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Asymptotic Statistics of Poincaré Recurrences in Hamiltonian Systems
with Divided Phase Space
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and Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia
(Received 28 July 1998)

By different methods we show that for dynamical chaos in the standard map with critical golden
curve, the Poincaré recurrencesPstd and correlationsCstd decay asymptotically in time asP ~ Cyt ~

1yt3. It is also explained why this asymptotic behavior starts only at very large times. We argue that
the same exponentp  3 should be also valid for a general chaos border. [S0031-9007(98)08272-6]

PACS numbers: 05.45.Mt
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During the last two decades the local structure of th
phase space of chaotic Hamiltonian systems and ar
preserving maps has been studied in great detail [1–
These studies allow one to understand the universal sca
properties in the vicinity of critical invariant curves wher
coexistence of chaos and integrability exists on smaller a
smaller scales in the phase space. The most studied c
is the critical golden curve with the rotation numberrg 
f111 . . .g  s

p
5 2 1dy2 for which the scaling exponents

were found with high precision and it was shown tha
the phase space structure is self-similar and univer
[2]. The most studied map with mixed integrable an
chaotic components is the standard map [6] where t
golden curve is critical at the chaos parameterK  Kg 
0.971 635 406 31 [2]. It is believed that forK . Kg all
invariant Kolmogorov-Arnold-Moser (KAM) curves are
destroyed [2].

While the local structure of divided phase space is no
well understood, the statistical properties of dynamics s
remain unclear in spite of the simplicity of these system
Among the most important statistical characteristics are t
correlation function decay in timeCstd and the statistics
of Poincaré recurrencesPstd. The latter is defined as
Pstd  NtyN , where Nt is the number of recurrences
in a given region [7] with the recurrence timet . t

and N is the total number of recurrences. According t
the Poincaré theorem an orbit always returns sufficien
close to its initial position; however, the statistics o
these recurrences depends on the system dynamics an
different for integrable and chaotic motion. In the case
strong chaos without any stability islands (e.g., the Arno
cat map [8]) the probabilityPstd decays exponentially
with t. This case is similar to the coin flipping where
the probability to stay heads for more thant flips also
decays exponentially. However, the situation turns o
to be different for a more general case of dynamics in
chaotic component of an area-preserving map with divid
phase space. The first studies ofPstd for such a case in a
separatrix map showed that at a large time the recurren
decay as a power lawPstd ~ 1ytp with the exponent
p ø 1.5 [9]. Investigations of other different maps als
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indicated approximately the same value ofp [10,11] even
if it was remarked thatp can vary from map to map, and
that the decay ofPstd can even oscillate with lnt [9–
12]. This result is of general importance and moreove
it determines the correlation function decayCstd via the
relation Cstd ~ tPstd [9–12]. The statistics ofPstd
is also well suited for numerical simulations due to th
natural propertyPstd . 0 and statistical stability.

Such a slow decay of Poincaré recurrences was
tributed to the sticking of a trajectory near a critical KAM
curve which restricts the region of chaos [9–14]. In
deed, when approaching the critical curve with the bo
der rotation numberrb, the local diffusion rateDn goes
to zero asDn , jrb 2 rnjay2 , 1yqa

n with a  5 [13],
wherern  pnyqn are the convergents forrb determined
by a continued fraction expansion. The theoretical valu
a  5 was derived from a resonant theory of critical in
variant curves [13,14] and was confirmed by numeric
measurements of the local diffusion rate in the vicinity o
the critical golden curve in the standard map [15]. Such
decrease of the diffusion rate near the chaos border wo
give the exponentp  3 if everything was determined by
the local properties of principal resonancespnyqn given
by the convergents ofrb [12–14,16]. However, the value
p  3 is strongly different from the numerically found
p ø 1.5. Moreover, the special simulations for the stan
dard and separatrix maps with the border rotation numb
rb  rg give a different behavior ofPstd and differentp
[9,12] in spite of the fact that the local structure of the
golden critical curve is universal. Different attempts hav
been made to resolve this difficulty. In [17] the author
argued that a contribution from nonprincipal resonanc
can reduce the exponent down top  2. Other argu-
ments based on the disconnection of principal resonan
scales were proposed in [12], while Murray discussed th
possibility that larger times are required to seep  3 de-
cay [18]. During this time different Hamiltonian systems
were studied where the values ofp ø 1 2.5 have been
found [11,19–22].

