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Emergence of Quantum Ergodicity in Rough Billiards
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By analytical mapping of the eigenvalue problem in rough billiards onto a band random matrix
model, a new regime of Wigner ergodicity is found. There, the eigenstates are extended over the whole
energy surface but have a strongly peaked nonergodic structure. At the same time the level spacing
statistics is still given by the Wigner-Dyson distribution. [S0031-9007(97)03972-0]

PACS numbers: 05.45.+b, 03.65.Sq, 72.15.Rn

In 1974, Shnirelman [1] proved a theorem accordingwhile having a very peaked structure. The origin of this
to which quantum eigenstates in chaotic billiards becoméehavior is due to the Breit-Wigner form [12] of the local
ergodic for sufficiently high level numbers. Later it was density of states, according to which only unperturbed
demonstrated [2,3] that in this regime the level spacingtates in a small energy intervBE contribute to the final
statisticsp(s) is well described by random matrix theory eigenstate.

[4]. However, one can ask the question as to how Recent optical experiments with micrometer size
this quantum ergodicity emerges with an increasing levetiroplets initiated new theoretical investigations of
numberN. This question becomes especially important inweakly deformed circular billiards [13]. In this case,
light of recent results [5,6] for diffusive billiards, where the ray dynamics becomes chaotic, leading to a strong
the time of classical ergodicity, due to diffusion on directionality of light emission [14]. Here we will
the energy surface in the angular-momentlrspace is consider another type of weakly deformed circles [6],
much larger than the collision time with the boundarynamely, we chose a random elastic boundary deformation
75. In such a situation quantum localization on thewhich can be represented R(6) = Ry + AR(6) with
energy surface may break classical ergodicity, eliminating\R(8)/R, = Re >_, y,.e™?, where y,, are random
the level repulsion inp(s). The investigation of rough
billiards [6] showed that this change gf(s) happens
when the localization lengthiin I space becomes smaller
than the size of the energy surface characterized by the
maximal [ = [l.x at a given energyf < lna.x). For

€ > .« the eigenfunctions are extended over the whole
surface, but as we will see they are not necessarily ergodic
(see Fig. 1 with notations explained below).

The measure on the classical ergodic energy surface
in the phase spacép,q) is given by du = 8(E —
E(p,q))dpdq. The usual scenario of ergodicity breaking
[7] was based on an image of transition from the
guantum eigenstates ergodic on this surfé@lenfrelman
ergodicity) to the exponential localized states. Here we
show that this transition between localized [Fig. 1(a)] and
Shnirelman ergodic states [Fig. 1(c)] can pass through
an intermediate phase a&Wigner ergodicity[Fig. 1(b)].

In this Wigner phase the eigenstates are nonergodic
and composed of rare strong peaks distributed on the
wholeenergy surface. Our description and understanding
of this case is based on the mapping of the billiard

problem with weakly rough (random) boundary onto a

superimposed band random matrix (SBRM). This model
is characterized by strongly fluctuating diagonal elements
corresponding to a preferential basis of the unperturbe

problem. Recently, such a type of mgtrlcgs was .StUd.Ie = 20; shown are the absolute amplitudda@,(ff)l of one
in the context of the problem of pa}rtlcle interaction in eigenstate: (a) localization fob(i, = 0) = 20, (b) Wigner
disordered systems [8—11]. There it was found that thergodicity forD = 80, and (c) Shnirelman ergodicity fdp =
eigenstates can be extended over the whole matrix siz@00 (see text).

IG. 1. Transition from localization to Shnirelman ergodicity
n energy surface for level numbar = 2250, /., = 95, and
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complex coefficients andf is large but finite. This type 30 .
of deformation seems to be very generic and may appear n g a
in numerous different physical situations [6]. In small 20 :
droplets such boundary perturbations may be created by
temperature induced surface waves. We will restrict
ourself to the case of weak surface roughness given by
k() = (dR/dF)/Ry < 1 and all y,, being of the same
order of magnitude. Then we have for the angle average 0
ik? = (k*(0))g ~ M*(AR/Ro)*.

