables this
means that the chaos border is given by

2

. k
o Es>a5%W or v < 1/k% (6)

This border, which takes into account the degenerate sound resorianeek, + k1,
decreases with the growth @f and is N2 times below the border of global chadg ;.

In the case of the excitation of low modes with~ 1 the critical energy above which the
motion is chaotic isE. ~ 1/(«?N?). Therefore, chaos arises at zero temperafuge Eq/N.

For a better understanding of the properties of system (4) a numerical investigation of
its dynamical motion was carried out. The initial conditions were usually fixed as three
excited modes with/; = J» = J3 = % and different phaseg. The calculations of the
maximal Lyapunov exponent show that above the border (6) the motion is characterized by
the positive exponentry that indeed demonstrates the existence of chaos in this regime.
Below the border the maximal Lyapunov exponent is zero (except exponentially narrow
chaotic layers). A typical example of the dependence.gf on the renormalized time
is presented in figure 1. The energy distributiBp = kJ, over linear modes is shown
in figure 2. To suppress the fluctuations, the valuespfwere averaged over time in
the time interval [1000-2000]. Below the chaos border (6) the number of excited modes
remains the same as for the initial distribution. In contrast, above this border the energy is
distributed over some finite widthk which is much larger than the initial width. For the
high values of > Ak the distribution decays in an exponential way. In the whole interval
of k the energy distributior; can be fitted by the effective distribution:

fi= ™
(expk/l —y)+1)
where the lengthi determines the effective number of excited modess some constant
which mainly effects the shape of the distribution for snkatind A is determined byy
via the normalization conditio}" Ex ~ [ f; dk = 1. For the case of figure 2, the optimal
value isy = 2.65. It is interesting to note that the fitting (7) describes quite well the
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Figure 1. Maximal Lyapunov exponeritry in (4) as a
. function of timez: full curve: v = 0.01, Hrny = 0.544,
0 TR AR Bl s ekl ARN > O; broken curve:v = 1, Hry = —5.45,
0 500 1000 1500 2000 A*rn — O (values ofirn are multiplied by 5). For
figures 1-4 only three modes were initially excited with
T h=lh=J=4}.
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Figure 2. Averaged energy distributiof; = kJ; over
linear modesk: full circles correspond to the case of
! T ! the full curve in figure 1 and open circles correspond
to the case of the broken curve in figure 1. The full
curve gives the fitting distribution (7) with = 4.05;

k y = 2.65, A = 0.3678.
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distribution E; in the large interval @3 < v < 0.0005 with the sames and different

[. This fact is demonstrated in figure 3 where six distributions are superimposed in the
rescaled variablesE; andk/I. The fitting (7) allows us to determine the dependence of the
lengthl on v. This dependence is presented in figure 4 and is approximately given by the
equation/ = 0.42/,/v. The same functional dependence otekes place for the quantity
1/E; which characterizes the width of the distributiovt for smallk. The existence of the
same scaling om for [ and I/ E;1 confirms once more that the distributidh has only one
scaling parametdr.

The obtained scaling aof from v can be understood on the following grounds. The
nonlinear resonance width in (4) 88> ~ 8 Hrn/0Jx ~ k%/2/JkY? with k ~ 1. The last
termk'/? gives the result of summation ovieterms with random phases contributingsia.

A typical distance between the resonancedis ~ vk®. The number of excited modes is
determined by the chaos border given by the resonance overlagjang: Aw. According

to this estimate the number of excited modegis~ [ ~ 1/,/v that is in agreement with

the numerical dependence from figure 4 and the previous estimate (6). Using the expression
for v we can find the effective number of excited linear modes expressed via the original
variables:

Ak ~ [ ~ (@®?EoN3)Y4, (8)

From this expression it follows that for fixed and Eq the number of excited modes is
quite large but stillAk/N « 1.
In the same way we can obtain an estimate for the maximal Lyapunov expbgent
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—20 Lo b b by v 0 Figure 3. Normalized energy distributiodE; as

0 5 10 15 20 function ofk/! for the six different values of from

figure 4 (points). The full curve gives the fitting (7)
k/}l with y and A from figure 2.
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Figure 4. Dependence on for: length/ obtained from distributions of figure 3 (points); average
energy of first modeF; (squares)irn (Open circles). The straight line shows the theoretical
dependencé ~ 1/,/v.

in the renormalized Hamiltonian (4). Indeeblzgny ~ S ~ k2 /kJ; with k ~ [ and
ARN ~ k ~ 1/4/v. Using the relation between the timefor the original system (1) and
the time t in the renormalized Hamiltonian (4) we obtain the estimate for the maximal
Lyapunov exponent in the system (1):

_ TTOA/ ES)\.RN 0[3/2E03/4
AN +1)¥2 N3/4

9)

The numerical data for the dependenceiafy on v are presented in the figure 4.
Unfortunately, in the given interval of the variation ofAgy iS not quite monotonic
and further numerical investigations are required for the verification of the theoretical
dependence.ry ~ 1/4/v (see the discussion below). Let us mention that the sign of
v in (4) is not important and the results are qualitatively the samevfer 0 when the
absolute value of should be used in the estimates.

