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Quantum Localization in Rough Billiards
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We study the level spacing statistiggs) and eigenfunction properties in a billiard with a rough
boundary. Quantum effects lead to localization of classical diffusion in the angular momentum space
and the Shnirelman peak ip(s) at smalls. The ergodic regime with Wigner-Dyson statistics is
identified as a function of roughness. ApplicationgXapoiling in optical resonators are also discussed.
[S0031-9007(97)02470-8]

PACS numbers: 05.45.+b, 72.15.Rn, 03.65.5q

In 1984, Bohigas, Giannoni, and Schmit [1] demon-surfaces in microdisk lasers [8], and capillary waves on
strated that random matrix theory (RMT) [2] describes thea surface of small metallic clusters [10]. On a first glance
level spacing statistics of classically chaotic billiards. Af-it seems that such a rough boundary in a circular billiard
ter that such types of billiards have been studied in greawill destroy the conservation of angular momentum
detail by different groups [3]. However, all the billiards leading to ergodic eigenstates and RMT level statistics. In
under investigation were characterized only by one typispite of this we show that there is a region of roughness in
cal time scaler., namely, the time between collisions with which the classical dynamics is chaotic but the eigenstates
the boundary. Another type of chaotic systems with dif-are localized and the level spacing statistigs) has the
fusive behavior, like the kicked rotator [4], has an addi-sharp Shnirelman peak at small spacingd1,12]. We
tional much longer time scale, > 7. which is required also demonstrate the close relation between this model
to cover the accessible phase space. In this situation quaand the kicked rotator.
tum interference effects may lead to exponential localiza- As a model of a rough billiard we chose a circle
tion of the eigenstates and disappearance of level repulsiowith a deformed elastic boundary given By6) = R, +

Recently, it has been shown [5] that the diffusive regimeAR(9) with AR()/Ry = ReY¥_, y,.e™?. Herey,, are
also appears in a nearly circular Bunimovich stadium bil-random complex coefficients aiMlis large but finite. The
liard. The authors of [5] gave an estimate for the localiza-surface roughness is given ky9) = (dR/d0)/Ry. Inthe
tion length in the angular momentum space and found théollowing, we will consider the case of weak roughness
energy bordeE., above which the eigenstates become er« < 1. One can model different types of surfaces by
godic on the energy surface [6]. Their numerical resulthoosing an appropriate dependence of amplitudes.on
demonstrate the change of level statistics from WignerHowever, our results show that in the domain of strong
Dyson to Poisson when the energy becomes smaller thathaos the classical diffusion and quantum localization
E.,. However, this example, while very interesting for in orbital momentum space are determined by the angle
mathematical studies, is not realistic for physical systemsaveragei’> = (x2(6))s. Because of that we choose a typi-

At the same time a great progress has been reached ¢l dependence,, ~ 1/m such that all harmonics give the
optics of microcavities like micrometer-size droplets [7] same contribution ik? ~ M(AR/R)>.
and microdisk lasers [8]. The industrial request to pro- First, we consider the classical ray dynamics which for
duce directed light pushed the researchers to investigate <« 1 can be described by the followingugh map:
ray dynamics in weakly deformed circular billiards and

droplets. It was shown that above some critical deforma- =1+l — 17 x(0),
tion the ray dynamics becomes chaotic. As a consequence 0 =0+ a — 2arcsinl/Ina) - (1)

the directionality of light from droplets an@ factors of
such resonators are strongly affected [9]. However, duélere the first equation gives the changd ¢&nd velocity
to the smoothness of deformation the diffusive regime wasector) due to the collision with boundary and the second
hardly accessible in such systems. one the change of angle between collisions. This map
In this Letter, we investigate another type of genericdescribes the dynamics in the vicinity of a resonant value
boundary deformation which may have important physical, defined by the conditio® = 6 + 27 r with integer
applications. Namely, we consider billiards with a roughr, and /.« IS the maximall at given particle velocity
boundary. In this approach, the boundary is a randomv. Our numerical simulations of exact ray dynamics
surface with some finite correlation length. The physicalshow that the rough map (1) indeed gives an excellent
realizations of such a situation can be quite different. Aglescription (see Fig. 1). A similar map for a stadium
examples, we can mention surface waves in the dropletsilliard was given in [5]. However, in contrast to [5],
which are practically static for the light [7], nonideal where () has a discontinuity, the global chaos sets in
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0.03 This is a local unitary expression fér nearl, which is
'A"l valid for Al = |l = I'| < lypax = kRo andM < lpsx. A
0.02 stationary phase approximation for théntegral gives the
classical change df[see (1)] and determines the structure
0.01 } : ) L D
A [‘ ﬂﬁ n {\ of § matrix. In fact, this matrix is very similar to the
0 2 f\ evolution operator of the kicked rotator [4] corresponding
V W V \/\} i to AR « cosf. According to this analogy the localization
-0.01 | length ¢ is determined by the classical diffusion rdte=
BD/2 where B8 is the symmetry index for orthogonal
-0.02 1 (B = 1) [15] or local unitary symmetry g = 2) [16].
Since generallyAR(8) # AR(—6), we haveB = 2 so
-0.03 0 1 2 3 4 5 6 that the localization length is directly determined by the
0 roughness
FIG. 1. Comparison of the exact dynamics (points) and the t=D= 4(lr2nax - 13)7‘; (4)

