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Breit-Wigner Width and Inverse Participation Ratio in Finite Interacting Fermi Systems
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For many-body Fermi systems we determine the dependence of the Breit-Wigner widthG and
inverse participation ratioj on interaction strengthU $ Uc and energy excitationdE $ dEch when
a crossover from Poisson to Wigner-DysonPssd statistics takes place. AtU $ Uc the eigenstates are
composed of a large number of noninteracting states and even forU , Uc there is a regime wherePssd
is close to the Poisson distribution butj ¿ 1. [S0031-9007(97)04709-1]

PACS numbers: 05.45.+b, 05.30.Fk, 24.10.Cn
nto
uc-
n-
me

m
re-
tly
ms
of

ac-
us
the
t
ct

e to
c-
si-
he
es

r-
s
l

-
ise
o

of
e-
efi-

-
ntly
and

re-
l
l
r-
In 1955 Wigner [1] introduced the local density of
states to study “the properties of the wave functions o
quantum mechanical systems which are assumed to be
complicated that statistical considerations can be applied
them.” This quantityrW sEd characterizes the spreading
of eigenstates over the levels of an unperturbed syste
(e.g., in the absence of interaction between particles), a
allows us to estimate how many of these unperturbed sta
contribute to the real wave function. GenerallyrW sEd has
a Breit-Wigner distribution with Lorentzian shape of width
G which determines the energy spreading over unperturb
states. This concept has been shown since then to
very important in a wide range of physical problems, from
nuclear physics and many-electron atoms and molecules
condensed matter.

The study of such complex systems has been succe
fully performed through the theory of random matrice
(see, for example, [2]). Very often the physics of suc
systems determines some preferential basis in which t
Hamiltonian matrix has large diagonal matrix elements
while the nondiagonal elements corresponding to trans
tions between the basis states are relatively small. T
investigation of random matrices of this type has bee
started only recently [3–6]. It has been shown that th
eigenstates of such superimposed band random matri
(SBRM) are spread over the basis states according
the Breit-Wigner distribution [6]; this has been also con
firmed analytically through the supersymmetry approac
[7,8]. This spreading determines the number of unpe
turbed states contributing to a given eigenstate, which c
be measured through the inverse participation ratio (IPR
j ­ 1y

P
i jaij

4 [6–8]. Here ai are probability ampli-
tudes in unperturbed states. The widthG fixes an energy
scale at which the level statistics, for example, the num
ber varianceS2sEd, changes behavior from the Wigner-
Dyson to the Poisson case [9]. It has been also show
that the Breit-Wigner distribution appears in the case o
sparse random matrices with preferential basis [10].

While the properties of the Breit-Wigner distribution
are well understood in random matrix models, the prob
lem of real interacting finite many-body fermionic sys-
tems was much less investigated. Indeed, in the latter ca
0031-9007y97y79(22)y4365(4)$10.00
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the nature of the two-body interaction should be taken i
account, since it gives certain restrictions on the str
ture of matrix elements. A very convenient model to i
vestigate this kind of problem has been introduced so
time ago in [11,12]. This model consists ofn fermions
distributed overm energy orbitals, coupled by a rando
two-body interaction. Recently this model attracted
newed attention since it was understood that it correc
describes the statistical properties of real physical syste
such as the Ce atom and the Si nucleus [13,14]. One
the main advantages of this model is that it takes into
count the two-body nature of the interaction and allows
to investigate the dependence of various quantities on
interaction strengthU. This property is rather importan
since the variation of the Breit-Wigner width with respe
to U and excitation energydE counted from the Fermi
level has not been yet clearly understood. Indeed, du
the two-body nature of the interaction, only a small fra
tion of the multiparticle states is coupled by direct tran
tions. As a result, contrary to common lore [13–15], t
exponential growth of the multiparticle density of stat
rn with the number of particlesn and the excitation en-
ergydE does not imply that an exponentially small inte
action leads to level mixing [16]. In a similar way thi
exponential growth ofrn does not lead to an exponentia
growth of the widthG. This fact has been known in nu
clear physics for some time [2,17]; however, the prec
dependence ofG on dE has not been determined up t
now. The dependence ofG on U is also not obvious, due
to the absence of direct coupling between the majority
the multiparticle states. Different types of power-law d
pendence have been recently proposed [18,19] but a d
nite expression forG is still elusive. A similar situation
exists for the IPRj in the basis of noninteracting eigen
states which has been studied extensively very rece
[20–24]. In this paper, we address these problems
determine the dependence ofG and j on the parameters
above. We show that these two quantities are directly
lated. Surprisinglyj can be arbitrarily large at the critica
interaction strengthUc [16] where the crossover in leve
spacing statisticsPssd between the Poisson and Wigne
Dyson distributions takes place.
© 1997 The American Physical Society 4365
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To investigate these properties we choose the two-bo
random interaction model (TBRIM) described above an
studied recently in [13,16]. In this modeln fermions are
located onm orbitals with one-particle energiesem0 ran-
domly chosen in the interval [0, m] so that the average
one-particle level spacing isD ­ 1. The multiparticle
states are distributed from the ground stateEg ø n2Dy2
to the maximal energyEt ø mnD 2 Eg. These states
are coupled by two-body random matrix elements, var
ing in the interval [2U, U]. Because of the two-body
nature of the interaction, a given multiparticle state
only coupled toK ­ 1 1 nsm 2 nd 1 nsn 2 1d sm 2

