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Emergence of Quantum Ergodicity in Rough Billiards

Klaus M. Frahm and Dima L. Shepelyansky*
Laboratoire de Physique Quantique, UMR C5626 du CNRS, Université Paul Sabatier, F-31062 Toulouse Cedex 4

(Received 14 February 1997)

By analytical mapping of the eigenvalue problem in rough billiards onto a band random matrix
model, a new regime of Wigner ergodicity is found. There, the eigenstates are extended over the whole
energy surface but have a strongly peaked nonergodic structure. At the same time the level spacing
statistics is still given by the Wigner-Dyson distribution. [S0031-9007(97)03972-0]

PACS numbers: 05.45.+b, 03.65.Sq, 72.15.Rn
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In 1974, Shnirelman [1] proved a theorem accordin
to which quantum eigenstates in chaotic billiards becom
ergodic for sufficiently high level numbers. Later it wa
demonstrated [2,3] that in this regime the level spaci
statisticspssd is well described by random matrix theor
[4]. However, one can ask the question as to ho
this quantum ergodicity emerges with an increasing lev
numberN . This question becomes especially important
light of recent results [5,6] for diffusive billiards, where
the time of classical ergodicitytD due to diffusion on
the energy surface in the angular-momentuml space is
much larger than the collision time with the bounda
tb . In such a situation quantum localization on th
energy surface may break classical ergodicity, eliminati
the level repulsion inpssd. The investigation of rough
billiards [6] showed that this change ofpssd happens
when the localization length, in l space becomes smalle
than the size of the energy surface characterized by
maximal l  lmax at a given energys, , lmaxd. For
, . lmax the eigenfunctions are extended over the who
surface, but as we will see they are not necessarily ergo
(see Fig. 1 with notations explained below).

The measure on the classical ergodic energy surf
in the phase spacesp, qd is given by dm  dsssE 2

Esp, qdddddpdq. The usual scenario of ergodicity breakin
[7] was based on an image of transition from th
quantum eigenstates ergodic on this surface (Shnirelman
ergodicity) to the exponential localized states. Here w
show that this transition between localized [Fig. 1(a)] an
Shnirelman ergodic states [Fig. 1(c)] can pass throu
an intermediate phase ofWigner ergodicity[Fig. 1(b)].
In this Wigner phase the eigenstates are nonergo
and composed of rare strong peaks distributed on
wholeenergy surface. Our description and understand
of this case is based on the mapping of the billia
problem with weakly rough (random) boundary onto
superimposed band random matrix (SBRM). This mod
is characterized by strongly fluctuating diagonal eleme
corresponding to a preferential basis of the unperturb
problem. Recently, such a type of matrices was stud
in the context of the problem of particle interaction i
disordered systems [8–11]. There it was found that t
eigenstates can be extended over the whole matrix s
0031-9007y97y79(10)y1833(4)$10.00
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while having a very peaked structure. The origin of th
behavior is due to the Breit-Wigner form [12] of the loca
density of states, according to which only unperturb
states in a small energy intervalGE contribute to the final
eigenstate.

Recent optical experiments with micrometer siz
droplets initiated new theoretical investigations
weakly deformed circular billiards [13]. In this case
the ray dynamics becomes chaotic, leading to a stro
directionality of light emission [14]. Here we will
consider another type of weakly deformed circles [6
namely, we chose a random elastic boundary deforma
which can be represented byRsud  R0 1 DRsud with
DRsudyR0  Re

PM
m2 gmeimu, where gm are random

FIG. 1. Transition from localization to Shnirelman ergodicit
on energy surface for level numberN ø 2250, lmax ø 95, and
M  20; shown are the absolute amplitudesjC

sad
nl j of one

eigenstate: (a) localization forDslr  0d  20, (b) Wigner
ergodicity forD  80, and (c) Shnirelman ergodicity forD 
1000 (see text).
© 1997 The American Physical Society 1833
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complex coefficients andM is large but finite. This type
of deformation seems to be very generic and may app
in numerous different physical situations [6]. In sma
droplets such boundary perturbations may be created
temperature induced surface waves. We will restr
ourself to the case of weak surface roughness given
ksud  sdRydudyR0 ø 1 and all gm being of the same
order of magnitude. Then we have for the angle avera
k̃2  kk2sudlu , M2sDRyR0d2.

