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Quantum Localization in Rough Billiards
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We study the level spacing statisticspssd and eigenfunction properties in a billiard with a rough
boundary. Quantum effects lead to localization of classical diffusion in the angular momentum space
and the Shnirelman peak inpssd at small s. The ergodic regime with Wigner-Dyson statistics is
identified as a function of roughness. Applications toQ spoiling in optical resonators are also discussed.
[S0031-9007(97)02470-8]
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In 1984, Bohigas, Giannoni, and Schmit [1] demon
strated that random matrix theory (RMT) [2] describes th
level spacing statistics of classically chaotic billiards. A
ter that such types of billiards have been studied in gre
detail by different groups [3]. However, all the billiards
under investigation were characterized only by one typ
cal time scaletc, namely, the time between collisions with
the boundary. Another type of chaotic systems with d
fusive behavior, like the kicked rotator [4], has an add
tional much longer time scaletD ¿ tc which is required
to cover the accessible phase space. In this situation qu
tum interference effects may lead to exponential localiz
tion of the eigenstates and disappearance of level repuls

Recently, it has been shown [5] that the diffusive regim
also appears in a nearly circular Bunimovich stadium b
liard. The authors of [5] gave an estimate for the localiz
tion length in the angular momentum space and found t
energy borderEerg above which the eigenstates become e
godic on the energy surface [6]. Their numerical resu
demonstrate the change of level statistics from Wigne
Dyson to Poisson when the energy becomes smaller th
Eerg. However, this example, while very interesting fo
mathematical studies, is not realistic for physical system

At the same time a great progress has been reache
optics of microcavities like micrometer-size droplets [7
and microdisk lasers [8]. The industrial request to pr
duce directed light pushed the researchers to investig
ray dynamics in weakly deformed circular billiards an
droplets. It was shown that above some critical deform
tion the ray dynamics becomes chaotic. As a conseque
the directionality of light from droplets andQ factors of
such resonators are strongly affected [9]. However, d
to the smoothness of deformation the diffusive regime w
hardly accessible in such systems.

In this Letter, we investigate another type of gener
boundary deformation which may have important physic
applications. Namely, we consider billiards with a roug
boundary. In this approach, the boundary is a rando
surface with some finite correlation length. The physic
realizations of such a situation can be quite different. A
examples, we can mention surface waves in the dropl
which are practically static for the light [7], nonidea
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surfaces in microdisk lasers [8], and capillary waves
a surface of small metallic clusters [10]. On a first glan
it seems that such a rough boundary in a circular billia
will destroy the conservation of angular momentuml
leading to ergodic eigenstates and RMT level statistics.
spite of this we show that there is a region of roughness
which the classical dynamics is chaotic but the eigensta
are localized and the level spacing statisticspssd has the
sharp Shnirelman peak at small spacingss [11,12]. We
also demonstrate the close relation between this mo
and the kicked rotator.

As a model of a rough billiard we chose a circ
with a deformed elastic boundary given byRsud ­ R0 1

DRsud with DRsudyR0 ­ Re
PM

m­2 gmeimu. Heregm are
random complex coefficients andM is large but finite. The
surface roughness is given byksud ­ sdRydudyR0. In the
following, we will consider the case of weak roughne
k ø 1. One can model different types of surfaces b
choosing an appropriate dependence of amplitudes onm.
However, our results show that in the domain of stro
chaos the classical diffusion and quantum localizati
in orbital momentum space are determined by the an
averagẽk2 ­ kk2sudlu. Because of that we choose a typ
cal dependencegm , 1ym such that all harmonics give the
same contribution iñk2 , MsDRyR0d2.