The comparison ofA with the distance between main resonanges shows that for
sufficiently largeN the nonlinear resonance widibb ~ A becomes larger thatsw ~ 1/N.
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The conditionA > Aw shows that the main resonances in (1) will be overlapped for
ay/Eg > @y ~ 1/NYC. (10)

Above this border the nonresonant terms neglected in the derivation of (2) give the
overlapping of the main resonances andddi, > 1/N/3 the equipartition over all linear
modes modes can be expected. So, in the limit of la¥géhe equipartition can appear at
zero energy and zero temperature. The time required to reach the equipartition is inversely
proportional toA. Here it is important to note that chaos only appearsAfos 0, however,

A > 0 does not imply ergodicity and is not directly related with the properties of probability
distribution in thek-space.

It is interesting to note that some conditions of [1] considered usually as integrable
(figure 1in [3]) havev ~ 0.13. Direct computation in (4) for this value with corresponding
initial conditions gives, howevenry = 0. This makes the question arise about a more
exact determination of the border of chgog|.

Let us now briefly discuss the properties of chaos in S(AEPU model with quartic
interactionHint = B, (Xy11 — x,)*/4. As in thex-case we should keep only the resonant
terms for four waves withk; + k» = k3 + k4. The resonance nonlinear width can be
estimated in the same way as in [4,& ~ BEowi/N. The overlapping of the main
resonances happens f8Ey > N/k [4,2]. However, for the resonant Hamiltonian, only
the deviation ofw, from the sound lawrk/N is important, so the distance between the
resonances can be estimated &® ~ k3/N3f. This gives the border of slow chaos
BEo > k?/N which is much below the standard border [4,2]. Above this border the
number of excited low linear modes ks~ Ak ~ ./BEoN and the maximal Lyapunov
exponent isA ~ (BEg/N)%? ~ 8w. The overlapping of the main resonances takes place
for A > 1/N or BEy > NY3. Above this border all linear modes are excited leading to
energy equipartition. In a difference from themodel this border grows wittv but the
critical temperaturel’ = Eg/N still goes to zero.

The above theoretical estimates were based on the comparison of the splitting between
linear modes and nonlinear spread width. As in the case of the Chirikov criteria such
an approach cannot exclude a possibility that the system under investigation is completely
integrable or is very close to some of them. This point is very crucial foatR®U problem
since at low energy it is very close to the Toda lattice (see [2]). Due to that generally we
should expect that in contrast to the above estimates and numerical data the dynamics
of «-FPU problem will be integrable. To understand this apparent contradiction with the
numerical data additional simulations had been carried out. Namely, the total number of
harmonicsM has been increased up 46 = 120 for the parameters of figurea)( While
the simulations become very heavy in such a case they give approximateghy tirecay of
ARN Up toA ~= 0.02 at maximally reached = 400. This indicates that in a real system
with very large M the Lyapunov exponent will be zero. At the same time such a change
of M did not affect the averaged energy distribution (see figure 2). For a better check of
this point a number of numerical simulations with the original Hamiltonian (1) have been
done with N up to 151 and the initial conditions corresponding to figure) MWith fixed
v = 0.01. ForN = 61 the renormalized Lyapunov exponent (see (9)) was stabilized around
Arn A 0.13 (the timeryqx in the simulations wagna, ~ 9 x 10°); for N = 101 the exponent
was also stabilized arouritky =~ 0.065 (fmax =~ 9 x 10°). However, in both of these cases
the averaged energy distributidfy, significantly increased at high modes as opposed to

 Here for Aw we used the estimate?/ N3 which is correct for the majority of. But for somek values (e.g.
neark; = ko = k3 = k4) this distance i%?/N°3 that gives a wider spreading withk ~ BEoN, A ~ (8Eg)?/N
and equipartition borde$ Eo ~ 1. However, the chaos originating from these resonances should be much slower.
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Figure 5. Same as in figure 2 obtained from the Hamiltonian (1) (see text).

figure 2. ForN = 151 during allr < fmax ~ 6 x 10° the value ofigy Was decreasing

as Int/t reachingigry ~ 0.04 atrmax. At the same time the averaged distributiBp was
practically the same as in figure 2 (see figure 5). These additional data show that in the
low-energy limit the dynamics of the-model is not chaoticAry = 0) as it can be expected
from the comparison with the Toda lattice, despite the fact that the energy distribution (see
(7)) is correctly given by the above estimates derived from the renormalized Hamiltonian.
The reason why the renormalized dynamics is so sensitive to the maximal vaMeiof

still not quite clear. It is possible that the important effects of coupling to high modes
can be understood from a nonlinear wave equation in the continuous limit (see [10]). Very
recently, the properties of the Lyapunov exponent in the system (1)Avitip to 128 were
studied [11].

The situation for the8-model can be more interesting. Indeed, apparently this model
is not close to any integrable system and the above renormalization approach and estimates
should give correct chaos borders. The picture of low-energy chaos developed here is
qualitatively close to the one in [12]. However, additional investigations of this regime are
still highly desirable. They should clarify some uncertainties in the estimate.gf Also
the question of coupling to high modes can play a very crucial role [13].
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