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Breit-Wigner Width and Inverse Participation Ratio in Finite Interacting Fermi Systems
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For many-body Fermi systems we determine the dependence of the Breit-Wigner Widtid
inverse participation rati@ on interaction strengtly = U, and energy excitatio®E = §E., when
a crossover from Poisson to Wigner-DysBfs) statistics takes place. Af = U, the eigenstates are
composed of a large number of noninteracting states and evén forU, there is a regime wherg(s)
is close to the Poisson distribution bgéit> 1. [S0031-9007(97)04709-1]

PACS numbers: 05.45.+b, 05.30.Fk, 24.10.Cn

In 1955 Wigner [1] introduced the local density of the nature of the two-body interaction should be taken into
states to study “the properties of the wave functions oficcount, since it gives certain restrictions on the struc-
quantum mechanical systems which are assumed to be fre of matrix elements. A very convenient model to in-
complicated that statistical considerations can be applied teestigate this kind of problem has been introduced some
them.” This quantitypw (E) characterizes the spreading time ago in [11,12]. This model consists affermions
of eigenstates over the levels of an unperturbed systeutistributed overn energy orbitals, coupled by a random
(e.g., in the absence of interaction between particles), antivo-body interaction. Recently this model attracted re-
allows us to estimate how many of these unperturbed stateewed attention since it was understood that it correctly
contribute to the real wave function. Generally(E) has  describes the statistical properties of real physical systems
a Breit-Wigner distribution with Lorentzian shape of width such as the Ce atom and the Si nucleus [13,14]. One of
I" which determines the energy spreading over unperturbettie main advantages of this model is that it takes into ac-
states. This concept has been shown since then to m®unt the two-body nature of the interaction and allows us
very important in a wide range of physical problems, fromto investigate the dependence of various quantities on the
nuclear physics and many-electron atoms and molecules toteraction strengti/. This property is rather important
condensed matter. since the variation of the Breit-Wigner width with respect

The study of such complex systems has been succes® U and excitation energy E counted from the Fermi
fully performed through the theory of random matriceslevel has not been yet clearly understood. Indeed, due to
(see, for example, [2]). Very often the physics of suchthe two-body nature of the interaction, only a small frac-
systems determines some preferential basis in which thion of the multiparticle states is coupled by direct transi-
Hamiltonian matrix has large diagonal matrix elementstions. As a result, contrary to common lore [13—15], the
while the nondiagonal elements corresponding to transiexponential growth of the multiparticle density of states
tions between the basis states are relatively small. Thpg, with the number of particlea and the excitation en-
investigation of random matrices of this type has beerergy 6 E does not imply that an exponentially small inter-
started only recently [3—6]. It has been shown that theaction leads to level mixing [16]. In a similar way this
eigenstates of such superimposed band random matricegponential growth op,, does not lead to an exponential
(SBRM) are spread over the basis states according tgrowth of the widthI'. This fact has been known in nu-
the Breit-Wigner distribution [6]; this has been also con-clear physics for some time [2,17]; however, the precise
firmed analytically through the supersymmetry approactdependence of' on §E has not been determined up to
[7,8]. This spreading determines the number of unpernow. The dependence dfon U is also not obvious, due
turbed states contributing to a given eigenstate, which cato the absence of direct coupling between the majority of
be measured through the inverse participation ratio (IPRjhe multiparticle states. Different types of power-law de-
& =1/>,la;|* [6-8]. Herea; are probability ampli- pendence have been recently proposed [18,19] but a defi-
tudes in unperturbed states. The widtHixes an energy nite expression fol is still elusive. A similar situation
scale at which the level statistics, for example, the numexists for the IPR¢ in the basis of noninteracting eigen-
ber varianceX,(E), changes behavior from the Wigner- states which has been studied extensively very recently
Dyson to the Poisson case [9]. It has been also showf20—24]. In this paper, we address these problems and
that the Breit-Wigner distribution appears in the case ofietermine the dependence Bfand ¢ on the parameters
sparse random matrices with preferential basis [10]. above. We show that these two quantities are directly re-

