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Abstract 

We study quantum chaos in open dynamical systems and show that it is characterized by quantum fractal eigenstates located 
on the underlying classical strange repeller. The states with longest life times typically reveal a scars structure on the classical 
fractal set. (~)1999 Elsevier Science B.V. All rights reserved. 
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At present, the structure of phase space for generic 

classical Hamiltonian systems is well understood both 
on qualitative and quantitative levels. With the increase 

of  perturbation's parameter the invariant KAM curves 

are destroyed by the perturbation and are replaced by 

chaotic regions. These regions grow and become in- 

terconnected over the whole phase space. In this situ- 

ation the phase space exhibits a hierarchical structure 

of mixed, chaotic and integrable components which 

continues on smaller and smaller scales of the phase 

space. At larger perturbations the measure of stabil- 

ity islands decreases until they become negligible for 

sufficiently strong perturbations. This is a general sce- 
nario for the emergence of  chaos in classical Hamil- 

tonian systems [1]. The well-known model in which 

such scenario has been studied in detail is the Chirikov 

standard map [2]. 
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The investigations of  the corresponding quantum 

systems show that the structure of  eigenstates is 
closely related to the properties of  classical phase 

space. In the integrable regime, eigenstates are located 

on the invariant KAM curves while in the chaotic 

regime they spread over the whole chaotic component 

in agreement with the Shnirelman theorem [3]. The 

structure of  eigenstates can be seen in a pictorial way 

with the help of  Wigner function and Husimi distribu- 

tion [4]. This representation allows to see graphically 

the qualitative change of eigenstates during the transi- 
tion from integrability to chaos. In the chaotic regime 

they also allow to see scarred eigenfunctions in which 

the probability is concentrated near short unstable 

periodic orbits [5,6]. However, in the chaotic regime, 

the majority of  eigenfunctions are ergodic on the 

energy surface and the energy level statistics is well 
described by the Random Matrix Theory [7]. Here we 
assume that the value of  the Planck constant is suffi- 

ciently small and the effect of  dynamical localization 

does not alter the properties of eigenstates [8]. 
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As a result, in absence of  localization, the structure 

of quantum eigenstates in the regime of Hamiltonian 

chaos is now well understood and many concrete ex- 

amples have been studied numerically [5-8] and ex- 

perimentally [9]. Conversely, the chaotic objects with 

fractal structure, which appear in dissipative classical 

dynamics such as strange attractors and repellers, were 

not studied in quantum mechanics. The main problem 

is that in the quantum case the dissipation is always 

accompanied by noise and generally one should study 
the density matrix [10,11]. In this way the problem 

becomes much more complicated than the Hamilto- 

nian case and the fractal structure of  strange attrac- 

tors/repellers had never been seen in quantum eigen- 

states. 

In this paper we study an open chaotic system in 

which absorption leads to the appearance of  a fractal 

set in the classical phase space (strange repeller). The 

quantum dynamics of  the model is governed by a non- 

unitary evolution operator. Such unitary breaking, due 
to absorption, was widely used in nuclear and meso- 

scopic physics to describe coupling with continuum 

and massive leads via open channels [12]. 

The underlying classical fractal set should affect the 

quantum dynamics and find its manifestations in the 

structure of eigenstates. Indeed, it is natural to expect 

that long living eigenstates will be associated with 

the above strange set on which classical orbits live 

forever. Therefore, the eigenstates associated with this 

set should strongly influence the scattering process, 

relaxation and ionization into continuum. 

To investigate the quantum fractal eigenstates we 
choose the kicked rotator model with absorbing 

boundary conditions which was introduced in [13]. 

The quantum dynamics is described by the evolution 

matrix: 

= U l p  = / 3 e - i T h 2 / 4 e - i k c ° s O e - i T h Z / 4 ~ r ,  (1) 

where h = - iO/O0,  h = 1 and the operator /3 

projects the wave function to the states in the interval 

[ - N / 2 ,  N/2] .  The quasiclassical limit corresponds 

to k --+ ~ ,  T ~ 0 with the chaos parameter K = 
k T  = const. 

The classical dynamics is described by the Chirikov 
standard map [2]: 
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T 
0 = 0 + - 7 ( n + h ) .  (2) 

Z 

In this model all trajectories (and quantum probabil- 

ities) leaving the interval [ - N / 2 ,  N/2]  are absorbed 

and never return back. For the classical map the ion- 

ization time required for a trajectory to reach diffu- 

sively the absorbing boundary is tc ~ tD = N 2 / D  

where D ~ k2/2  is the diffusion rate for K >> 1. The 

independence of tc on N requires N / k  = const. 

