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Two Interacting Quasiparticles Above the Fermi Sea
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We study numerically the interaction and disorder effects for two quasiparticles in two and three
dimensions. The dependence of the interaction-induced Breit-Wigner widthG on the excitation energy
above the Fermi levelsed, the disorder strength, and the system size are determined. A regime is found
whereG is practically independent ofe. The results allow us to estimate the two quasiparticle mobil-
ity edge. [S0031-9007(97)03500-X]
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Recently the combined effect of interaction and diso
der has been studied by different groups for two partic
in a random potential [1–5]. This research showed
interaction-induced enhancement of the two-particle
calization lengthlc compared to the noninteracting leng
l1. For low-dimensional systems (1D, 2D) the two in
teracting particles (TIP) can propagate coherently ove
large distancelc ¿ l1 but still remain localized. In 3D,
the interaction can lead to TIP delocalization in an o
erwise completely localized regime. In physical system
however, one should study the interaction effect at a
nite particle density. This type of problem is much mo
difficult for both the analytical and numerical approache
Up to now, the only theoretical treatment of this case h
been done by Imry [2]. He took into account the effe
of the Fermi sea on the interaction-induced delocalizat
of two quasiparticles. According to Imry’s estimate,
3D the mobility edge for two interacting quasiparticles
lower than that for noninteracting quasiparticles. So
only the 1D case has been treated numerically [6]. Ho
ever, this case is of less importance since the enhancem
occurs very far above the Fermi level, in contrast to t
2D and 3D cases. Therefore it is very important to stu
the problem in higher dimensions.

Exact numerical computations at a finite density a
quite difficult, and for this reason only small system siz
are accessible [7,8]. Even though this approach has
to a number of interesting results, it seems that s
restrictions do not allow a check of the Imry estima
since it requires a relatively large one-particle localizati
length l1. Therefore we choose another approach tha
based on a computation of the interaction-induced Br
Wigner width G of the local density of states of two
interacting quasiparticles (TIQ) above the Fermi sea. T
width plays an important role since it is directly relate
to the enhancement factor for the localization leng
k , Grc, whererc is the density of states coupled b
the interaction [1,2,9].G also strongly affects theS2sEd
statistics on the energy scaleE . G [10]. Such aG-
based approach, even though not direct, is much m
efficient and allows us to get a better understand
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of TIP localization in the 1D case [11]. To facilitate
the numerical simulations we used the approximati
proposed in [2,4,6] that is based on the considerat
of only two quasiparticles above the Fermi energyEF ,
neglecting all TIQ transitions involving hole excitation
below EF. With such an approximation the quasipartic
decay rateGD becomes zero or, in other words, th
inelastic processes are suppressed (see the discus
below). In this context we are able to study the TI
problem in blocks of linear sizes up toL ­ 30 in 2D
and L ­ 10 in 3D, which are significantly larger than
for the exact diagonalization of multiparticle problem
Our approach can also give a better understanding of
problem of quasiparticle interactions in a quantum d
which has been recently addressed experimentally [
and theoretically [13].

For the numerical studies, we chose the TIQ mod
with an on-site interaction of strengthU on the 2D/3D
Anderson lattice with intersite hoppingV and the diag-
onal disorder homogeneously distributed in the interv
f2Wy2, Wy2g. The eigenvalue equation expressed in t
basis of the two-particle unperturbed eigenstates reads

sEm1 1 Em2 dxm1,m2 1 U
X

m0
1,m0

2

Qm1,m2,m0
1,m0

2
xm0

1,m0
2

­ Exm1,m2 . (1)

Here, the transformationR between the lattice sites basi
jnl and the one-particle eigenbasisfm with eigenenergies
Em is given byjnl ­

P
m Rn,mfm. Accordingly, xm1,m2

are eigenfunctions of the TIQ problem in the one-partic
eigenbasis. The matrix of transitions produced by the
teraction isQm1,m2,m0

1,m0
2

­
P

n R1
n,m1

R1
n,m2

Rn,m0
1
Rn,m0

2
. The

Fermi sea is introduced by restricting the sum in (1)
m0

1,2 with unperturbed energiesEm0
1,2

. EF . The value of
EF is determined by the filling factorm which was fixed
at m ­ 1y4 in 2D andm ­ 1y3 in 3D. However, the re-
sults are not sensitive to this choice. At a small disord
this gives approximatelyEF ø 21.4V andEF ø 2V , re-
spectively. Because of the on-site nature of the inter
tion, only symmetric configurations were considered. B
direct diagonalization of the model (1) we computed t
© 1997 The American Physical Society
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local density of states,

rW sE 2 Em1 2 Em2 d ­
X
l

jx sld
m1,m2

j2dsE 2 Eld . (2)