First, we consider the classical ray dynamics which f
k ø 1 can be described by the followingroughmap:

l̄ ­ l 1 2
p

l2
max 2 l2

r ksud ,

ū ­ u 1 p 2 2 arcsinsl̄ylmaxd . (1)

Here the first equation gives the change ofl (and velocity
vector) due to the collision with boundary and the seco
one the change of angle between collisions. This m
describes the dynamics in the vicinity of a resonant va
lr defined by the condition̄u ­ u 1 2pr with integer
r, and lmax is the maximall at given particle velocity
y. Our numerical simulations of exact ray dynamic
show that the rough map (1) indeed gives an excell
description (see Fig. 1). A similar map for a stadiu
billiard was given in [5]. However, in contrast to [5]
whereksud has a discontinuity, the global chaos sets
© 1997 The American Physical Society
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FIG. 1. Comparison of the exact dynamics (points) and t
rough map (1) [full curveksud]. The points correspond to
D̃l ­ sl̄ 2 ldys2

p
l2
max 2 l2 d andM ­ 20, k̃ ­ 0.011.

only if the roughness is above some critical valuek̃ . kc.
Below kc the KAM theory is valid and the phase spac
is divided by invariant curves. The chaos border can
estimated on the basis of Chirikov criteria of overlappin
resonances [13] which giveskc , 4M25y2 (the numerical
coefficient is extracted from the data forM ­ 20). This
border drops strongly withM, and therefore we will
concentrate on the regime of strong chaos without visib
islands of stability (case of Fig. 1). In this regime th
spreading in angular momentum space goes in a diffus
way with a diffusion constant that is easily estimate
from (1) asD ­ sDld2yDt ­ 4sl2

max 2 l2
r dk̃2 where Dt

is measured in number of collisions. The physical tim
required for diffusive spreading over the energy surface
tD ø tcl2

maxyD with tc , R0yy.
Now, we turn to the investigation of the quantum prob

lem. For this we expand the wave functioncsr , ud with
energyE ­ h̄2k2y2m in terms of the Hankel functions
which form a complete set,

csr , ud ­
X

l

falH
s1d
jlj skrdeilu 1 blH

s2d
jlj skrdeilug . (2)

The regularity ofc at r ­ 0 requiresal ­ bl so that
al are the amplitudes in angular momentum space. T
boundary conditioncfRsud, ug ­ 0 results in a second
equationbl ­

P
l0 Sll0 sEdal0 whereSll0sEd has the mean-

ing of a scattering matrix for waves reflected at the rou
boundary. The energy eigenvalues are determined
detf1 2 SsEdg ­ 0. A convenient expression for theS
matrix can be obtained by the quasiclassical approxim
tion H

s6d
l skrd ø 2f2pklsrdrg21y2 exph6imlsrd 2 py4gj

where klsrd ­ ks1 2 r2
l yr2d1y2, mlsrd ­

Rr
rl

dr̃ klsr̃d,
and rl ø jljyk is the classical turning point. From this
representation and the boundary condition forc we obtain
(for more details see [14])

Sll0 ø eiml sR0d1iml0 sR0d1ipy2kljei 2klr sR0d DRsudjl0l . (3)
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This is a local unitary expression forS nearlr which is
valid for Dl ­ jl 2 l0j ø lmax ­ kR0 andM , lmax. A
stationary phase approximation for theu integral gives the
classical change ofl [see (1)] and determines the structure
of S matrix. In fact, this matrix is very similar to the
evolution operator of the kicked rotator [4] corresponding
to DR ~ cosu. According to this analogy the localization
length, is determined by the classical diffusion rate, ­
bDy2 where b is the symmetry index for orthogonal
(b ­ 1) [15] or local unitary symmetry (b ­ 2) [16].
Since generallyDRsud fi DRs2ud, we haveb ­ 2 so
that the localization length is directly determined by the
roughness

, ­ D ­ 4sl2
max 2 l2

r dk̃2. (4)

This result can also be derived on a more rigorous groun
based on the supersymmetry approach for a model wit
random phasesml [14]. The expression (4) is only valid
for D . M while 1 , D , M corresponds to a more
complicated regime with, , M (see below). For1 ,

D ø lmax the eigenfunctions are exponentially localized
in the orbital spacejalj ~ exps2jl 2 l0jy,d while the
classical dynamics is ergodic on the whole energy surface
The quantum dynamics becomes ergodic only for, .

lmax. According to the Weyl formula the level number
at energyE is N ø mR2

0Ey2h̄2 ­ l2
maxy4. Therefore the

states are ergodic for

N . Ne ø
1

64k̃4 . (5)

This border is much higher than the perturbative borde
N , Np ø 1ys16k̃2d where the diffusion mixes less than
one state (D ø 1). These different regimes are presented
in Fig. 2.

