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By different methods we show that for dynamical chaos in the standard map with critical golden
curve, the Poincaré recurrencBér) and correlations () decay asymptotically in time a8 o« C/7 «
1/73. ltis also explained why this asymptotic behavior starts only at very large times. We argue that
the same exponent = 3 should be also valid for a general chaos border. [S0031-9007(98)08272-6]

PACS numbers: 05.45.Mt

During the last two decades the local structure of thendicated approximately the same valuepof10,11] even
phase space of chaotic Hamiltonian systems and are#-it was remarked thap can vary from map to map, and
preserving maps has been studied in great detail [1-5}hat the decay of?(7) can even oscillate with In [9—
These studies allow one to understand the universal scalir®?]. This result is of general importance and moreover
properties in the vicinity of critical invariant curves where it determines the correlation function decayr) via the
coexistence of chaos and integrability exists on smaller antklation C(7) « 7P(7) [9-12]. The statistics ofP(r)
smaller scales in the phase space. The most studied caisealso well suited for numerical simulations due to the
is the critical golden curve with the rotation numbegr= natural property’(7) > 0 and statistical stability.

[111...] = (/5 — 1)/2 for which the scaling exponents ~ Such a slow decay of Poincaré recurrences was at-
were found with high precision and it was shown thattributed to the sticking of a trajectory near a critical KAM
the phase space structure is self-similar and universaurve which restricts the region of chaos [9-14]. In-
[2]. The most studied map with mixed integrable anddeed, when approaching the critical curve with the bor-
chaotic components is the standard map [6] where thder rotation number,, the local diffusion rateD, goes
golden curve is critical at the chaos paraméfer= K, =  t0 zero asD, ~ lry — ral®/? ~ 1/q® with @ = 5 [13],
0.971 63540631 [2]. It is believed that fork > K, all ~ wherer, = p,/q, are the convergents fay, determined
invariant Kolmogorov-Arnold-Moser (KAM) curves are by a continued fraction expansion. The theoretical value
destroyed [2]. a = 5 was derived from a resonant theory of critical in-

While the local structure of divided phase space is nowariant curves [13,14] and was confirmed by numerical
well understood, the statistical properties of dynamics stilmeasurements of the local diffusion rate in the vicinity of
remain unclear in spite of the simplicity of these systemsthe critical golden curve in the standard map [15]. Such a
Among the most important statistical characteristics are thdecrease of the diffusion rate near the chaos border would
correlation function decay in tim€(r) and the statistics give the exponenp = 3 if everything was determined by
of Poincaré recurrenceB(r). The latter is defined as the local properties of principal resonanges/q, given
P(7) = N,/N, where N, is the number of recurrences by the convergents of, [12—14,16]. However, the value
in a given region [7] with the recurrence time> r  p = 3 is strongly different from the numerically found
and N is the total number of recurrences. According top = 1.5. Moreover, the special simulations for the stan-
the Poincaré theorem an orbit always returns sufficientlylard and separatrix maps with the border rotation number
close to its initial position; however, the statistics of r, = r, give a different behavior of (7) and differentp
these recurrences depends on the system dynamics and9s12] in spite of the fact that the local structure of the
different for integrable and chaotic motion. In the case ofgolden critical curve is universal. Different attempts have
strong chaos without any stability islands (e.g., the Arnoldoeen made to resolve this difficulty. In [17] the authors
cat map [8]) the probability?(7) decays exponentially argued that a contribution from nonprincipal resonances
with 7. This case is similar to the coin flipping where can reduce the exponent down to= 2. Other argu-
the probability to stay heads for more thanflips also ments based on the disconnection of principal resonance
decays exponentially. However, the situation turns ouscales were proposed in [12], while Murray discussed the
to be different for a more general case of dynamics in @ossibility that larger times are required to gee= 3 de-
chaotic component of an area-preserving map with dividegay [18]. During this time different Hamiltonian systems
phase space. The first studiesRifr) for such a case in a were studied where the values pf~ 1-2.5 have been
separatrix map showed that at a large time the recurrencégund [11,19-22].
decay as a power law(7) = 1/77 with the exponent The analysis of Poincaré recurrences is interesting not
p = 1.5[9]. Investigations of other different maps also only by itself but also because they are directly related to
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the correlation function of dynamical variables [10-17]: 0 ——
C(r) ~ 7P(r) /() ~ 1/7"7", 1)

where (7) is the average recurrence time. This rela-
tion can be understood as follows. By definitiBigr) =

=]
N./N; therefore, for the total timg = (7)N on which 34
one investigates the recurrences of a trajectory, we have ap
P(t) = (7)N,/T ~ (t)u(r)/r. Here, due to the ergo- S _6

dicity of motion the measure of the sticking region

u(r) ~ T, /T is proportional to the ratio of time the tra- _8
jectory spends in the regiaofi’, ~ 7N,) to the total time