In such a billiard the dynamics is diffusive in orbital

10

momentum due to collisions with the rough boundary n 9

provided & is above the chaos bordas, ~ M5/ [6]. 3

For [ = [, the diffusion constant is determined by the

average change of orbital momentum per collision being 7

D = {(Al)*>) = 4(2,, — 1)&*. This D is the local

diffusion rate for! close to the resonamt [6]. The 6

quantum interference leads to localization of this diffu-

sion with the lengtlf = D for M < € < I, While for 50 55 / 60

€ > Inx the eigenstates are extended over the energ ) ) o
surface [6]. The transition between these two regime§!C: 2. (a) Main peaks of eigenstate in Fig. 1(b) (squares for

o . . () _

is illustrated in Fig. 1. Here we present the absolutdCn | = 0.1) shown on the energy surfact (n, 1) = E, (see

(@) . . . text). (b) Rescaled part of (a): Diamonds show the integer
in the eigenbasis

values of eigenfunction amplitud€s,; . L (@)
. -~ . 1) lattice; th b .
|nl) of a circular billiard as a function of unperturbed (n. 1) lattice; the error bar size BCy |

radial and orbital quantum numbets!, with « marking

the eigenenergy,. For small roughnesg (or D) the  are determined by ddt — S(E,)] = 0. ForV =0, we
states are exponentially localized [Fig. 1(a)] while forrecover the Bohr-Sommerfeld quantization for eigenval-
large k they are homogeneously distributed [Fig. 1(c)] onuesE,,; of the ideal circle.

the energy surface. The case of Fig. 1(b) corresponds The semiclassical regime of ray dynamics corresponds
to an unusual regime of Wigner ergodicity, where theto the limitV > 1, where thef integral can be evaluated
eigenstate is extended over the surface but is composéd a saddle point approximation giving the classical limit
of rare strong peaks. The positions of these peaks oof the quantum rough map [6]. Here we are interested
the energy surface of the circular billia®el = H (n,1)  in a different regime, wher& < 1 corresponds td <

are shown in Fig. 2(a). The equation of the surfacepm?. There, by the mapping on an effective solid state
projected on the action plarie, /), can be found from the Hamiltonian H.; introduced by Fishman, Grempel, and

Bohr-Sommerfeld quantizatioru,;(E) = /I2,, — > —  Prange [16], the equation for eigenstates takes the form
larctagl '\ JI2,, — I2) + w/4 = 7w(n + 1), where w 1 A (@)
.. = 4N = 2mR3E/I® = KR} with k being the i p(Eo)lai) + 5 ;<IIV|l>a7 =0 @

wave number. A part of the surface is shown in more ) ) o )
detail in Fig. 2(b). It is clearly seen that the peaks ardn this way the eigenvalue equation is reduced to a solid
large for those integen, ! which are close to the line State problemwitM coupled sites. Th#.r; matrix is of
H (n,1) = E,. Our understanding of the fact that not the SBRM type with s_trongly quctuatlng_d|agolnaI glements
all integer values of thén, ) lattice near this line are Produced by scattering phasgs. The investigations of
populated is based on the concept of the Breit-WignepfUch matrices [9-11] showed that the local density of

According to Refs. [6,15], the internal scattering at thegolden rulel’, = 2mp,([V(6)/2F) ~ 3D/2M?, where
rough boundary can be described by sheatrix, pu = 1/ is the density of diagonal elements and we

) i (E) 11 iVO) 13 i i (E used the relation between the phase averagd’xgh)
Si(E) = e Ot DD e, (1) andD. This expression is valid [17] wheh, exceeds
with u,(E) being the scattering phases of the circle andhe mean level spacing-1/M) in the bandwidthd. In
V(0) = 213, — 17 AR(6)/Ro. This quantum rough the opposite limifl,M < 1, the eigenstates are given by
map [6] is defined with respect to amplitudes in the  standard perturbation theory. Together with the condition
wave function expansiony(r,6) = B3, a;Jy(kr)e"® vy <1, we find that the Breit-Wigner regime exists for
with Bessel functiond; andB being a normalization con- »7 < p < M2 near the zero energy éf.;. In this regime
stant. TheS matrix gives a local unitary description for the |ocalization length i¥ = D [6,8—11,15]. However,

[ close to a resonant valug. The eigenvalue equation the Breit-Wigner structure remains in both localizéd<
reads) ; S,;(Ea)aga) = aE“) so that the eigenvalues, Imax) @nd delocalized?¢ > I,,x) cases ifM < D < M?>.
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Therefore forl,,x < D < M? the states are extended, but
only / with |tan(u;)| < T',, < 1 are mixed, leading to a
peaked structure of eigenstates [18]. The fraction of peaks
in max(¥{, lmax) is T',,.