In our study we fixed N / k  = 4 and K = 7 so 

that the phase space is completely chaotic with no 

visible islands. As a result the classical probability 

P( t )  to stay inside the sample [ - N / 2 ,  N/2]  decays 

exponentially for t > tD: P( t )  ~ exp(--gct) with 

)'~ = 1/tc = 0.10188. The quantum probability fol- 

lows closely the classical one up to the quantum re- 

laxation timescale tq ~ ~ [14] where A = 1 / N  

is the levels spacing. 

In the classical case, the orbits which are never ion- 

ized and which stay forever inside the sample form 

a fractal set (strange repeller). To obtain this set we 
study the evolution of  M = 2.2 x 109 classical orbits 

up to t = 100 map iterations. Initially the orbits are 

homogeneously distributed in the phase plane. An ex- 

ample of  a set of  points which are never ionized and 

form a fractal is shown in Fig. 1. The fractal nature is 

demonstrated by magnification of  a small part of the 

phase space which clearly shows a structure typical 

of strange attractors/repellers [1,15]. Similarly to the 

problem of diffusion in the Lorentz gas [ 16], the infor- 

mation dimension dl of this set can be expressed via 
the Lyapunov exponent A ~ In K / 2  and the proba- 

bility decay rate Vc ~ D~ N2 : dl = 2 - gc /A.  In our 

case with )'c ~ 0.1, A ~ 1.25 this gives dl ~ 1.92. 

In the quantum system, due to absorption at the 

boundary, all eigenvalues of  (J move inside the uni- 
tary circle and can be written as )~ = exp( - i e )  = 

e x p ( - i E  - F/2 ) .  The imaginary part of e determies 
the decay rate F of an eigenstate. Since the time unit 

between kicks is taken to be 1, the rate F is also 

measured in dimensionless units. Due to the symme- 
try of the U-matrix the eigenstates are symmetric or 
antisymmetric in n and in order to study the statis- 
tics of F ' s  we restricted ourselves to investigation of 
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Fig. 1. Left column: Husimi function of the quantum fractal eigenstate for N = 59049 and /~ = 0.1080 ~ F~-- Right  column: classical 
strange repeller obtained, from initially homogeneously distributed orbits, after 100 iterations of map (2). The color varies proportionally 
to the density: from blue for zero density to bright red for maximal density (the color scale is the same for classical and quantum cases 
on each magnification level). The size of the phase region (0, n) is: 0 _< 0 < 2n ,  - N / 2  < n < N / 2  for (a) and (b); 0 < 0 < 2Jr/3, 
- N / 6  < n <_ N / 6  for (c) and (d); 0 < 0 < 27r/9, - N / 1 8  < n < N / 1 8  for (e) and (f). 
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Fig. 2. Distribution d W / d F  as a funct ion of  F for  N = 12001.  

The ar row marks  the value of  y,-. The inset shows A F  = Y c -  F, nin 

vs. N in l og - log  scale. The straight line shows the dependence  

given by (3). To guide the eye, the numerical  data (points) are 

connected  by lines. 

symmetric states. The general structure of  the distri- 

bution of F ' s  had been found in [13]. This distribution 

d W / d F  has a gap for small values of F ( F  < Yc) 

while for F > Yc it drops according to a power law, 

d W / d F  ~ F -3/2 for tc >> 1 [13]. A typical exam- 

ple for N = 12001 is shown in Fig. 2 and confirms 

the above global structure of  the distribution. With 

the increase of the matrix size N, the minimal value 

of  F = r m i  n converges to the classical value gc as 

it is shown in the inset of  Fig. 2. The fit of  numer- 

ical data gives A F  = Yc - Fmin ~ 6.2ycg ~ with 

g = yc /A  and oc = 0.507 4- 0.037. Theoretically we 

expect that, due to fluctuations, A F should be of the 

order of the distance ~ between the eigenvalues o f / J  

in the complex plane. Since most of  the N eigenval- 

ues • are distributed inside the ring of  width Yc, then 

~ ( y c / N )  1/2 ~ 1 / t q .  This gives A F  ~ ~ ~ 1/tq. 

Therefore, after the fitting of the data in Fig. 2, we 

have 

A f t '  = Yc - -  r m i n  ~" 6.2gc/v/g, (3) 

where g = yc /A  is the effective conductance of the 

system. 