T. Inside this region the dynamical variables are corre-

lated so thatC(7) ~ u(7) [9,11-13]. Since the correla- _104 6 8 10
tions are directly related to a diffusion rd@, ~ [ C dr)
the exponenp < 2 can lead to a superdiffusive dynamics log T,

[11-14]. For the standard map such a behavior was o
indeed observed in [11,12,23]. All this shows that theFIG. 1. Dependence of exit time, from the scaler, on
asymptotic decay of Poincaré recurrences is a cornerstorie distance (chaos measure) from the critical golden curve

. i . n = lrg — ryl for ¢, =3,8,...,6765 (black circles) and
statistical problem of two-dimensional maps. qn = 5,13,...,4181 (open circles). The straight line shows

To understand the asymptotic properties Rifr) we  asymptotic behavior (3). Error bars are less than the symbol
used for the first time a new approach based on a direalize. Logarithms are decimal in Figs. 1-3.

computation ofexit times from a vicinity of the critical

I in the st . - cee
golden curve in the standard map K?/8w?* is the quasilinear diffusion rate [8] and ~

y =y — K/Q2m)sin2mx), ¥x=x+y modl 0.0066 is a numerical constant which is quite small
(2)  due to a slow diffusion inside the separatrix layer [15].

with parameterk = K,. The properties of this curve As a result the sum of transition times between the
g . .

had been studied in great detail [2]. In particular, thefWO Scales fromr,, 1o T2 1S apprOX|rr21ater~equaI to
positions of unstable fixed points of resonangedq, th% total exit time:r, = 3, |r, — ry—|*/Dy = 1.4 X

are known with high precision [2]. To determine the 10°¢»- This estimate gives the value af, close to
exit time 7, from the scaleg, we placed 100 orbits _(3) and allows us to understanq the p_hyS|caI origin of
in a very close vicinity of an unstable fixed point and its large r_lum(_arlcal value. It is interesting to note that
computed the average exit time. For each orbit the exith® data in Fig. 1 show that the convergencerpfto
time is determined as a time after which the orbit crosses
the exit line. The exit line was fixed as= 1 for the

orbits from the side of the main resonange= 1 or 0 h{'\!\'\' AL
asy = 0.5 + asin(2wx) for the orbits from the other N

side of the critical curve withy = 2. In the latter case

the exit line was drawn in such a way to cross the -5

two unstable points of resonange= 2 (a = 0.0773...).
This allowed us to take into account the deformation
of the ¢ = 2 resonances. The average exit timg ~10
from a given scale;, is related to the distance of this

resonance from the curve and is proportional to this

distance (measure of chaog), = |r, — r,| = 1/V/5¢> _15
squared divided by the local diffusion rat®@,: 7, ~

u2/D, ~ q,. This givesu ~ C ~ 1/7% and p = 3.

The numerical data for dependencewf on 7, is shown

in Fig. 1. From both sides of the, curve the exit times log T
converge to the asymptotic dependence

el
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FIG. 2. Poincaré recurrences in the standard mag at K,

= (1,/7T )2/\/5, Tw = Toln, from the side of resonaneg = 2 (upper full curve) and; = 1
Hon gron 5" gdn 3) (lower full curve, shifted down by 3 for clarity). Open and full
T, = 2.11 X 10°. circles show the values af(r) recalculated from the data of

. . Fig. 1 (see text). The dashed straight lines mark the asymptotic
This dependence corresponds to the scaling near thes oy with theoretical exponept= 3; slopep = 1 is shown