The analysis of Poincaré recurrences is interesting n
only by itself but also because they are directly related
© 1999 The American Physical Society
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the correlation function of dynamical variables [10–17]:

Cstd , tPstdyktl , 1ytp21, (1)

where ktl is the average recurrence time. This rel
tion can be understood as follows. By definitionPstd 
NtyN ; therefore, for the total timeT  ktlN on which
one investigates the recurrences of a trajectory, we h
Pstd  ktlNtyT , ktlmstdyt. Here, due to the ergo-
dicity of motion the measure of the sticking regio
mstd , TtyT is proportional to the ratio of time the tra
jectory spends in the regionsTt , tNtd to the total time
T . Inside this region the dynamical variables are corr
lated so thatCstd , mstd [9,11–13]. Since the correla-
tions are directly related to a diffusion ratesDc ,

R
C dtd

the exponentp , 2 can lead to a superdiffusive dynamic
[11–14]. For the standard map such a behavior w
indeed observed in [11,12,23]. All this shows that th
asymptotic decay of Poincaré recurrences is a cornerst
statistical problem of two-dimensional maps.

To understand the asymptotic properties ofPstd we
used for the first time a new approach based on a dir
computation ofexit times from a vicinity of the critical
golden curve in the standard map

ȳ  y 2 Kys2pd sins2pxd, x̄  x 1 ȳ mod 1
(2)

with parameterK  Kg. The properties of this curve
had been studied in great detail [2]. In particular, th
positions of unstable fixed points of resonancespnyqn

are known with high precision [2]. To determine th
exit time tn from the scaleqn we placed 100 orbits
in a very close vicinity of an unstable fixed point an
computed the average exit time. For each orbit the e
time is determined as a time after which the orbit cross
the exit line. The exit line was fixed asy  1 for the
orbits from the side of the main resonanceq  1 or
as y  0.5 1 a sins2pxd for the orbits from the other
side of the critical curve withq  2. In the latter case
the exit line was drawn in such a way to cross th
two unstable points of resonanceq  2 sa  0.0773 . . .d.
This allowed us to take into account the deformatio
of the q  2 resonances. The average exit timetn

from a given scaleqn is related to the distance of this
resonance from the curve and is proportional to th
distance (measure of chaos)mn  jrg 2 rnj ø 1y

p
5 q2

n
squared divided by the local diffusion rateDn: tn ,
m2

nyDn , qn. This gives m , C , 1yt2 and p  3.
The numerical data for dependence ofmn on tn is shown
in Fig. 1. From both sides of therg curve the exit times
converge to the asymptotic dependence

mn  stgytnd2y
p

5 , tn  tgqn ,

tg  2.11 3 105.
(3)

This dependence corresponds to the scaling near
critical curve [2,13]. Indeed, the local diffusion rat
in y on the scaleqn is Dn ø AD0yq5

n, where D0 
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FIG. 1. Dependence of exit timetn from the scalern on
a distance (chaos measure) from the critical golden cu
mn  jrg 2 rnj for qn  3, 8, . . . , 6765 (black circles) and
qn  5, 13, . . . , 4181 (open circles). The straight line show
asymptotic behavior (3). Error bars are less than the sym
size. Logarithms are decimal in Figs. 1–3.

K2y8p2 is the quasilinear diffusion rate [8] andA ø
0.0066 is a numerical constant which is quite sma
due to a slow diffusion inside the separatrix layer [15
As a result the sum of transition times between t
two scales fromrn to rn22 is approximately equal to
the total exit time:tn ø

P
n jrn 2 rn22j

2yDn ø 1.4 3

105qn. This estimate gives the value oftg close to
(3) and allows us to understand the physical origin
its large numerical value. It is interesting to note th
the data in Fig. 1 show that the convergence oftn to