To check the above theoretical predictions, we have
solved numerically the boundary condition forcsr , ud (2).

FIG. 2. Global diagram showing the eigenstate properties fo
different values of level numberN and roughness̃k for D ¿
M. The two full lines give the ergodic (Ne) and perturbative
(Np) borders, the dashed line is the classical chaos borde
kc ø 0.002 for M ­ 20. The parameters of Figs. 3 and 4 are
shown by the two points with arrows.
1441
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FIG. 3. Level spacing distributionpssd for lmax ø 100, M ­
20, and average roughness: (a) k̃ ø 0.16 (ergodic,, ø 1000)
and (b) k̃ ø 0.012 (localized, , ø 6). The total statistics is
2000 levels (2150 , N , 2350) from ten different realizations
of the rough boundary. Also shown are the Wigner-Dyson an
rescaled Poisson distributions witha ­ 0.33.

In this way, we have obtained both the energy eigenvalu
and the amplitudesal (with normalization

P
l jalj

2 ­ 1).
In the ergodic regimeN . Ne, we find that the level
spacing statisticspssd is in a good agreement with RMT
(see Fig. 3). On the contrary, in the localized regim
N , Ne, approximately each second level is quasid
generate leading to the Shnirelman peak [11] at sm
spacings (Fig. 3). This peak represents approximately
fractiona ø 0.33 of all spacings. The other spacings ar
described by a rescaled Poisson distributionpssd ­ s1 2

ad2 expf2s1 2 adsg. The appearance of the Shnirelma
peak is in agreement with the prediction made in [12]. I
physical origin is the time reversal symmetry (Sy

2l,2l 0 ­
Sp

ll0 or a2l ­ ap
l ) due to which two states localized around

l0 and2l0 form a quasidegenerate pair of symmetric an
antisymmetric states [17]. The original Shnirelman the
rem was formulated for quasi-integrable billiards [11
Our case corresponds to the chaotic domain; however,
cause of localization the peak still exists. A similar situa
tion for the kicked rotator was studied in [12]. The fractio
of nondegenerate levels (1 2 2a ø 0.34) is due to states
localized nearl0 ø 0. The measure of such states is ap
proximately4,ylmax ø 1 2 2a where the numerical coef-
ficient was extracted from our data (see Fig. 4). This pe
was not found in [5] because the stadium billiard has a
ditional symmetries and only the states of one parity we
considered.

In Fig. 4, we show three typical eigenfunctions in an
gular momentum representation. In the ergodic case,
probability is homogeneously distributed, almost in th
whole intervals2lmax, lmaxd. We mention that in our com-
putations we have included about ten evanescent mo
(with jlj . kR0). The two other wave functions are in the
localized regime of Fig. 2 with, ø lmax. One of them
has a double peak structure due to tunneling between ti
reversed angular momentum states. This state correspo
1442
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FIG. 4. The amplitudesjalj for three typical eigenfunctions
corresponding to the parameters of Fig. 3 (with level numbe
N , 2250): (a) ergodic case; (b) localized quasidegenerate
state withs ­ 0.1 and fitted localization length, ø 9 (dashed
line); (c) nondegenerate localized state with fitted, ø 7.5
(dashed line). The full line shows the theoretical length [se
Eq. (4)] , ø 5. The rough boundary realization is the same a
in Figs. 1(b) and 1(c) or appropriately rescaled (a). The curves
b andc are shifted by factors1022 or 1024, respectively.

to a quasidegenerate Shnirelman state. We also obser
many other similar states with much smaller level split
ting (s , 1022). The other localized state has the maxi
mum l0 ø 0 and corresponds to a nondegenerate leve
Both states clearly show exponential localization indicate
by the dashed lines. The numerical values of the loca
ization length are a bit higher than the estimate (4) wit
lr ø l0 ø lmax.