This function characterizes the probability contributio
of the eigenfunctionx

sld
m1,m2 with eigenenergyEl in the

unperturbed basisjfm1fm2l. We found that it gener-
ally has the well-known Breit-Wigner shaperBW sEd ­
Gyf2psE2 1 G2y4dg (see Fig. 1), where the widthG de-
pends on the parameters of the model. Our main aim w
to investigate this dependence on the system size, the
teraction strength, and the TIQ excitation energy abo
the Fermi sea,e ­ E 2 2EF .

The results for the 2D and 3D cases in the regim
of weak disorder are presented in Figs. 1 and 2. Fo
sufficiently high excitation energye, the restriction im-
posed by the Fermi sea becomes unimportant and
width Gsed tends to the valueG0 ­ U2yVLd which cor-
responds to the result obtained with the ergodic eige
functions [1,2,9]. In this approach the transition matr
elements have a typical valueU2

s ­ U2Q2 , U2yL3D,
and the transition rate is given by the Fermi golde
rule with G0 , U2Q2rc and rc , L2DyV . The pres-
ence of the Fermi sea modifies this density which b
comes energy-dependentrcsed , L2DeyV 2. As a result,
the widthG drops with decreasing energy as [2]

Gsed ­ CG0
e

V
­ C

U2e

V 2Ld . (3)

This behavior was assumed to remain valid for a we
enough disorder as long asL # l1. HenceG is inde-

FIG. 1. Energy dependence of the rescaled Breit-Wign
width GyG0 in 2D. Direct diagonalization (DD) data at
WyV ­ 2: UyV ­ 0.6 with L ­ 8ssd, L ­ 15 snd, L ­ 20
shd; UyV ­ 1.5 and L ­ 20 sed. Fermi golden rule (FGR)
data: WyV ­ 2 with L ­ 20 s1d, L ­ 25 s3d; WyV ­ 1
with L ­ 15 spd. The straight lineGsedyG0 ­ CeyV with
C ­ 0.52 shows the Imry estimate. Upper inset: the same
a log-log scale with FGR data at higher disorders [WyV ­ 6
smd andWyV ­ 10 sjd sL ­ 30d]. Lower inset:rW vs E for
L ­ 20, Wy2 ­ V ­ 1, U ­ 0.6, e ­ 0.4 fitted by rBW with
G ­ 0.18G0 (solid curve).
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pendent of the disorder strengthW . Indeed, forl1 ¿ L
this estimate is in good agreement with the nume
cal data presented in Figs. 1 and 2 withC ­ 0.52
(2D) and C ­ 0.3 (3D). Most of the data forG in
Figs. 1 and 2 were obtained by direct diagonalizatio
of the model (1). Another way to determineG with-
out computation of the TIQ eigenstates is based
the Fermi golden rule which should remain valid for
moderate interaction strength. This approach givesG ­
2p

P
m0

1,m0
2

jUQm1,m2;m0
1,m0

2
j2dse 1 2EF 2 Em0

1
2 Em0

2
d in

terms of the transition matrix elements between on
particle eigenstates only. Heree ­ Em1 1 Em2 2 2EF ,
and to improve the statistics we averaged over differe
m1,2 with approximately the samee. As can be seen in
Figs. 1 and 2, both methods are in good agreement for
interaction strengthU # 1.5V . Another confirmation of
the validity of the golden rule is theU2 dependence of
G obtained by direct diagonalization (Fig. 2). Both ap
proaches also confirm that the scalingG ~ L2d is valid
for weak disorder. We used up to 100 realizations of d
order for the Fermi golden rule approach and up to 5
for the direct diagonalization.