FIG. 2. Poincaré recurrences in the standard map atK  Kg
from the side of resonanceq  2 (upper full curve) andq  1
(lower full curve, shifted down by 3 for clarity). Open and fu
circles show the values ofPstd recalculated from the data o
Fig. 1 (see text). The dashed straight lines mark the asympt
decay with theoretical exponentp  3; slopep  1 is shown
by the dash-dotted line. Data forPstd are obtained from ten
orbits of length1011.
529
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FIG. 3. Dependence of diffusion rateDc on time (full
curves) compared with its values computed from the Poinca
recurrences of Fig. 2 (dashes curves) and exit times of Fig
(open and full circles) according to relation (1) (see text
Lower curves and circles are forq  1 side, while the upper
ones are forq  2 (shifted up by 4 for clarity). For clarity, all
circles are shifted up by 0.3 from their optimal positions give
by coefficientsG̃q (see text).

its asymptotic value can be satisfactorily described
jtnyqntg 2 1j ~ 1yqn. This indicates a certain similarity
between the ratiotnyqntg and the residueRn for periodic
orbits which converges to its critical value in a simila
way [2]. The physical reason of this similarity is the
following: Rn is related to the orbit stability and the large
it is, the more rapidly the orbit escapes from the scaleqn.
Because of that for oddnsqn  1, 3, 8, . . .d the timetn is
smaller than the asymptotic expression (3) (Rn . Rcr 
0.250 . . . [2]) while for even n sqn  2, 5, 13, . . .d it is
larger than (3) (Rn , Rcr [2]). Because of universality
of the critical golden curve structure it is natural to expe
that the relation (3) and the timetg are universal for all
area-preserving maps as well asRcr (note thatqn is the
period of unstable periodic orbit on the scalen).

The relation (3) determines the measure of chao
region m , mn at which a trajectory is stuck for a time
t , tn. Then, according to (1) the exponent of Poinca
recurrences isp  3 and correlationsCstd , m decay
as inverse square of time. However, this asympto
decay starts in fact only after a very long timet . 106

due to the large value oftg. This strong delay of
asymptotic behavior is responsible for the nonunivers
decay observed forPstd in [11,12] atK  Kg. Indeed,
for t , tg a trajectory does not feel the border andm

remains approximately constant givingp  1 that had
been seen in [11,12] (see Fig. 2). However, to obser
the theoretical exponentp  3 one should go to longer
times. To check these theoretical expectations we ma
extensive numerical simulations ofPstd at K  Kg with
recurrences on the exit lines defined above on both sid
of the criticalrg curve. We note thatPstd defined in this
530
ré
. 1
).

n

as

r

r

ct

tic

ré

tic

al

ve

de

es

way is proportional to the probability to remain (survive
up till time t in the region bounded by the exit line
[Pstd ~ dmydt]. The results are presented in Fig. 2 an
show a clear change in decay ofPstd for t . 105 (side
q  1) andt . 107 (sideq  2). To check the relation
(1) we computedPstd from the data of Fig. 1 taking
the recurrence timet  2tn and Pstd  Bqktlqmnyt,
where q  1, 2 mark the side of critical curve. With
the average recurrence timektl1 ø 24.5 (or ktl2 ø 61)
and an arbitrary constantB1  2.0 (or B2  8.2) the data
from Fig. 1 describe the variation ofPstd in the interval
of 6 (4) orders of magnitude. This gives additiona
support for the theoretical exponentp  3.

Another check of the relation (1) was done by compu
ing the diffusion rate in phasēz  z 1 s ȳ 1 y 2 2zqdy2
with zq  0sq  1d and zq  1y2sq  2d. A simi-
lar approach was used in [23]. The diffusion rate
Dc  sDzd2yDt and its dependence on time is determine
by the decay of the correlation function ofystd. Accord-
ing to (1) we haveDcstd  DcqGq