rough map (1) [full curvex(#)]. The points correspond to

Kl = (0 - 1))V — ) andM = 20, & = 0.011. This result can also be derived on a more rigorous ground

based on the supersymmetry approach for a model with
random phaseg; [14]. The expression (4) is only valid
only if the roughness is above some critical vakue- x..  for D > M while 1 < D < M corresponds to a more
Below «. the KAM theory is valid and the phase spacecomplicated regime witit ~ M (see below). Forl <

is divided by invariant curves. The chaos border can bé® < Imax the eigenfunctions are exponentially localized
estimated on the basis of Chirikov criteria of overlappingin the orbital spacea;| = exp(—|l — Iol/€) while the
resonances [13] which gives. ~ 4M ~5/2 (the numerical classical dynamics is ergodic on the whole energy surface.
coefficient is extracted from the data fof = 20). This The quantum dynamics becomes ergodic only for
border drops strongly withM/, and therefore we will Imix. According to the Weyl formula the level number
concentrate on the regime of strong chaos without visibl@t energyE is N =~ mRSE/2h* = 2, /4. Therefore the
islands of stability (case of Fig. 1). In this regime the states are ergodic for

spreading in angular momentum space goes in a diffusive ]
way with a diffusion constant that is easily estimated N>N,~ —. (5)
from (1) asD = (Al)?/At = 4(12,, — [2)&* where At 64R

is measured in number of collisions. The physical timeThis porder is much higher than the perturbative border
required for diffusive spreading over the energy surface isy < y, = 1/(16&2) where the diffusion mixes less than

Tp = Telpay /D With 7. ~ Ro/v. one state ~ 1). These different regimes are presented
Now, we turn to the investigation of the quantum prob-j, Fig. 2.
lem. For this we expand the wave functigrir, 6) with To check the above theoretical predictions, we have

energy E = /i’k*/2m in terms of the Hankel functions solyed numerically the boundary condition itr, 8) (2).
which form a complete set,

— (+) il6 (=) il6
#(r.0) = YlaiHin e + bty (k)] @) o Chaos T onder
The regularity ofys at r = 0 requiresa; = b; so that N ,5 N, |
a; are the amplitudes in angular momentum space. The s S ,(‘)@5:
boundary condition/[R(#),6] = 0 results in a second 10 & o&” Np
equationb; = >, Syy(E)ay where S;;(E) has the mean- . \)o‘ |
ing of a scattering matrix for waves reflected at the rough A ¥ I
boundary. The energy eigenvalues are determined by 107 I
defl — S(E)] = 0. A convenient expression for thg |
matrix can be obtained by the quasiclassical approxima- Perturbative:
tion H ™ (kr) = 22mky(r)r] /> expl=ipmi(r) — m/4]} 102 100 1/K2

where ki(r) = k(1 = r7/r)V2, w(r) = [, d7 ki(F), . . . .
and r; = |I|/k is the classical turning point. From this FIG. 2. Global diagram showing the eigenstate properties for

i it i different values of level numbe¥ and roughnes& for D >
representatlon_ and the boundary conditionjfowe obtain M. The two full lines give the ergodicM,) and perturbative
(for more details see [14])

(N,) borders, the dashed line is the classical chaos border
, ) ) ) k. =~ 0.002 for M = 20. The parameters of Figs. 3 and 4 are
Sy = e BRITinr Ro)Tim/27) o1 2k, RIAR@)| 17y —(3)  shown by the two points with arrows.
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FIG. 3. Level spacing distributiop(s) for Iy =~ 100, M = FIG. 4. The amplitudeda,| for three typical eigenfunctions

20, and average roughness) (x = 0.16 (ergodic, ¢ ~ 1000) corresponding to the parameters of Fig. 3 (with level number
and p) & = 0.012 (localized, ¢ = 6). The total statistics is N ~ 2250): (a) ergodic case; k) localized quasidegenerate
2000 levels 2150 < N < 2350) from ten different realizations ~state withs = 0.1 and fitted localization lengtif ~ 9 (dashed

of the rough boundary. Also shown are the Wigner-Dyson andine); (¢) nondegenerate localized state with fittéd~ 7.5
rescaled Poisson distributions with = 0.33. (dashed line). The full line shows the theoretical length [see

Eqg. (4)]€ = 5. The rough boundary realization is the same as
in Figs. 1(b) and 1(c) or appropriately rescalejl (The curves