The above properties of scattering amplitudécg al- 0.01
low one to understand the behavior of eigenfunction coef-

ficientsC,(ff) = (q|nl). For this, one has to compute the
expansion/;(k,r)e’? in terms of|nl). SinceAR < Ry,

TePw(E-Ew)

the angular and radial integrals factorize and can be evalu- 0.0001
ated using the radial eigenvalue equation and the semiclas- -10 0 10 20
sical expression far;(kr). As a result, we obtain (E-Eq)/Tg
(@ _ 5 (@) 2\1/4 SinApu FIG. 3. Breit-Wigner distribution for eigenstates of a rough
Cu = Bar (e = E)7 =0 (3)  biliard (diamonds) with the parameters of Fig. 1(b) (five

. eigenstates for each of ten roughness realizations are used).
with Ap = pi(Es) — wi(Ew) = (Eq — Ex)/E» @nd  The solid curve gives the distribution (5) with the theoretiEal

Ep = dE/dw(E) = R*12,/(mR3J 20 — 12) = 2hi/7,  value (6),[z/E, = I', = 03. The inset shows the variation
being the energy scale related to the ballistic collisionof I'=/E, (diamonds) as a function df,, for a parameter range
time 7,; B is a normalization constant. The amplitudes!0 =M =40 and M < D = M* (E, and T, are taken at

. . I = 0). The theory (6) is shown by the straight line.
C,(f;) determine the local density of states by ) y©) y g

pwle = En) = (3 0 = EJICT). @
a energy surface shown in Fig. 2(a). This is the regime
The averaging is performed with respect to different roughof Shnirelman ergodicity which emerges fav >
ness realizations and/or over a sufficiently large energynaxny,N,). For fixed roughnesg > kpy = 6/4M
interval. Because of the Breit-Wigner distribution for we have Ny > N,, and the transition to Shnirelman

tan(u;) in (2), we obtain ergodicity with the increasing level numbeé¥ crosses
1 I'e/2 the region of Wigner ergodicity for which an eigen-
pew(E — En) = 7 (E — E, )2 + r2/4° (®)  function is ergodic only inside the Breit-Wigner width
with " £ I'e < E,. In this regime our numerical data show that
N 2 2 p(s) still has the Wigner-Dyson form even though the
Iy =EJ, =E, — <1 - _> Ny = —. eigenstates are nonergodic on the energy surface. In the
Nw Iax 24k&? casex, < k < kpy the Shnirelman ergodicity emerges

(6) directly from the localized phase (the Breit-Wigner

Equations (5) and (6) are valid f&xE < Ez (Ap < 1) regime exists only in the localized phase). The averaging
andT', < 1or N < Ny. HereNy is the border of the ©f EQ. (7) over different/ values gives the distribution
Breit-Wigner regime in level numbev. Remember that (®) With I'e ~ E;,. This explains why, also for the case
the eigenstates are localized f§r< N, = 1/64&* cor- I', < 1in Fig. 3, the distribution (5) remains valid even

responding t@ < lmx [6]. As a result, the Breit-Wigner 0f AE > Ej, (note thatmE, /Ty =~ 10). _ _
structure can exist in both the localized and delocalized Th€ above analysis shows that in the regime of Wigner

cases. An example of Breit-Wigner distribution is shown€rgodicity there are four relevant energy scales: level
in Fig. 3. Our numerical data confirm the theoretical ex-SPacingA, Thouless energy for diffusion inspacet, =

3 o : o s
pression (6) for variation of’,, by more than 1 order of hD /Iy Ty, the Breit-Wigner widthI'y = 35D /M 7,
magnitude (inset). and bouncing energ¥, = 2/i/7, which are ordered as

For N > Ny the kick amplitudeV in (1) is larger 2 < Ec < I'z < E,. These scales should appear in the
than one, and the mapping onto Eq. (2) is not valid. inevel statistics, namely., for the numper varianee(E)
this case, the scattering phases (eigenphases) aire  [3:4l- FOrE < E. we find the Gaussian orthogonal en-
homogeneously distributed in the inter@l27). If, in  Semble (GOE) and Wigner-Dyson statistics to be valid
addition,N > N, then, as in the case of the kicked rotator (Fig- 4), while in the intervak, < E < I'z/2 the behav-
(see Chirikov in [3]), the amplitudes, are homogeneous [0' iS modified, duel/tzo the diffusive dynamics [19], be-
in / space witHa|> = 1/2/ma. Using Eq. (3), we obtain N9 22(E) ~ (E/E.)/*. The first investigations of the
the local density of states by regime withT'g/2 < E < E,/2 for SBRM were _only_
E, SIR[E — E,)/Es] recently done [20]. They showed.that level rigidity is
pw(E — Ey) = =k nJ/=b 1 (7)  strongly suppressed with a nearly linear energy behavior
™ (E = Ew)? in 2,(E) due to the disappearance of correlations between
This density is normalized to one, and as a result thgevels with energy differences larger thiz. However,
probability IC,([;)P is ergodically distributed along the such local characteristics gs(s) are still described by
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