nd sm 2 n 2 1dy4 other states in an energy intervalB ­
2m 2 4. ThisK is much smaller than the total number o
statesN ­ m!yn!sm 2 nd!. The density of directly cou-
pled statesrc ­ KyB ø mn2y8 is therefore much smaller
than the total densityrn ø NysEt 2 Egd. According to
the results in [16], a crossover forPssd from Poisson to
Wigner-Dyson statistics takes place at a critical interacti
strengthUc ­ Cyrc with C ø 0.58. A similar border
was also discussed in [23]. The precise value ofUc [16]
was determined by the condition thath ­

Rs0

0 fPssd 2

PWDssdg dsy
Rs0

0 fPPssd 2 PWDssdg ds ­ 0.3. HerePPssd
and PWDssd are the Poisson and the Wigner-Dyson di
tributions, respectively, ands0 ­ 0.4729 . . . is their inter-
section point. Physically this crossover happens when
coupling matrix elements become comparable to the e
ergy spacings between directly coupled states [16,18,1
A similar condition determines the metal-insulator trans
tion in the Anderson model, where also the level statisti
Pssd changes from the Poisson distribution to the Wigne
Dyson one [25]. However, the TBRIM case differs from
the Anderson model where at large system sizeh can
take only three valuesh ­ 1 (localized),h ø 0.22 (criti-
cal), h ­ 0 (delocalized), while in the TBRIMh varies
smoothly nearUc [16]. Physically this difference comes
from the fact that in the Anderson model the number
coupled neighbors is much smaller than the linear syst
size, while in the TBRIM this number is of the order o
the number of statesm in one ofn directions associated to
each particle.

While the value ofUc has been determined [16], the
properties of eigenstates as a function of the interacti
remained unclear. To understand these properties in
TBRIM we studied the local density of statesrW sEd
in the basis of noninteracting multiparticle states. Th
data were obtained for the states near the middle of
spectrum (625% from the center). The total statistics fo
rW was kept around106. We checked thatrW sEd has
a Breit-Wigner shape and analyzed the dependence of
width G on U. The numerical data for TBRIM clearly
demonstrate the relationG ~ U2 which continues up to
large U values where a saturation takes place (Fig. 1
To check this dependence for larger system sizes,
investigated a slightly different model, obtained from th
TBRIM by restricting ourselves to states in an energ
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FIG. 1. Dependence of the rescaled Breit-Wigner wid
GyrcD2 on UyD: TBRIM data for n ­ 3, m ­ 17 (3); LM
data for n ­ 3, m ­ 130 (s) and n ­ 4, m ­ 60 (e). The
full line shows the theoretical estimate (1). Inset gives a
example of rW sEd for LM (p) with the Breit-Wigner fit
sG ­ 0.12d for n ­ 3, m ­ 130, U ­ 0.022 when (1) gives
G ­ 0.125. Logarithms are decimal in Figs. 1–3.

