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Quantum Poincaré Recurrences
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We show that quantum effects modify the decay rate of Poincaré recurréticesn classical
chaotic systems with hierarchical structure of phase space. The exppneinthe algebraic decay
P(t) « 1/t? is shown to have the universal valye= 1 due to tunneling and localization effects.
Experimental evidence of such decay should be observable in mesoscopic systems and cold atoms.
[S0031-9007(98)08273-8]
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The general structure of classical phase space in chaotshould lead to fractal conductance fluctuations [11], the
Hamiltonian systems displays a hierarchical mixture ofexperimental observation of which has been reported re-
integrable and chaotic components down to smaller andently [12]. According to [11,12] the fractal exponemt
smaller scales [1]. This complicated structure leads, ifor conductance fluctuations is directly related to the ex-
particular, to an anomalous power law decay of Poincar@onentp aso = 2 — p/2.
recurrences”(r) and correlationg(¢) inside the chaotic A different type of system in which such effects
components [2,3]. As it follows from the Poincaré theo-should be observable experimentally is given by cold
rem a trajectory always returns to a region around itatoms in external laser fields where the Kicked Rotator
origin, but the statistical distribution of recurrences de-model of quantum chaos has been built experimentally
pends on the dynamics. For a strongly chaotic motion[13,14]. Possibilities of experimental investigation of
e.g., in the Arnold cat map [1], the probabili§(z) to  slow probability decay in such systems has been discussed
return or survive in a given region after tinredecays recently [15].
exponentially withs (as for coin flipping). However, in The experimental studies of slow power correlation
a more general case of systems with hierarchical struadecay in the regime of quantum chaos are also important
ture of phase space the decayRif) is algebraic (see a from the fundamental point of view, since here the
more detailed discussion in the related Letter [4]). Physitypical scale of correlation decay is much larger than the
cally, such slow decay appears due to a decrease, dovighrenfest time scalez ~ In1/4 on which the minimal
to zero, of the diffusion rate for a trajectory when it ap- coherent wave packet spreads over the available phase
proaches the chaos border determined by some criticapace. To the best of our knowledge the comparison
invariant curve [2,3,5-7]. TypicallyP(s) ~ C(¢r)/t ~  of classical and quantum correlations in such a regime
t~? with p = 1.5 [2]. As a result the integrated corre- has not been investigated so far. Only recently such a
lation function, which determines the diffusion raf@ -  comparison has been made in the regime of hard chaos
[ Cdt), can diverge thus leading to a superdiffusivewith exponential correlation decay [16]. In this paper
propagation [8]. Such effects are important for electronwve address directly the comparison between classical
dynamics in superlattices where usually the phase spa@d quantum Poincaré recurrences (QPR), related to the
has a mixed structure [9]. correlations decay, in the regime with mixed phase space.

The above anomalous properties had been studied @ur results demonstrate a new universal law for QPR
great detail for classical systems [2,3,5—9]. Howeverrelated to localization and tunneling effects.
the question how they are affected by quantum dynam- To investigate the QPR we use the model of kicked
ics was not addressed up to now. This problem becomea®tator with absorbing boundary conditions studied in
more and more important not only due to its fundamen{16,17]. The evolution operator over the perifdof the
tal nature but also in the light of recent experiments withperturbation is given by
mesoscopic systems. Indeed, different types of ballistic < s A T4 —ikcosd  —iTA%/4
gquantum dots can now be studied in laboratory experi- ‘Ap = Uy ="Pe e ¢ ! £ (1)
ments [10] and the phase space in such systems generallshere 2 is a projection operator over quantum states
has a mixed structure. Since the probability to stay inn the interval (=N /2,N/2). Here, we puti =1 so
a given region is directly related witR(z) and C(¢), its  that the commutator igi, ] = —i and the classical limit
slow decay can significantly affect conductance propereorresponds t& — «, T — 0, while the classical chaos
ties. In particular it has been proposed that such decagyarameteK = kT remains constant. In the classical limit
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the dynamics is described by the Chirikov standard map:an intermediate asymptotic behavior since for « the

n T decay will be exponentiaP,(r) ~ exp(—I'mint), Where
n=n+ ksin(ﬁ + —); 0=0+ —(n+n)), I'min is determined by the minimal imaginary part of
2 2 the eigenvaluer of the evolution operatolJ (U, =
2) e ).

In order to better understand the origin of quantum
behavior (3) we studied the probability decay in a simpler
case where the classical dynamics is completely chaotic
(K = 7) or quasiintegrable{ = 0.5). The quantum and
glpssical probability decays are shown in Fig. 2o 5
and absorption fom = 0 andn > N = 500. |Initially
the probability is concentrated at= 0. ForK = 7 the
classical probability decays, asymptotically, exponentially

in which orbits are absorbed outside the intervdN /2 <
n < N/2. In order to study the classical and quantum
survival probability P(r) we fixed the ratioN/k = 4
and take the classical chaos parameer 2.5, so that
the classical phase space has a hierarchical structure
integrable islands and chaotic components.