In this way, we have obtained both the energy eigenvaluel andc are shifted by factor$0™2 or 107, respectively.
and the amplitudes; (with normalization, |¢;|> = 1).
In the ergodic regimeV > N,, we find that the level to a quasidegenerate Shnirelman state. We also observed
spacing statisticg(s) is in a good agreement with RMT many other similar states with much smaller level split-
(see Fig. 3). On the contrary, in the localized regimeting (s < 1072). The other localized state has the maxi-
N < N., approximately each second level is quasidemum I, = 0 and corresponds to a nondegenerate level.
generate leading to the Shnirelman peak [11] at smalBoth states clearly show exponential localization indicated
spacings (Fig. 3). This peak represents approximately By the dashed lines. The numerical values of the local-
fraction ~ 0.33 of all spacings. The other spacings arejzation length are a bit higher than the estimate (4) with
described by a rescaled Poisson distributidm) = (1 — I = ly < lpax-
a)’exd—(1 — a)s]. The appearance of the Shnirelman  To understand this discrepancy, we have calculdted
peak is in agreement with the prediction made in [12]. Itsfor a wide region ofM and k. Many cases were sys-
physical origin is the time reversal symmet§'( _, =  tematically different from (4). To increase the parameter
S;» ora—; = a;) due to which two states localized around range we also studied the effective kicked rotator model
lp and —1[, form a quasidegenerate pair of symmetric andwith random phaseg; in the evolution operator (3) (and
antisymmetric states [17]. The original Shnirelman theo-,,x = 100, I, = 0). The results of these studies demon-
rem was formulated for quasi-integrable billiards [11]. strate the scaling behavidyM = f(D/M) (see Fig. 5).
Our case corresponds to the chaotic domain; however, b&e attribute the remaining difference between the two
cause of localization the peak still exists. A similar situa-models to a smaller sample size for the billiadd{ vs
tion for the kicked rotator was studied in [12]. The fraction 600) and finitel, ~ [.x values there. Fob > M the
of nondegenerate level$ - 2a = 0.34) is due to states scaling reproduces the estimate (4) while for< M the
localized neaty, = 0. The measure of such states is ap-length £ remains close taV/. In this case, the evolu-
proximately4€/l,.x = 1 — 2a where the numerical coef- tion operator becomes a band random matrix of witdth
ficient was extracted from our data (see Fig. 4). This peakvith strongdiagonalfluctuations. They are much larger
was not found in [5] because the stadium billiard has adthan the off-diagonal matrix elements so tifat- M for
ditional symmetries and only the states of one parity werd < D < M [18].
considered. Let us now discuss how the above properties of eigen-
In Fig. 4, we show three typical eigenfunctions in an-states will affect the characteristics of resonators with
gular momentum representation. In the ergodic case, th@ugh boundaries. In optical resonators the rays with large
probability is homogeneously distributed, almost in thereflection angle escape from the system [9]. Because of
whole interval(—/imax, Imax)- W€ mention that in our com- that there is an effective absorption in the momentum space
putations we have included about ten evanescent modésr ! < /. wherel, is determined by the reflection index so
(with |I] > kRo). The two other wave functions are in the that typically/./In.x = 1/2. This absorption affects the
localized regime of Fig. 2 withf < [..x. One of them Q value of the resonator which is approximately equal to
has a double peak structure due to tunneling between tintee number of collisions until the escape. In the ergodic
reversed angular momentum states. This state corresponggime this number is determined by diffusive spreading
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more general 3D smooth integrable billiards (e.g., ellip-
soid). There the precession frequency is rather high due
to asymmetry of the smooth boundary, and the diffusion
becomes really two dimensional on the energy surface.
As for localization in 2D disordered systems, one might
expect an exponential fast increasefoiith the rough-
ness (If ~ 12, k2).

We wonder if the periodic orbit approach can lead to a
deeper understanding of spectral properties when quantum
effects break classical ergodicity on an energy surface

0.1 AR " with diffusion.

0.01 0.1 1 10
D/M

FIG. 5. Rescaled localization lengtt/M as a function of . .

rescaled diffusion rateD/M for I, = 100: crosses are *Also at Budker Institute of Nuclear Physics, 630090

numerical data for billiards wit.008 < & < 0.027 and20 = Novosibirsk, Russia.

M = 60; squares are data for the effective kicked rotator [1] O. Bohigas, M.-J. Giannoni, and C. Schmit, Phys. Rev.

model (see text) with).006 < k < 0.043, 5 = M = 60, and Lett. 52, 1 (1984); O. Bohigas, in Ref. [3].

0.5/(0.05 + D/M)] with the asymptotic limi¥ = D shown by York, 1991).

the dashed line. [3] Chaos and Quantum Physidsss Houches Lecture Series
52, edited by M.-J. Giannoni, A. Voros, and J. Zinn-Justin
(North-Holland, Amsterdam, 1991).

[4] G. Casati, B.V. Chirikov, J. Ford, and F.M. Izrailev, in
Stochastic Behavior in Classical and Quantum Hamilton-

in the momentum space so th@t~ 12/D ~ k=2 being
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exponentially suppressed. The subsequent estimate give Berlin, 1979), p. 334; B. V. Chirikov, in Ref. [3].
o - : %] F. Borgonovi, G. Casati, and B. Li, Phys. Rev. Leit,
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