While the properties of the Breit-Wigner distribution lated. Surprisingly¢ can be arbitrarily large at the critical
are well understood in random matrix models, the probinteraction strengttV,. [16] where the crossover in level
lem of real interacting finite many-body fermionic sys- spacing statistic®(s) between the Poisson and Wigner-
tems was much less investigated. Indeed, in the latter cag&yson distributions takes place.
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To investigate these properties we choose the two-bod  -1-0
random interaction model (TBRIM) described above and
studied recently in [13,16]. In this modelfermions are 20|
located onm orbitals with one-particle energies, ran-
domly chosen in the intervalD[m] so that the average

one-particle level spacing id = 1. The multiparticle g ¢

states are distributed from the ground state~ n?A/2 a°

to the maximal energy, =~ mnA — E,. These states E 40 ]
are coupled by two-body random matrix elements, vary-_%]"

ing in the interval FU, U]. Because of the two-body

nature of the interaction, a given multiparticle state is °>°[ 1

only coupled toK =1+ n(m — n) + n(n — 1) (m —

n)(m — n — 1)/4 other states in an energy intenil= 6.0
2m — 4. ThisK is much smaller than the total number of
statesN = m!/n!(m — n)!. The density of directly cou-

pled statep, = K/B ~ mn?/8 is therefore much smaller FIG. 1.2 Dependence of the rescaled Breit-Wigner width
than the total densitp, ~ N/(E, — E,). According to gétff?or 2”_U3/ﬁ; IBlng(g?tgn‘?rn”_=43;nm_=6(1)7(<(>>;)? 'II_'hMe
thg resuits in [16],_a'crossover fa(s) from 'P0|§son t0. full line shows the theoretical estimate (1). Inset gives an
Wigner-Dyson statistics takes place at a critical interactioxample of py (E) for LM (x) with the Breit-Wigner fit
strengthU, = C/p. with C = 0.58. A similar border (I = 0.12) for n = 3,m = 130,U = 0.022 when (1) gives
was also discussed in [23]. The precise valug/pfi16] I = 0.125. Logarithms are decimal in Figs. 1-3.

was determined by the condition thgt= [’ [P(s) —
PWD(S)] ds/f(Y)O [PP(S) - PWD(S)] ds = 0.3. HerePp(S)
and Pyp(s) are the Poisson and the Wigner-Dyson dis-
tributions, respectively, and, = 0.4729... is their inter-
section point. Physically this crossover happens when t
coupling matrix elements become comparable to the e .
ergy spacings between directly coupled states [16,18,19 lhoo.sg the Iayer to be defined By;_, m; = m. The

A similar condition determines the metal-insulator transi-transition matrix elements between these states were taken

tion in the Anderson model, where also the level statisticdoM the_TBRIM, a_nd the diagonal elements co_ming from
one-particle energies,, were randomly chosen i —

P(s) changes from the Poisson distribution to the Wigner- A .
Dyson one [25]. However, the TBRIM case differs from 1/_2)A’ (m + .1/2)A]' T_he Iaygr model (L.M) defined in
this way retains the main physical properties of the TBRIM

the Anderson model where at large system siz&an but all q ith h b
take only three valueg = 1 (localized),n = 0.22 (criti- ut allows us to study systems with a much larger number

cal), n = 0 (delocalized), while in the TBRIMy varies ~Of orbitalsm. Forn =3 the system size of LM i&V ~
smoothly neat/, [16]. Physically this difference comes /12 @nd forn =4, N -~ m”/200. This allowed us
from the fact that in the Anderson model the number ofl® SPanm values up tom = 1360 (n =3,N ~ 3.6 10°)
coupled neighbors is much smaller than the linear syste ndm = 60(n = 4,N ~ 4.9 10 ), which are much Igrger
size, while in the TBRIM this number is of the order of than the values reached in [13,16,22]. The multiparticle

the number of states in one ofn directions associated to densit)_/ in the LM isp, = N/A whil_e pc Was dptermined
each particle. numerically. The data for LM (Fig. 1), similarly to the

2
While the value ofU, has been determined [16], the 1BRIM case, also demonstrate the dependefice U

properties of eigenstates as a function of the interactioA"d ShOW. in addition thall = Pe S
remained unclear. To understand these properties in thﬁ Accord.mg to the da.ta of Fig. 1 the width is given by
TBRIM we studied the local density of statesy(£) the Fermigolden rule:

in the basis of noninteracting multiparticle states. The 2

data were obtained for the states near the middle of the I =2m7(U%p. = EY Upe . ()
spectrum {25% from the center). The total statistics for

pw was kept around0%. We checked thapy(E) has where(---) means the averaging. We attribute the small
a Breit-Wigner shape and analyzed the dependence of itfifference between the LM and TBRIM cases to the fact
width I on U. The numerical data for TBRIM clearly that in the latter the density. slightly depends on the
demonstrate the relatioRi = U? which continues up to energy counted from the Fermi level, while we used its
large U values where a saturation takes place (Fig. 1)average value. For the LM this variation is smaller and
To check this dependence for larger system sizes, wiherefore the agreement is better.