layer of width D near total energyE ­ mD. Such an
approximation is physically reasonable providedG ø D.
Indeed, in this case the transitions to states outside
layer do not influence the properties of eigenstates. W
choose the layer to be defined by

Pn
i­1 m0

i ­ m. The
transition matrix elements between these states were ta
from the TBRIM, and the diagonal elements coming fro
one-particle energiesem0 were randomly chosen in [sm 2

1y2dD, sm 1 1y2dD]. The layer model (LM) defined in
this way retains the main physical properties of the TBRI
but allows us to study systems with a much larger numb
of orbitalsm. For n ­ 3 the system size of LM is̃N ø
m2y12 and for n ­ 4, Ñ ø m3y200. This allowed us
to spanm values up tom ­ 130 sn ­ 3, N ø 3.6 105d
andm ­ 60 sn ­ 4, N ø 4.9 106d, which are much larger
than the values reached in [13,16,22]. The multipartic
density in the LM isrn ­ ÑyD while rc was determined
numerically. The data for LM (Fig. 1), similarly to the
TBRIM case, also demonstrate the dependenceG ~ U2

and show in addition thatG ~ rc.
According to the data of Fig. 1 the widthG is given by

the Fermi golden rule:

G ­ 2pkU2lrc ­
2p

3
U2rc , (1)

wherek· · ·l means the averaging. We attribute the sma
difference between the LM and TBRIM cases to the fa
that in the latter the densityrc slightly depends on the
energy counted from the Fermi level, while we used i
average value. For the LM this variation is smaller an
therefore the agreement is better.

The expression (1) forG does not depend on the
multiparticle density of statesrn and we expect that
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FIG. 2. Dependence of the IPRj on UyD: TBRIM data for
n ­ 3, m ­ 17, UcyD ­ 0.055 (3); LM data for n ­ 3, m ­
130, UcyD ­ 0.0049 (s), n ­ 3, m ­ 90, UcyD ­ 0.0075
(n), and n ­ 4, m ­ 60, UcyD ­ 0.0085 (e). Straight lines
show dependencej ~ U2.

for U . Uc an eigenstate is spread over all unperturb
states in the energy intervalG. In this regime level mixing
goes up to level spacingDn ­ 1yrn ø 1yrc leading to

j ø Grn ø 2U2rcrn . (2)

The numerical factor was taken in analogy with th
SBRM case wherej ø Gr [7,8]. To check this theo-
retical estimate we computedj for both TBRIM and LM.
The numerical data displayed in Fig. 2 show clearly th
U2 dependence for sufficiently strongU. At very largeU
the growth ofj is replaced by a saturation due to the finit
size of the system. The data shown in Fig. 3 demonstr
thatj ~ rcrn, in agreement with (2).

Without any fitting parameters these numerical resu
definitely confirm the estimate (2) forU . Uc. It is
interesting to check if it remains valid close to the critica
valueUc. If so, then the IPR atUc for n ¿ 1 will contain
exponentially many statesjc ­ jsU ­ Ucd , rnyrc ¿

FIG. 3. Dependence of the rescaled IPRjyU2 on rcrn: LM
data forn ­ 3 and40 # m # 130 (s); n ­ 4 and30 # m #
60 (e). The straight line gives theory (2). Inset showsUcyD
vs rcD in log-log scale for the same parameters; the straig
line is the fitUc ­ 0.62yrc.
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1. We studied this behavior in both TBRIM and LM. In
the latter case, we checked thatUc defined by the condition
hsUcd ­ 0.3 also follows the relationUc ­ Cyrc, with
C ­ 0.62 being very close to the TBRIM value [16] (see
inset in Fig. 3). This fact once more confirms that indee
the LM retains the physical properties of TBRIM. The dat
of Fig. 4 for jc confirm thatjc , rnyrc in both TBRIM
and LM. In LM the proportionality factor̃C is about 3
times smaller (̃C ø rcjcyrn ø 0.25 in Fig. 4) than its
value given by (2) atU ­ Uc (C̃ ø 0.8). This indicates
a change of eigenstate properties nearUc. The difference
of C̃ values for LM and TBRIM should be attributed to a
stronger variation of the densitiesrn, rc with energy in the
TBRIM. This variation was not taken into account in the
expressions forrn, rc in the TBRIM where we used their
averaged values.