A typical example of classical and quantum survival

probability decay is shown in Fig. 1. The classmalWith time P(r) = 0.11 exq(— ). The value ofy can be

probability P(r) decays with a power law with exponent ) .
» =~ 2 in a range of 6 orders of magnitude. In this caseound from the solution of the Fokker-Planck equation

= ol ; ; ith absorbing boundary conditions which gives=
the exponent is slightly different from the typical value wi 2 1m 2 R/ . gl
1.5. Indeed as discussed in [2,3,5,6] the exponent caQ:T /2n ,é/vhe;rep _1$k /2_”']5 thel classu(:jal dIfI;USIOFI
vary from system to system (and even oscillates with) In rate [Isee. CI] (h) in [17]]. ¢ € Vc?ll;be (ﬁ7 .epenN 52 gn
depending on the local structure of phase space in th e classical chaos parameter and o= 7 is =~ 2.

vicinity of the critical boundary invariant curve whose ¢ 97]>< ;I'Ohirefct)]r_ehthe (Txpeite(jththeoretlcgl \I/alulew%
rotation number can play an important role. : which 1S close 1o the humerical valug =

The quantum survival probability, (1) is plotted for 6.4 X 107", The asymptotic exponential decay starts after

different values ofv (effective i is proportional tol /N) mssdcifa]::zlv((le:igﬁgl)foiolv@.thzhc(:elzgsusaitgsljrgn%rodbui?r:gtyslcr:me

in Fig. 1. In agreement with the correspondence principle . o X
s . . interval of time after which it decays according to Eqg. (3).
the quantum probability follows the classical value during The quantum decay (3) can be understood in the fol-

a rather long time scale which grows with _For longer lowing way. The quantum eigenstates are localized with
ti th t ili t)is f t i- 2
imes the quantum probability, (1) is found to approxi localization length¢ = D /2 [18]. Therefore the absorp-

mately follow the quantum decay law ) , )
tion time for a state at a distance from the absorb-
P,(t) = C/t, (3)  ing boundary ist ~ exp(2n/€). Sincen is proportional
where C is some constant. This latter decay continued0 the total measurg. ~ n o €Iny, it follows that the

during a rather long interval of time (4 orders of magnitudeSurvival probability isP, (1) = du/dt ~ £/t in agree-
in time for the casevV = 36). Of course (3) represents Ment with (3). The same estimate can be obtained by

InP
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FIG. 1. Classical (thick continuous line) and quantum (thinFIG. 2. Classical (continuous lines) and quantum (dashed
continuous and dotted lines) probability decays for= 2.5 lines) probability decays foK = 0.5 (grey lines) andk = 7

and N/k = 4. The two dashed straight lines show slope 2 (black lines); parametet = 5. The evolution starts at = 0

and 1. The quantum curves correspondMo= 3? with p and the probability is absorbed far= 0 andn > 500. The
increasing from 5 (upper continuous line) to 10 (lower dottedtwo thin straight lines have slope one, while the dotted grey
line). The starting conditions are two symmetric lines atcurve shows the fit for the classical decay mat= 7. P =