In such a billiard the dynamics is diffusive in orbita
momentum due to collisions with the rough bounda
provided k̃ is above the chaos borderkc , M25y2 [6].
For l . lr the diffusion constant is determined by th
average change of orbital momentum per collision bei
D  ksDld2l  4sl2

max 2 l2
r dk̃2. This D is the local

diffusion rate for l close to the resonantlr [6]. The
quantum interference leads to localization of this diffu
sion with the length,  D for M , , , lmax, while for
, . lmax the eigenstates are extended over the ene
surface [6]. The transition between these two regim
is illustrated in Fig. 1. Here we present the absolu
values of eigenfunction amplitudesC

sad
nl in the eigenbasis

jnll of a circular billiard as a function of unperturbed
radial and orbital quantum numbersn, l, with a marking
the eigenenergyEa. For small roughness̃k (or D) the
states are exponentially localized [Fig. 1(a)] while fo
largek̃ they are homogeneously distributed [Fig. 1(c)] o
the energy surface. The case of Fig. 1(b) correspon
to an unusual regime of Wigner ergodicity, where th
eigenstate is extended over the surface but is compo
of rare strong peaks. The positions of these peaks
the energy surface of the circular billiardE  H sn, ld
are shown in Fig. 2(a). The equation of the surfac
projected on the action planesn, ld, can be found from the
Bohr-Sommerfeld quantizationmlsEd 

p
l2
max 2 l2 2

l arctansl21
p

l2
max 2 l2d 1 py4  psn 1 1d, where

l2
max  4N  2mR2

0Eyh̄2  k2R2
0 with k being the

wave number. A part of the surface is shown in mo
detail in Fig. 2(b). It is clearly seen that the peaks a
large for those integern, l which are close to the line
H sn, ld  Ea . Our understanding of the fact that no
all integer values of thesn, ld lattice near this line are
populated is based on the concept of the Breit-Wign
structure of eigenstates described below.

According to Refs. [6,15], the internal scattering at th
rough boundary can be described by theS matrix,

Sll̃sEd  eimlsEdkljeiV sudjl̃leiml̃ sEd, (1)

with mlsEd being the scattering phases of the circle an
V sud  2

p
l2
max 2 l2

r DRsudyR0. This quantum rough
map [6] is defined with respect to amplitudesal in the
wave function expansioncsr , ud  B

P
l alJjljskrdeilu

with Bessel functionsJl andB being a normalization con-
stant. TheS matrix gives a local unitary description for
l close to a resonant valuelr . The eigenvalue equation
reads

P
l̃ Sl,l̃sEadasad

l̃  a
sad
l so that the eigenvaluesEa
1834
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FIG. 2. (a) Main peaks of eigenstate in Fig. 1(b) (squares f
jC

sad
nl j $ 0.1) shown on the energy surfaceH sn, ld  Ea (see

text). (b) Rescaled part of (a): Diamonds show the integ
sn, ld lattice; the error bar size is2jC

sad
nl j.

are determined by detf1 2 SsEadg  0. For V  0, we
recover the Bohr-Sommerfeld quantization for eigenva
uesEnl of the ideal circle.

The semiclassical regime of ray dynamics correspon
to the limit V ¿ 1, where theu integral can be evaluated
in a saddle point approximation giving the classical lim
of the quantum rough map [6]. Here we are intereste
in a different regime, whereV , 1 corresponds toD ,

M2. There, by the mapping on an effective solid stat
Hamiltonian Heff introduced by Fishman, Grempel, and
Prange [16], the equation for eigenstates takes the form

tanfmlsEadgaa
, d 1

1
2

X
l̃

kljV jl̃lasad
l̃  0 . (2)

In this way the eigenvalue equation is reduced to a so
state problem with2M coupled sites. TheHeff matrix is of
the SBRM type with strongly fluctuating diagonal element
produced by scattering phasesml . The investigations of
such matrices [9–11] showed that the local density
states has the Breit-Wigner width given by the Ferm
golden ruleGm  2prmkfV sudy2g2l ø 3Dy2M2, where
rm  1yp is the density of diagonal elements and w
used the relation between the phase average ofV 2sud
and D. This expression is valid [17] whenGm exceeds
the mean level spacings,1yMd in the bandwidthM. In
the opposite limitGmM , 1, the eigenstates are given by
standard perturbation theory. Together with the conditio
V , 1, we find that the Breit-Wigner regime exists for
M , D , M2 near the zero energy ofHeff. In this regime
the localization length is,  D [6,8–11,15]. However,
the Breit-Wigner structure remains in both localizeds, ,

lmaxd and delocalizeds, . lmaxd cases ifM , D , M2.
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Therefore forlmax , D , M2 the states are extended, b
only l with jtansmldj , Gm , 1 are mixed, leading to a
peaked structure of eigenstates [18]. The fraction of pe
in maxs,, lmaxd is Gm.