The situation becomes more intricate at higher disord
Here our results show thatG becomes much less sensitiv
to the e variation (Fig. 3). The tendency is clear: At
disorder which is still moderate,G becomes practically
independent ofe, which has been varied over 1 orde
of magnitude. In the 3D case, such behavior tak
place even in the delocalized regimeW , Wc ø 16.3V .
The data even indicate a small growth ofGsed with
decreasinge at W $ 12V . At high disorderl1 decreases
and becomes comparable with or even less thanL. In
this situation the eigenstates are no longer ergodic in

FIG. 2. Same as Fig. 1 in 3D. DD data atUyV ­ 1.2 and
WyV ­ 4 with L ­ 4 ssd, L ­ 5 shd, L ­ 6 sed, andL ­ 7
snd. FGR data:WyV ­ 4 with L ­ 10 s3d; WyV ­ 2 with
L ­ 8 s1d. Here C ­ 0.3. Upper inset: the same on a
log-log scale with FGR data at higher disorders [WyV ­ 12
smd and WyV ­ 20 sjd sL ­ 10d]. Lower inset: DD data
for G vs UyV at WyV ­ 4, L ­ 6, V ­ e ­ 0.5 (solid line:
G ­ 0.3G0).
4987
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FIG. 3. Energy dependence of the rescaled Breit-Wig
width GyG1 in 2D (left) and 3D (right). FGR data in 2D
WyV ­ 2 with L ­ 20 ssd andL ­ 30 sdd; WyV ­ 4 with
L ­ 20 shd andL ­ 30 sjd; WyV ­ 6 with L ­ 20 sed and
L ­ 30 srd. DD data in 2D atL ­ 20, UyV ­ 0.6: WyV ­
2 s1d, WyV ­ 4 s3d, and WyV ­ 6 spd. FGR data in 3D
at L ­ 10: WyV ­ 4 ssd, WyV ­ 12 shd, WyV ­ 20 sed,
and WyV ­ 28 snd. DD data in 3D atL ­ 6, UyV ­ 1.2:
WyV ­ 4 s1d andWyV ­ 12 s3d.

block, and the scalingG ~ L2d is not valid any more.
In the limit 1 , l1 ø L, it is natural to expect anothe
scalingG ~ l2d

1 . To check this scaling we computed th
inverse participation ratioj , ld

1 , which allowed us to
calculate the ergodic valueG1 ­ U2yVj.

At a sufficiently high excitation energy, the real wid
should beG , G1 which gives the correct scaling wit
the system size in the localized regime according to
numerical data. This would explain why, in a block
fixed size,G increases with increasing disorder (see ins
in Figs. 1 and 2). While this estimate gives the corr
value of G at high energies, i.e.,e ø 2V (Fig. 3), it
does not explain the change of energy dependence
disorder. We should note that even in this unusual reg
both the direct diagonalization and the Fermi golden r
computations give the same value of the widthG.

It is clear that the change of the energy depende
of G cannot be explained in the framework of th
ergodic transition matrix elementsU2

s , sUyV d2D3yV ,
where D , VyLd is the one-particle level spacing in
block of sizeL. At the same time, the numerical resu
for the two-particle density of statesr2 definitely show
that it increases linearly with the excitation energye

as r2 , eyD2. Therefore the only possibility is that a
higher disorder the ergodic estimate forUs is no longer
valid. Indeed, from the theory of quasiparticle lifetim
in disordered metals and quantum dots [13–15], it
known that the diffusive nature of the dynamics shou
be taken into account. For an excitation energye much
bigger than the Thouless energyEc, the quasiparticle
decay rate isGD , U2

s r3 , DsUeyVEcddy2, wherer3 ,
4988
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r2eyD is the density of three-particle states composed
two particles and one hole in the final state. In the oth
regime relevant for the metallic quantum dot,D , e ø

Ec, this rate isGD , DsUeyVEcd2 [13]. This shows that
the matrix elementsU2

s , GDyr3 are not always given
by the ergodic estimate in agreement with recent resu
[16]. The different nonergodic regimes can be describe
by the following approximate expression [17]:

U2
s ,

µ
U
V

∂2 D2

g2

µ
1 1

e

Ec

∂dy222

, (4)

where g ­ EcyD is the conductance, assumed to b
much bigger than one. According to (4) the TIQ width
G , U2

s r2 increases with disorderW even in the metal-
lic regime sinceEc ­ DyL2 , V 3ysWLd2 with D being
the diffusion constant. The ergodic estimate forU2

s is
recovered forg . EFyD , VyD [16] corresponding to
very weak disorder. The energy dependence,G ~ edy221,
from (4) is in agreement with the numerical data ford ­
2 (Fig. 3), but in 3D the data indicate an algebraic depe
dence with the powera , 0 (a ø 20.2 for W ­ 12V
and a ø 20.3 for W ­ 20V ) instead of the theoretical
valuea ­ 1y2. There could be different reasons for this
discrepancy. One case,W ­ 20V , corresponds to the
localized regime while the theory requires a metallic be
havior. The other case,W ­ 12V , even though still de-
localized, is quite close to the critical valueWc. Our data
indicate that, in the metallic regime with2 , WyV , 12,
the powera smoothly changes from1 to 20.2.