R
tfPstdyktlg dt 

DcqG̃q

R
Cstd dt, where Dcq  jrg 2 rqj2y3 

0.049s0.0046d is the quasilinear diffusion rate [8]
for q  1 s2d side and Gq, G̃q are some constants.
The correlation Cstd was computed from the linear
interpolation of data in Fig. 1. In addition we took tha
Cs2tnd  mnymn1, wheremn1 is the value ofmn at the
first scale on each side of the critical curve withq  3, 5.
In this way Cstd remains constant up to the first exi
time tn1 fCs0d  Cstn1d  1g that corresponds to the
fact thatPstd , 1yt for t , tn1 , tg. For p  3 the
rateDc should be finite. The value ofDc was computed
for 100 orbits initially located near unstable fixed poin
of period q  1, 2. The diffusion rate dependence o
t, and comparison with its computation fromPstd and
exit times tn  ty2 via the above integral relation, are
shown in Fig. 3. Both methods give a good agreeme
with Dcstd, especially in the case ofPstd, confirming (1).
The constants areG1 ø G2 ø 2, G̃1 ø 0.3, G̃2 ø 0.6.
According to the above values of coefficientsBq the ratio
G̃qyGq should be approximately 2 times smaller. Thi
may be due to the approximate scheme used to rel
Cstd with mstd. For t . 107 the asymptotic value
p  3 leads to a saturation ofDc growth in time. Even
if the asymptotic diffusion rate is constantDc  Dcs`d
the distribution function is non-Gaussian since the high
moments diverge. For smallert the diffusion rateDc

grows approximately linearly that corresponds to a
intermediate value ofp ø 1. This intermediate slow
decay is responsible for the enormously large ratio
the asymptotic diffusion rate to its quasilinear value
Dcs`dyDcq ø 3 3 105sq  1d; 107sq  2d.

The ensemble of data in Figs. 1–3 shows that t
asymptotic decay of Poincaré recurrences and correlati
is determined by the universal structure in the vicinit
of the critical golden curve, and the contribution o
boundaries of other internal islands of stability is no
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significant at variance with [17]. The hypothesis o
dynamical disconnection of scales [12] is also ruled ou
Our results are in agreement with previous numeric
observations indicating that long recurrences are relat
to orbits being very close to therg curve [11,12]. It
is interesting to ask the question how the value o
the exponentp  3 would be modified for the case
of a main border curverb  fa1, a2, . . . , ai , . . .g with
nongolden continued fraction expansion. The numeric
data for border invariant curves obtained in [5] show
that the elementsai mainly take the values 1, 2, 3, 4
and the probability to findai . 4 is rather small. For
such boundedai values the general resonant approac
developed in [12–14] still shows that the diffusion rat
near the border scales asDn ~ 1yq5

n, and, therefore, the
exit time will scale astn , qn giving the exponent
p  3. Because of the similarity betweentnyqn and
the residueRn discussed above we can expect that, for
typical rb , the ratiotnyqn will not converge to a constant
as it was for rb  rg but will oscillate in a bounded
interval similar to the oscillations ofRn (see, e.g., [12]).
Because of the above reasons we can expect that eve
the general case of nongolden border invariant curves t
average asymptotic universal exponent isp  3.

If the exponentp is 3, then it is natural to ask why
previous computations of different groups were givin
p ø 1.5. Our explanation is based on the following
arguments. First, even for the critical golden curve th
asymptotic regime starts after a very long time which
determined by the first resonance scales. The first sca
are not universal; this explains whyp was varying from
map to map. If the border curve is nongolden, then th
ratio tnyqn should oscillate withn and the asymptotic
regime will appear even later than forrb  rg. Also on the
first scales a given map can be often locally approximat
by the standard map withK ø Kcr 1 sr 2 rbddfsrdydr,
wheref is some smooth function of the rotation numbe
[6]. A typical example is the separatrix map [6,11,12]
In this case at a givenrn the local order parameter
is supercritical withK 2 Kcr ~ jrn 2 rbj ~ 1yq2

n. This
scaling is different from the asymptotic one withK 2

Kcr ~ 1yqn ~ jrn 2 rbj1y2 [2,12,18] and can give a very
long exit time for first scales. Indeed, in the standard ma
with K . Kg the transition time fromy  0 to y  1 is
proportional to1yjK 2 Kgj3 [4,6] thus giving an exit time
tn , yjK 2 Kgj3 , q6

n. According to (1) this will give
p  4y3 which is not far from the averagep ø 1.5. In
addition, when close to the critical curve, as in the standa
map withK  Kg, one should still wait a long timetg to
reach the asymptotic exponentp  3.

In conclusion, we have shown that in the case of th
critical golden curve the asymptotic exponent for th
f
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decay of Poincaré recurrences isp  3. This implies that
the correlation integral converges and the diffusion ra
produced by such dynamical chaos is finite. However,
higher moments of distribution will diverge. We argu
that the asymptotic exponent should remain the same
in the case of a typical border invariant curve.
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