investigated a slightly different model, obtained from the The expression (1) fol" does not depend on the
TBRIM by restricting ourselves to states in an energymultiparticle density of statep, and we expect that

0.0

Log(UA)

layer of width A near total energ\ff = mA. Such an
approximation is physically reasonable providédk A.
hL_ndeed, in this case the transitions to states outside the
Jayer do not influence the properties of eigenstates. We
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3.0 . . 1

. We studied this behavior in both TBRIM and LM. In
the latter case, we checked tligtdefined by the condition
1n(U.) = 0.3 also follows the relatiorU, = C/p., with
C = 0.62 being very close to the TBRIM value [16] (see
inset in Fig. 3). This fact once more confirms that indeed
the LM retains the physical properties of TBRIM. The data
of Fig. 4 for &, confirm thaté. ~ p,./p. in both TBRIM
and LM. In LM the proportionality factolC is about 3
times smaller ¢ = p.£./p, = 0.25 in Fig. 4) than its
value given by (2) aU = U, (C = 0.8). This indicates
0.5 a change of eigenstate properties ngar The difference
LogU/A) of C values for LM and TBRIM should be attributed to a
FIG. 2. Dependence of the IPRon U/A: TBRIM data for strongervar.iation. ofthe densitigs, pc With energy in _the
n=3m=17,U/A = 0.055 (X); LM data forn = 3,m =  TBRIM. This variation was not taken into account in the
130,U./A = 0.0049 (O), n=3,m=90,U,/A =0.0075 expressions fop,, p. in the TBRIM where we used their
(A), andn = 4,m = 60,U./A = 0.0085 (). Straight lines  averaged values.
show dependencg = U”. The data of Fig. 4 definitely show that &t = U,
the IPR grows proportionally to the multiparticle density
for U > U, an eigenstate is spread over all unperturbeg, and, therefore, it is exponentially large far> 1.
states in the energy intervBl In this regime level mixing This fact leads to the apparently surprising conclusion
goes up to level spacing, = 1/p, < 1/p,. leading to that for U < U, the eigenstates are composed of a huge
number of noninteracting eigenstates hRis) is still
&=~Tp, =2U0%pcpy. (2) close to the Poisson distribution. A similar situation
is known to exist for quantum systems whose classical
The numerical factor was taken in analogy with thedynamics corresponds to the Kolmogorov-Arnold-Moser
SBRM case wherg ~ I'p [7,8]. To check this theo- regime. In this case, the coupling between different modes
retical estimate we computedfor both TBRIM and LM.  strongly deforms the unperturbed tori, but does not destroy
The numerical data displayed in Fig. 2 show clearly thethe integrals of motion and the corresponding quantum
U* dependence for sufficiently strorig At very largelU  numbers. Generally such deformation gives a spreading
the growth of¢ is replaced by a saturation due to the finite gyer many unperturbed eigenstates, without real mixing
size of the system. The data shown in Fig. 3 demonstratgf energy levels [26]. The mixing and Wigner-Dyson
thaté « p.p,, in agreement with (2). statistics forP(s) appear only after the transition to chaos,
Without any fitting parameters these numerical result§yhich in our case corresponds to the situation when

definitely confirm the estimate (2) fo/ > U.. Itis  the physical frequency/p. becomes comparable to the
interesting to check if it remains valid close to the critical

valueU.. If so,thenthe IPR al/. for n > 1 will contain
exponentially many states. = £(U = U,) ~ pn/pc >
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FIG. 4. Dependence of the IPR atU. on p,/p.: LM data
FIG. 3. Dependence of the rescaled IPRU? on p.p,: LM forn =2 andm = 800 (*); n = 3 and40 = m = 130 (O);
dataforn =3 and40 = m = 130 (O); n =4 and30 =m = n=4 and 30 = m = 60 (¢). The straight line gives the
60 (). The straight line gives theory (2). Inset sholis/A fit £ = 0.25p,/p. + 2.7. Inset shows the same plot for the
vs p.A in log-log scale for the same parameters; the straighTBRIM for n = 2,m = 30;3 = n < 6 and10 = m = 21 (*).
line is the fitU. = 0.62/p.. The straight line is the fi£, = 1.63p,/p, + 1.91.

Log(pp )
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