To analyze the structure of eigenfunctions in the 

phase space we used the Husimi function obtained 

from the Wigner function smoothed in the intervals 

An and A0 ( A n A 0  = 1/2) (see [4]). The ratio s = 

AO/An was fixed in a way to have optimal resolu- 

tion. In Fig. 1 it was equal to s = 0.0015 (a); 6.25 x 

10 -4  (c); 2.25 x 10 -4  (e) and in Fig. 3 it was s = 

0.0015 (a); 0.16 (b, c). The Husimi functions were 

constructed from antisymmetric eigenstates since they 

had the minimal values of  F .  The comparison between 

the density distributions in the phase space for the 

classical and the quantum case can be seen in Fig. 1. 

The quantum Husimi function for the eigenstates with 

F ~ Yc reproduces very well the fractal structure of  

the classical strange repeller on very small scales. The 

value F ~ Yc in Fig. 1 corresponds to the maximum 

of the distribution d W / d F  (see Fig. 2). It shows close 

agreement between the classical and quantum data for 

large N corresponding to a small effective Planck con- 

stant heft. Of course, on very small scales comparable 

with the minimal quantum cell, the quantum density 

becomes smooth. However, on scales larger than this 

cell, the fractal structure is obvious: we call such states 

quantum fractal eigenstates. 
It is natural to expect some analog of Shnirelman 

theorem [3] for these quantum fractal eigenstates, so 

that in the quasiclassical limit they will be distributed 

over the classical fractal set according to the classical 

measure. The case of  Fig. 1 for the states with F ~ y, 

confirms such expectations. However, the situation for 

the states with F = ff'min, located at the very left from 

the maximum in d W / d F  (see Fig. 2), is rather differ- 

ent (Fig. 3). Indeed, generally, we observe there the 

appearance of scars on the underlying classical strange 

repeller, the silhouette of  which, in spite of scars, is 

still clearly seen. The strength of scars grows with de- 

creasing N (increasing heff). However, even for the 

largest N = 59 049, the probabili ty distributions f ( n )  

projected on the n-axis demonstrate an evident differ- 

ence between the classical and quantum cases (Fig. 4). 

We should stress that, even if not many, the states with 

F in the interval between Fmin and Yc are of  principal 

importance since they determine the asymptotic prob- 

ability decay in time. Our qualitative understanding of 

the scarring phenomenon for these states is the follow- 

ing: the quantum state with the minimal value of F 

should stay away as far as possible from the absorbing 

boundaries so that quantum interference should redis- 

tribute probabili ty on the classical set and will lead to 
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Fig. 3. Husimi function for quantum eigenstates with minimal F = ff 'min for: (a) N = 59 049; (b) N = 729 and (c) N = 243. The case (d) 
shows the classical initial density of orbits which survive after 60 iterations forward and back in time. The maximum of density (bright 
red) from (a) to (d) is fixed by case (a). 

some scarring around classical trajectories which cor- 

respond to short unstable periodic orbits located near 

the center. Indeed, Fig. 4 shows a pronounced peak 

near period two orbits. There is also an evident corre- 

lation between the density of long periodic orbits (Fig. 

3(d)) and quantum distributions with not very large N 
(Fig. 3(b) and (c)). It it clearly seen in the center of  
these figures. However, at present, we cannot propose 
any quantitative explanations of  the scarred eigenstate 
structure. 

The complex eigenvalues of  the evolution operator 

U can be considered as some poles of  the scattering 

matrix. Therefore, we can expect that similar quan- 

tum fractal eigenstates will appear in the problems of 

chaotic scattering in the quasiclassical regime. One 

of the possible models to study such effects is the 
three discs problem where the gap in the F-rates has 

been discussed in [17]. Such quantum fractal eigen- 
states can be also studied in experiments with chaotic 
light in micrometer-size droplets [ 18] where the clas- 
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Fig. 4. Probability distribution f (n)  over the unperturbed basis 
n for quantum eigenstates of Fig. l(a) (dotted curve), Fig. 3(a) 
(dashed curve). The full curve is the classical distribution of Fig. 
1 (b). Crosses mark periodic orbits with period one at (0,0) and 
period two at (n = ±rUT for 0 = zr/2, 3zr/2). The asymmetry of 
f (n)  in n for the classical case is due to round off computer errors. 

sical dynamics  is governed by a map analogous to the 

map (2). In conclusion,  we  have demonst ra ted  that the 

quantum eigenstates can form a quantum strange re- 

peller. We conjecture  that quantum strange attractors, 

once identified, should have a similar  structure. 

The results of  the present  paper show once more  

how rich is the structure of  the Chir ikov standard map 

and confirm its impor tance  and general i ty for the study 

of  classical  and quantum chaos. 
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