To understand this discrepancy, we have calculated,
for a wide region ofM and k̃. Many cases were sys-
tematically different from (4). To increase the paramete
range we also studied the effective kicked rotator mod
with random phasesml in the evolution operator (3) (and
lmax ­ 100, lr ­ 0). The results of these studies demon
strate the scaling behavior,yM ­ fsDyMd (see Fig. 5).
We attribute the remaining difference between the tw
models to a smaller sample size for the billiard (100 vs
600) and finitelr , lmax values there. ForD ¿ M the
scaling reproduces the estimate (4) while forD , M the
length , remains close toM. In this case, the evolu-
tion operator becomes a band random matrix of widthM
with strongdiagonalfluctuations. They are much larger
than the off-diagonal matrix elements so that, , M for
1 , D , M [18].

Let us now discuss how the above properties of eige
states will affect the characteristics of resonators wit
rough boundaries. In optical resonators the rays with larg
reflection angle escape from the system [9]. Because
that there is an effective absorption in the momentum spa
for l , lc wherelc is determined by the reflection index so
that typically lcylmax ø 1y2. This absorption affects the
Q value of the resonator which is approximately equal t
the number of collisions until the escape. In the ergod
regime this number is determined by diffusive spreadin
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FIG. 5. Rescaled localization length,yM as a function of
rescaled diffusion rateDyM for lmax ­ 100: crosses are
numerical data for billiards with0.008 , k̃ , 0.027 and20 #
M # 60; squares are data for the effective kicked rotato
model (see text) with0.006 , k̃ , 0.043, 5 # M # 60, and
a matrix size of600; the full curve is the fit, ­ 0.5My lnf1 1
0.5ys0.05 1 DyMdg with the asymptotic limit, ­ D shown by
the dashed line.

in the momentum space so thatQ , l2
cyD , k̃22 being

proportional to the inverse Thouless energy. On the othe
hand, in the localized regime the probability to reachlc is
exponentially suppressed. The subsequent estimate giv
ln Q , lcy, , 1yslmaxk̃2d . 1 and for givenlmax deter-
mines the roughness borderk̃Q ø 1ys2

p
lmax d in the Q

spoiling which corresponds to our ergodic border (5).
Above we discussed the effects of the rough boundar

in a circular billiard. However, we can argue that similar
effects should be observed in more general types of conv
smooth billiards. Indeed, in such systems, a large fractio
of the phase space is integrable and characterized by tw
action variables (quantum numbers). As in the circula
case the rough boundary will lead to a diffusive behavior in
one of the actions parallel to the energy surface, and aga
the quantum interference effects can give its localization
We note that our results are valid for weakly rough billiards
k ø 1 while the case of strong roughnessk , 1 deserves
separate studies.

A generalization to the three dimensional (3D) case rep
resents an interesting direction for further research. W
expect that for a sphere with rough boundary the abov
2D analysis is very relevant. Indeed, in a perfect spher
a trajectory is confined to a plane and the precession fr
quency of this plane is zero. Because of roughness th
plane will slowly precess with a frequency proportiona
to k. This adiabatic process will weakly affect the dy-
namics and quantum localization inside the plane sectio
The localization should give rise to the Shnirelman pea
in 3D. However, the situation should be quite different in
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more general 3D smooth integrable billiards (e.g., ellip-
soid). There the precession frequency is rather high due
to asymmetry of the smooth boundary, and the diffusion
becomes really two dimensional on the energy surface
As for localization in 2D disordered systems, one might
expect an exponential fast increase of, with the rough-
ness (ln, , l2

maxk2).
We wonder if the periodic orbit approach can lead to a

deeper understanding of spectral properties when quantum
effects break classical ergodicity on an energy surface
with diffusion.

*Also at Budker Institute of Nuclear Physics, 630090
Novosibirsk, Russia.
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