The above properties of scattering amplitudesa
sad
l al-

low one to understand the behavior of eigenfunction co
ficientsC

sad
nl  kca jnll. For this, one has to compute th

expansionJlskardeilu in terms ofjnll. SinceDR ø R0,
the angular and radial integrals factorize and can be ev
ated using the radial eigenvalue equation and the semic
sical expression forJlskrd. As a result, we obtain

C
sad
nl ø B̃a

sad
l sl2

max 2 l2d1y4 sinDm

Dm
, (3)

with Dm  mlsEad 2 mlsEnld ø sEa 2 EnldyEb and
Eb  dEydmlsEd  h̄2l2

maxysmR2
0

p
l2
max 2 l2d  2h̄ytb

being the energy scale related to the ballistic collis
time tb ; B̃ is a normalization constant. The amplitud
C

sad
nl determine the local density of states by

rW sE 2 Enld 

øX
a

dsE 2 Ead jC
sad
nl j2

¿
. (4)

The averaging is performed with respect to different rou
ness realizations and/or over a sufficiently large ene
interval. Because of the Breit-Wigner distribution fo
tansmld in (2), we obtain

rBW sE 2 Enld 
1
p

GEy2

sE 2 Enld2 1 G
2
Ey4

, (5)

with

GE  EbGm  Eb
N

NW

µ
1 2

l2

l2
max

∂
, NW 

M2

24k̃2 .

(6)

Equations (5) and (6) are valid forDE , EB sDm , 1d
and Gm , 1 or N , NW . HereNW is the border of the
Breit-Wigner regime in level numberN. Remember that
the eigenstates are localized forN , Ne  1y64k̃4 cor-
responding to, , lmax [6]. As a result, the Breit-Wigner
structure can exist in both the localized and delocaliz
cases. An example of Breit-Wigner distribution is show
in Fig. 3. Our numerical data confirm the theoretical e
pression (6) for variation ofGm by more than 1 order o
magnitude (inset).

For N . NW the kick amplitudeV in (1) is larger
than one, and the mapping onto Eq. (2) is not valid.
this case, the scattering phases (eigenphases ofS) are
homogeneously distributed in the intervals0, 2pd. If, in
addition,N . Ne then, as in the case of the kicked rotat
(see Chirikov in [3]), the amplitudesal are homogeneou
in l space withjalj

2 ø 1y2lmax. Using Eq. (3), we obtain
the local density of states by

rW sE 2 Enld 
Eb

p

sin2fsE 2 EnldyEbg
sE 2 Enld2 . (7)

This density is normalized to one, and as a result
probability jC

sad
nl j2 is ergodically distributed along th
t
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FIG. 3. Breit-Wigner distribution for eigenstates of a rough
billiard (diamonds) with the parameters of Fig. 1(b) (five
eigenstates for each of ten roughness realizations are use
The solid curve gives the distribution (5) with the theoreticalGE
value (6),GEyEb  Gm  0.3. The inset shows the variation
of GEyEb (diamonds) as a function ofGm for a parameter range
10 # M # 40 and M # D # M2 (Eb and Gm are taken at
l  0). The theory (6) is shown by the straight line.

energy surface shown in Fig. 2(a). This is the regim
of Shnirelman ergodicity which emerges forN .

maxsNW , Ned. For fixed roughness̃k . kEW 
p

6y4M
we have NW . Ne, and the transition to Shnirelman
ergodicity with the increasing level numberN crosses
the region of Wigner ergodicity for which an eigen-
function is ergodic only inside the Breit-Wigner width
GE , Eb. In this regime our numerical data show tha
pssd still has the Wigner-Dyson form even though the
eigenstates are nonergodic on the energy surface. In
casekc , k̃ , kEW the Shnirelman ergodicity emerges
directly from the localized phase (the Breit-Wigne
regime exists only in the localized phase). The averagin
of Eq. (7) over differentl values gives the distribution
(5) with GE , Eb. This explains why, also for the case
Gm , 1 in Fig. 3, the distribution (5) remains valid even
for DE . Eb (note thatpEbyGE ø 10).

The above analysis shows that in the regime of Wign
ergodicity there are four relevant energy scales: lev
spacingD, Thouless energy for diffusion inl spaceEc 
h̄Dyl2

maxtb, the Breit-Wigner widthGE  3h̄DyM2tb ,
and bouncing energyEb  2h̄ytb which are ordered as
D , Ec , GE , Eb. These scales should appear in th
level statistics, namely, for the number varianceS2sEd
[3,4]. For E , Ec we find the Gaussian orthogonal en
semble (GOE) and Wigner-Dyson statistics to be val
(Fig. 4), while in the intervalEc , E , GEy2 the behav-
ior is modified, due to the diffusive dynamics [19], be
ing S2sEd , sEyEcd1y2. The first investigations of the
regime with GEy2 , E , Eby2 for SBRM were only
recently done [20]. They showed that level rigidity is
strongly suppressed with a nearly linear energy behav
in S2sEd due to the disappearance of correlations betwe
levels with energy differences larger thanGE. However,
such local characteristics aspssd are still described by
1835
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FIG. 4. Dependence of number varianceS2sEd on energy for
a rough billiard compared to Poisson and GOE forM  50,
D  800, lmax ø 95. Six roughness realizations in the interv
2150 , N , 2350 are used for the average. The energy sca
are also shown in units of level spacingD.