n = =N /3, both for the classical and quantum evolutions. 0.11exp(—yt), y = 6.4 X 1074,
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expanding an initial state over eigenstates of the evolu- 12
tion operator (1) with probabilitiek,,|> ~ ¢ =2/t /¢ and 11!
ionization ratesl’, ~ |c,|> ~ ¢ 2/¢/D. Then the sur-
vival probability P,(t) ~ [, le,l?e " dn ~ D/t. Our
data atk = 7 for different values ok (k = 5,6,...,10)
give thatC = aD?, with a = 0.27(5) andb = 0.92(13).
The above derivation of the decay law (3) refers to the
regime of quantum localization of chaos. For the inte-
grable case one still has the raes ~ |c,|> ~ ¢ "/fer,
where {.¢; is an effective length determined by tunnel-
ing in the classically forbidden region. However here
the fluctuations in time are stronger sinég; depends
on the local structure of invariant curves and islands in
the integrable domain. Nevertheless the global decay at 5 6 7 8 9 10 11 12 13
K = 0.5 is in agreement with thé/7 law (see Fig. 2). In In N
both casedK = 7;0.5), the quantum decay proceeds in _ _
a much slower way than the corresponding classical oné:.'Gri d35') aa?jfer}?:ierglcees Cgroigggtugartg)ni nstcr?egz (fsligmd';;z .
Because of the above reasons even in .the case of mix e the text1)1. The dotted and continuous straight lines show
phase space the decay follows thé law in accordance the theoretical slopes/2 and1, for 7, andzy, respectively.
with numerical data of Fig. 1. Thg/r behavior can con-
tinue up to a tim&may * exXpN /€err) ~ 1/I'min Which is
determined by the minimal decay rate in the system. Foto determine the time scalg because the first definition
t > tmax the quantum survival probability,(r) decays gives large oscillations related to the oscillations of the
exponentially with timeP,(r) = exp(—1/fmax)- classicalP(z) in Int while the second definition allows
The ionization ratd”, of an eigenstaté, localized ata one to smooth out the effect of the oscillations. The
distancen from the absorbing boundary is proportional to numerical data are in agreement with the dependence
I’y o« exp(—n/L.); therefore the number of such statesry ~ N « 1/A. This time can be interpreted as the
is proportional to the measure ~ n ~ In1/I". As a  Heisenberg time scale, which is determined by inverse
result the probability to find a valu&' in the interval level spacings, and after which the quantum behavior
dl' is dW/dT' ~ du/dT' ~ 1/T. Our numerical data becomes qualitatively different from the classical one.
for dW/dT obtained in the localized regime confirm this The above scales, and ty can be also seen in
1/T" dependence (see [19]). the quantum evolution of the Husimi function obtained
An interesting question is at what time scale the QPRrom the Wigner function by smoothing over the size of
start to deviate from their classical behavior. To test theséhe 7 cell. This evolution is presented in Fig. 4. For
deviations we determined them in two different ways.short timest < ¢, = 150 the classical and the quantum
The first one is defined as the timg at which the ratio probability distributions in the phase spate 6) look
of classical over quantum probability B(t,)/P,(t,) = rather similar. The quantum Husimi function reflects the
0.9. This condition gives the first quantum deviation underline fractal structure of the classical distribution.
and was studied in [16] where it was foumglc /N «  For larger times the classical recurrencies are determined
J1/h. This time scale can be explained on the basidy more and more fine scales in the phase space and
of analysis of eigenvalue fluctuations of the evolutionthe classical distribution becomes localized around small
operatorl/ in the complex plane or as the result of weakislands near critical invariant curves. On such long
localization corrections [16]. Our numerical data showntimes ¢ > ¢ty = 3000 the quantum evolution in phase
in Fig. 3 confirm this dependence even if the situationspace in proximity of critical invariant curves becomes
is qualitatively different from that in [16], where the influenced by quantum interference effects that results in
integrable component was absent, while here we havea qualitatively different probability distribution (Fig. 4).
power law decay in a mixed phase space (see Fig. 1). The penetration of quantum probability in phase space
However, at timer, quantum probability only starts to on smaller and smaller scales proceeds via a very slow
deviate from the classical one while the behavior (3) cartiunneling process and as a result the Husimi function
set in after a longer timey. We determine this time in remains almost unchanged when the time is increased
two ways: (i)zz = InP(t,)/InP,(1,) = 0.9 (circles and  almost by 2 orders of magnitude (Fig. 4).
stars in Fig. 3) and (ii) as the crossing point between the At very long timest > rmax the quantum decay be-
two extrapolations for the classical behaviefr) o« 1/1> comes exponential; this corresponds to eigenstates which
and the quantum onk,(r) « 1/t (crosses in Fig. 3). The are localized in the center of the island (Fig. 4). We
data for stars in Fig. 3 were obtained by averaging ovehave been able to observe such a localized asymptotic
50 values ofV near a given value. We used two methodsHusimi function forN = 3* (Fig. 4). However, already

=
o
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FIG. 4(color). Left column: Husimi function at time? (top),

5 X 10° (middle), and3 X 10° (bottom), for the case in Fig. 1
with N = 3% Right column: classical density plot of orbits
surviving up to timel10? (top) and5 X 10° (middle). The
right bottom shows the Husimi function fav = 3%, = 107.
Distributions are averaged in a small time inteng = 20
near the giverr values. The size of the phase regiahn
is0 =6 <27, —N/2 = n = N/2. The color is proportional

effect the fractal dimension of conductance fluctuations in
soft billiards studied in [11,12]. According to these results
the fractal dimension of these fluctuations shouldsbe

2 — p/2 = 1.5. This regime should start at large times

t > ty which requires one to analyze conductance fluc-
tuations with very fine resolution of magnetic field. The

above value ofr has not been seen in experiments [11],

which apparently indicates that the experimental reso-
lution was not yet sufficient to detect quantum Poincaré
recurrences at large times.

*Also Budker Institute of Nuclear
Novosibirsk, Russia.
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