The data of Fig. 4 definitely show that atU ­ Uc

the IPR grows proportionally to the multiparticle density
rn and, therefore, it is exponentially large forn ¿ 1.
This fact leads to the apparently surprising conclusio
that for U , Uc the eigenstates are composed of a hug
number of noninteracting eigenstates butPssd is still
close to the Poisson distribution. A similar situation
is known to exist for quantum systems whose classic
dynamics corresponds to the Kolmogorov-Arnold-Mose
regime. In this case, the coupling between different mod
strongly deforms the unperturbed tori, but does not destr
the integrals of motion and the corresponding quantu
numbers. Generally such deformation gives a spreadi
over many unperturbed eigenstates, without real mixin
of energy levels [26]. The mixing and Wigner-Dyson
statistics forPssd appear only after the transition to chaos
which in our case corresponds to the situation whe
the physical frequency1yrc becomes comparable to the

FIG. 4. Dependence of the IPRjc at Uc on rnyrc: LM data
for n ­ 2 and m ­ 800 (p); n ­ 3 and 40 # m # 130 (s);
n ­ 4 and 30 # m # 60 (e). The straight line gives the
fit jc ­ 0.25rnyrc 1 2.7. Inset shows the same plot for the
TBRIM for n ­ 2, m ­ 30; 3 # n # 6 and10 # m # 21 (p).
The straight line is the fitjc ­ 1.63rnyrc 1 1.91.
4367
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interaction-induced interstate transition rateG. A similar
phenomenon takes place near the Anderson transition [2
but therej becomes infinite at/above the transition.

We have so far discussed the case of highly excit
states far from the Fermi level, wherern andrc are not
very sensitive to energy variation. This is not true near t
Fermi energyeF ø nD, where the dependence on excita
tion energydE ­ E 2 Eg should be taken into account
At temperatureT only dn , TyD particles effectively in-
teract near the Fermi level so thatdE , Tdn , T2yD.
Since neareF the densityrc , r2sdnd2 , sdnd3yD [16],
we obtain

G ,
U2

D

µ
dE
D

∂3y2

,
U2

D

µ
T
D

∂2

dn ;

j , Grn ,
µ

U
D

∂2µdE
D

∂1y2

exp

∑
2

µ
p2dE

6D

∂1y2∏
.

(3)

Here we used the known dependence ofrn on dE from
[27] and assumed thatdE . dEch ø DsDyUd2y3 [T .

Tch ø DsDyUd1y3] so that the system is thermalized du
to internal interaction (U . Uc) [16]. The last expression
for G has a simple meaning. Indeed,G is the total spread
width for dn effectively interacting particles. Therefore
the partial widthGD , Gydn is the usual quasiparticle de-
cay rate which in agreement with the theory of Landa
Fermi liquid is proportional toT 2. At the quantum chaos
border dE ­ dEch, when the crossover to the Wigner
Dyson statistics takes place [16], the IPR becomes e
ponentially largejc , sTchyDd exps2.6TchyDd. We note
that in the Landau Fermi liquid theory quasiparticles a
well defined if GD , T fT , TL ­ DsDyUd2g. In this
regime the level statisticsPssd can be as in chaotic [Pssd ­
PWDssd for Tch , T , TL] or integrable [Pssd ­ PPssd
for T , Tch , TL] systems.

In conclusion, our results allowed us to understan
the eigenstate properties in finite Fermi systems w
interparticle interactionU $ Uc , 1yrc and excitation
energydE $ dEch. Qualitatively, these properties are
similar and opposite to the recent expectations [22] a
[13–15,18–21], correspondingly. Further investigation
are required forU , Uc, where there are indications for
another dependence of the IPR on system parameters [
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