GOE if Ec ¿ D. Our numerical data qualitatively con
firm this picture (see Fig. 4), but quantitative numeric
and analytical verifications are still required. In Fig.
the above energy scales are not separated by stron
equalities, but parametrically it is possible to have the
In this unusual regime it would be interesting to stu
other physical properties. We mention, for example,
frequency dependence of dielectrical response [21] wh
should be sensitive to the above energy scales.

In conclusion, we studied the parameter depende
of the quantum energy surface width in rough billiard
In the limiting case of Shnirelman ergodicity with hig
level numbers, this width is determined by the typical fr
quency of collisions with the boundarysGE , Ebd. This
means thatall integer points on thesn, ld lattice of quan-
tum numbers with a distanceDl  Dn ø 1 from the
energy lineEa  H sn, ld are occupied byone eigen-
function ca (N . NW and N . Ne). We have found a
new regime of Wigner ergodicity, whereGE ø Eb so that
only points withDl  Dn # Gm ø 1 contribute toca .
Therefore a lot of holes appear in the energy surface,
ca has a strongly peaked structure on thesn, ld lattice. It
would be interesting to study such nonergodic eigenst
with Wigner-Dyson statistics in the experiments with m
crowave billiards [22] and micrometer droplets [13,14].
1836
l
les

-
al
4

in-
m.
y

he
ich

ce
s.

e-

nd

tes
i-

*Also at Budker Institute of Nuclear Physics, 630090
Novosibirsk, Russia.

[1] A. I. Shnirelman, Usp. Mat. Nauk29, N6, 18 (1974).
[2] O. Bohigas, M.-J. Giannoni, and C. Schmit, Phys. Rev

Lett. 52, 1 (1984); O. Bohigas in [3].
[3] Les Houches Lecture Series,edited by M.-J. Giannoni,

A. Voros, and J. Zinn-Justin (North-Holland, Amsterdam
1991), Vol. 52.

[4] M. L. Mehta, Random Matrices(Academic, New York,
1991).

[5] F. Borgonovi, G. Casati, and B. Li, Phys. Rev. Lett.77,
4744 (1996).

[6] K. M. Frahm and D. L. Shepelyansky, Phys. Rev. Lett.78,
1440 (1997).

[7] G. Casati, B. V. Chirikov, I. Guarneri, and F. M. Izrailev,
Phys. Rev. E48, 1613 (1993); Phys. Lett. A223, 430
(1996).

[8] D. L. Shepelyansky, Phys. Rev. Lett.73, 2607 (1994).
[9] P. Jacquod and D. L. Shepelyansky, Phys. Rev. Lett.75,

3501 (1995).
[10] Y. V. Fyodorov and A. D. Mirlin, Phys. Rev. B52,

R11 580 (1995).
[11] K. Frahm and A. Müller-Groeling, Europhys. Lett.32, 385

(1995).
[12] E. P. Wigner, Ann. Math.62, 548 (1955);65, 203 (1957).
[13] A. Mekis, J. U. Nöckel, G. Chen, A. D. Stone, and R. K

Chang, Phys. Rev. Lett.75, 2682 (1995).
[14] J. U. Nöckel and A. D. Stone, Nature (London)385, 45

(1997).
[15] K. M. Frahm, Phys. Rev. B55, 8626 (1997).
[16] S. Fishman, D. R. Grempel, and R. E. Prange, Phys. Re

Lett. 49, 509 (1982).
[17] The situation here is a bit different from [9–11] due to

translational invariance ofkljV jl̃l in l. But this does not
change the result which can be derived exactly for rando
phasesml using the Lloyd model fluctuations.

[18] Note that for the case studied in [6] withgm , 1ym
this Breit-Wigner regime does not exist, since thereD ,
MkV 2l instead ofD , M2kV 2l for gm , const.

[19] B. L. Al’tshuler and B. I. Shklovskii, Zh. Eksp. Teor. Fiz.
91, 220 (1986) [Sov. Phys. JETP64, 127 (1986)].

[20] D. Weinmann and J.-L. Pichard, Phys. Rev. Lett.77, 1556
(1996).

[21] L. P. Gor’kov and G. M. Eliashberg, Zh. Eksp. Teor. Fiz
48, 1407 (1965) [Sov. Phys. JETP21, 940 (1965)].

[22] J. Stein, H.-J. Stöckmann, and U. Stoffregen, Phys. Re
Lett. 75, 53 (1995).