Surprisingly, at present, there are no theoretical pred
tions for U2

s , not only near the critical valueWc but also
in the localized regime withl1 ¿ 1. It seems natural to
make the assumption that, in the localized case, the tran
tion matrix elements will be given by an equation simila
to (4) with g ø 1 since in a block of sizel1 the Thouless
energy isEc ø D , Vyld

1 . This givesG , G1seyDda ,
wherea has replaced the theoretical valuedy2 2 1 valid
in the metallic regime. We will assume that ford $ 2
the exponentjaj , 1. In 3D the TIQ mobility edgeem2

is defined by the conditionk ­ Grc . 1 [1,2]. Since
rc , eyD2, the above expressions forG give

em2 ,
V

ld
1

µ
V
U

∂2ys11ad
, V

µ
em1

V

∂ndµ
V
U

∂2ys11ad
, (5)

where em1 , Vl
21yn
1 is the one-particle mobility edge.

The one-particle critical exponent isn ø 1.5 [18]. Be-
cause of this, forU , V , the edgeem2 ø em1. The
above result (5) gives a much smaller value forem2 than
the one given by the Imry estimate [2]. The main rea
son for this is that the transition matrix elements in th
block of sizel1, whereg ø 1, are much larger than their
ergodic value used in [2]. The condition that the TIQ de
localization border inU at e , V is the same as for TIP
(U . Vyl

dy2
1 [1,2]) givesa ­ 0.

The numerical results for the dependence ofk ­ Grc

on e are presented in Fig. 4. To determine numerical
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FIG. 4. Energy dependence of the TIQ delocalizati
parameterk ­ Grc in 3D (FGR data) atUyV ­ 1.2: L ­ 7
for WyV ­ 28 snd; L ­ 10 for WyV ­ 4 s3d, WyV ­ 12
sdd, WyV ­ 16.8 sjd, WyV ­ 10 srd, andWyV ­ 28 smd.
The dashed line shows the TIQ mobility edgek ­ Grc ­ 1.

the density of coupled statesrc , el2D
1 yV 2 in the local-

ized regime, we computed it by taking into account on
those TIQ states which give contributions larger than 30
of the value ofG (the data were not sensitive to the cuto
value). The densityrc defined in this way is independen
of the system size whenL . l1. The data show that for
W ­ 28V there is no TIQ delocalizationsk , 1d. How-
ever, closer to the one-particle delocalization border,
still above it sW . Wcd, the value ofk becomes bigger
than one at moderate excitation energies, and TIQ d
calization should take place. Further investigations
required to check more accurately the theoretical pred
tion (5) for the mobility edgeem2.

In our consideration, all inelastic processes involvi
hole excitations have been suppressed so thatGD ­ 0.
This is a crucial assumption. Apparently, fore ¿ D

there is no good reason to assume thatGD ø G since
there GDyG , r3yr2 , eyD ¿ 1. However, fore ,
D , Vyld

1 , this estimate givesGD , G. In addition to
that, at e , D the decay rateGD should be strongly
suppressed since energetically it is not possible to
cite many holes in a block of sizel1 [2] with a discrete
spectrum. Also, according to the recent results [19],
a quantum dotGD ­ 0 for energye , e1 , D

p
g and

U , V . For a dot (block) of sizel1 this givese1 , D.
Thus it is possible that, forU , V slightly above the mo-
bility edge (5),em2 , D, the propagation of the TIQ pair
through the lattice (transitions between different block
will not be strongly affected by the inelastic process
of hole excitation neglected in our model. Besides th
n

y
%
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em2 , D is the minimum possible mobility edge in ou
model with the frozen Fermi sea. This indicates a pos
bility of interaction-induced rearrangement of the grou
state from the localized to conducting phase. Energ
cally, the delocalization of TIP pairs causes a decre
of the kinetic energy bydE2 , dp , Vyl1, which can
be larger than the energy increase due to the interac
dE1 , Uyld

1 . The above results could give a hint as
an explanation of recent experiments on the interacti
induced metal-insulator transition in 2D disordered sy
tems [20].
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