critical curve [2,13]. Indeed, the local diffusion rate py the dash-dotted line. Data fdt(r) are obtained from ten
in y on the scaleg, is D, = ADo/q,i, where Dy = orbits of length10'".
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10 e way is proportional to the probability to remain (survive)
FDOYOO up till time 7 in the region bounded by the exit line
[P(7) «« du/d7]. The results are presented in Fig. 2 and
show a clear change in decay Bfr) for + > 10° (side
g = 1) andr > 107 (sideq = 2). To check the relation
(1) we computedP(7) from the data of Fig. 1 taking
oo the recurrence time = 27, and P(7) = B(T)qun/7,
where ¢ = 1,2 mark the side of critical curve. With
the average recurrence tinde); = 24.5 (or (r), = 61)
and an arbitrary constast; = 2.0 (or B, = 8.2) the data
from Fig. 1 describe the variation @f(r) in the interval
A il of 6 (4) orders of magnitude. This gives additional
5 4 6 8 10 support for the theoretical exponemt= 3.
Another check of the relation (1) was done by comput-
log T ing the diffusion rate in phase=z + (5 + y — 2z,)/2
o _ with z, = 0(g = 1) and z, = 1/2(¢ = 2). A simi-
FIG. 3. Dependence of diffusion ratd. on time (full |50 55h09ch was used in [23]. The diffusion rate is
curves) compared with its values computed from the Pom_car(i) _ 2 its d d . is d ined
recurrences of Fig. 2 (dashes curves) and exit times of Fig. Pc = (Az)°/At and its dependence on time is determine
(open and full circles) according to relation (1) (see text).by the decay of the correlation function oft). Accord-
Lower curves and circles are far = 1 side, while the upper ~ing to (1) we haveD.(r) = D.,G, [ 7[P(r)/{r)]dT =
ones are foy = 2 (shifted up by 4 for clarity). For clarity, all D.,G, [C(7)dr, where D, = |r, — r,1*/3 =
circles are shifted up by 0.3 from their optimal positions g|ven0'049(0'0046) is the quasilinear diffusion rate [8]
by coefficientsG, (see text). f _ . =
or ¢ =1(2) side and G,,G, are some constants.
The correlation C(7) was computed from the linear
its asymptotic value can be satisfactorily described anterpolation of data in Fig. 1. In addition we took that
|7w/qn7s — 1| < 1/g,. This indicates a certain similarity C(27,) = w,/mn1, whereu,; is the value ofu, at the
between the ratia, /g, 7, and the residu®, for periodic  first scale on each side of the critical curve with= 3, 5.
orbits which converges to its critical value in a similar In this way C(7) remains constant up to the first exit
way [2]. The physical reason of this similarity is the time 7,; [C(0) = C(7,1) = 1] that corresponds to the
following: R, is related to the orbit stability and the larger fact thatP(r) ~ 1/7 for 7 < 7,4 ~ 7,. Forp = 3 the
it is, the more rapidly the orbit escapes from the segle rate D, should be finite. The value db. was computed
Because of that for odd(q, = 1,3,8,...) the timer, is  for 100 orbits initially located near unstable fixed point
smaller than the asymptotic expression (B) & R, =  of period ¢ = 1,2. The diffusion rate dependence on
0.250... [2]) while for evenn (g, = 2,5,13,...) itis 7, and comparison with its computation frof(r) and
larger than (3) R, < R.; [2]). Because of universality exit timesr, = 7/2 via the above integral relation, are
of the critical golden curve structure it is natural to expectshown in Fig. 3. Both methods give a good agreement
that the relation (3) and the time, are universal for all  with D.(7), especially in the case &f(r), confirming (1).
area-preserving maps as well R (note thatg, is the The constants aré&;, = G, = 2, G; = 0.3,G, = 0.6.
period of unstable periodic orbit on the scale According to the above values of coefficielg the ratio
The relation (3) determines the measure of chaoti@s,/G, should be approximately 2 times smaller. This
region u ~ u, at which a trajectory is stuck for a time may be due to the approximate scheme used to relate
7 ~ 7,. Then, according to (1) the exponent of PoincaréC(r) with w(7r). For 7> 107 the asymptotic value
recurrences ip = 3 and correlationsC(7) ~ n decay p = 3 leads to a saturation @b, growth in time. Even
as inverse square of time. However, this asymptotidf the asymptotic diffusion rate is constaft. = D_.()
decay starts in fact only after a very long time> 10°  the distribution function is non-Gaussian since the higher
due to the large value of,. This strong delay of moments diverge. For smaller the diffusion rateD,
asymptotic behavior is responsible for the nonuniversagjrows approximately linearly that corresponds to an
decay observed foP(7) in [11,12] atK = K,. Indeed, intermediate value ofp = 1. This intermediate slow
for 7 < 7, a trajectory does not feel the border apd decay is responsible for the enormously large ratio of
remains approximately constant giving= 1 that had the asymptotic diffusion rate to its quasilinear value:
been seen in [11,12] (see Fig. 2). However, to observé® .(«)/D., = 3 X 10°(g = 1); 10’(q = 2).
the theoretical exponemt = 3 one should go to longer  The ensemble of data in Figs. 1-3 shows that the
times. To check these theoretical expectations we madesymptotic decay of Poincaré recurrences and correlations
extensive numerical simulations #f(7) at K = K, with  is determined by the universal structure in the vicinity
recurrences on the exit lines defined above on both sidesf the critical golden curve, and the contribution of
of the criticalr, curve. We note thaP(r) defined in this boundaries of other internal islands of stability is not

o
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significant at variance with [17]. The hypothesis of decay of Poincaré recurrencegis= 3. This implies that
dynamical disconnection of scales [12] is also ruled outthe correlation integral converges and the diffusion rate
Our results are in agreement with previous numericaproduced by such dynamical chaos is finite. However, the
observations indicating that long recurrences are relatedigher moments of distribution will diverge. We argue
to orbits being very close to the, curve [11,12]. It that the asymptotic exponent should remain the same also
is interesting to ask the question how the value ofin the case of a typical border invariant curve.

the exponentp = 3 would be modified for the case

of a main border curver, = [ay,as,...,a;,...] with

nongolden continued fraction expansion. The numerical
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