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Three-dimensional Anderson transition for two electrons in two dimensions
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It is shown that Coulomb interaction can lead to the delocalization of two-electron states in a two-
dimensional disordered potential in a way similar to the Anderson transition in three dimensions. At a fixed
disorder strength the localized phase corresponds to a low electron density and a large value of the parameter
r s . Analytical results are supported by a numerical study of level spacing statistics.
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Contrary to a well-established theoretical result,1 accord-
ing to which noninteracting electrons are always localized
a two-dimensional~2D! disordered potential, the pioneerin
experiment by Kravchenkoet al.2 demonstrated the exis
tence of metal-insulator transition for real interacting ele
trons in two dimensions. The ensemble of experimental d
obtained by different groups3–8 clearly indicates the impor
tant role played by interaction. In the majority of expe
ments the Coulomb energy of electron-electron interac
Eee is significantly larger than the Fermi energyEF esti-
mated for noninteracting electron gas in the absence of
order. The ratio of these energies is characterized by
dimensionless parameterr s51/ApnsaB* .Eee/EF , wherens

is the electron density in two dimensions, andaB*
5\2e0 /m* e2,m* , and e0 are the effective Bohr radius
electron mass, and dielectric constant respectively. S
large r s values as 10–30 have been reach
experimentally.2–8 At these r s values the electrons are lo
cated far from each other, and it is natural to assume tha
this regime the interaction effects will be dominated by p
interaction. The important role of the residual two-body
teraction is also clear from the fact that in the Hartree-Fo
~mean field! approximation the problem is again reduced to
one-particle 2D disordered potential with localize
eigenstates.1

The problem of two electrons interacting in the localiz
phase is rather nontrivial. Indeed, recently it has been sh
that a short-range repulsive/attractive interaction betw
two particles can destroy one-particle localization and lea
the creation of pairs propagating at a distance much la
than their size.9–13 The pair size is of the order of the one
particle localization lengthl 1 . Inside this length the colli-
sions between particles destroy the quantum interference
results in their coherent propagation at a distancel c@ l 1 . The
important point is that only pairs can propagate at a la
distance. Indeed, the particles separated by a distancR
@ l 1 have an exponentially small overlap; the interaction
tween them is weak, and such states are localized as in
noninteracting case. According to the theoretic
estimates9,10,13 in two dimensions the localization lengthl c
grows exponentially with l 1 according to the relation
ln(lc /l1);k.1. Herek;G2r2, whereG2;U2/(Vl1

2) is the
interaction-induced transition rate between localized sta
in, e.g., the 2D Anderson model,r2; l 1

4/V is the density of
two-particle states directly coupled by interaction,V is the
PRB 610163-1829/2000/61~7!/4588~4!/$15.00
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hopping between nearest sites,U is the on-site~nearest! in-
teraction, and the energy is taken in the middle of the ba
In a sense the above estimate is similar to the case of
particle localization in two dimensions, where lnl1;kFl
;(V/W)2, and the product of the Fermi wave vectorkF on a
mean free pathl is proportional to a local diffusion rate14; W
is the strength of the on-site disorder. Indeed, in the sa
manner the interaction-induced diffusion rate of a pair
given byD2; l 1

2G2;k/ l 1
2} lnlc . According to the above es

timatesl c should vary smoothly with the effective interactio
strength characterized by the dimensionless parametek.
However, this consideration is valid only for a short-ran
interaction, while the analysis of the long-range Coulom
interaction requires a separate study. The investigation
this case is also dictated by the experiments,2–8 where the
electrons are not screened and are located far from each
(r s@1). On qualitative grounds one can expect that the
fect of Coulomb interaction will be stronger since electro
are always interacting differently from the case of sho
range interaction. As we will see below, the interaction
fects will play an important role even at low density whe
the electrons are far from each other (R@ l 1), and where the
Coulomb interaction can lead to a delocalization transit
similar to one in the 3D Anderson model. It is convenient
study this transition by means of level spacing statistics
was done for the 3D one-particle case in Ref. 15.

To analyze the effect of the Coulomb interaction betwe
two electrons, let us consider a 2D Anderson model w
diagonal disorder (2W/2,Ei,W/2), hopping V, lattice
constanta51, and interactionU/ur12r2u. In these notations
r s5U/(2VApns), and it is convenient to introduce anoth
dimensionless parameterr L5Ul 1/2ApV, which is equal to
r s at ns51/l 1

2 . We will consider the case withU;V and
r s@1 when the average distance between electronsR
5ur12r2u is much larger than their noninteracting localiz
tion length:R;1/Ans;r s@ l 1@1. In this case the two-body
interelectron interaction has a dipole-dipole form, and is
the order ofUdd;UDr1Dr2 /R3;Ul 1

2/R3 . Indeed, the first
two terms in the expansion of the Coulomb interaction g
only mean-field corrections to the one-particle potential, a
the nontrivial two-body term appears only in second orde
the electron displacementsDr1;Dr2; l 1 near their initial
positionsr1,2. The matrix element of this dipole-dipole in
teraction between localized noninteracting eigenstates i
the order ofUs;U(Dr1Dr2c4/R3;U/R3 . Here c;exp
4588 ©2000 The American Physical Society
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PRB 61 4589THREE-DIMENSIONAL ANDERSON TRANSITION FOR . . .
(2uDr1,2u/ l 1)/ l 1 are localized one-electron states, and due
localization the sum runs overl 1

4 sites and each term in th
sum has a random sign. According to the Fermi golden r
these matrix elements give the interaction-induced transi
rateGe;Us

2r2;Udd
2 /V, where the density of coupled state

in the middle of the energy band is stillr2; l 1
4/V, since, due

to localization, only jumps on a distancel 1 are allowed.
These interaction-induced matrix elements mix two-elect
states ifke;Ger2.1, that corresponds toR, l 1(Ul 1 /V)1/3

@a similar estimate for electrons in three dimensions w
given in Ref. 9~b!#. Sincel 1@1, the conditionR@ l 1 is still
satisfied. Forke.1 these transitions lead to a diffusion wi
the rate

De; l 1
2Ge;Vke / l 1

2 . ~1!

This diffusion expands in an effective 3D space. Indeed,
center of mass of two electrons diffuses in a 2D lattice pla
and in addition the electrons diffusively rotate on a ring
radiusR and widthl 1 . The radius of the ring is related to th
e-e energyE;U/R, which remains constant. SinceR@ l 1 it
takes a long time to make one rotation along the ring. As
the 3D Anderson model, this diffusion becomes delocaliz
when the hopping is larger than the level spacing betw
directly coupled states, namely,

xe;ke
1/6;r L

4/3/r s.1. ~2!

Formally the situation corresponds to a quasi-tw
dimensional case withMe f'pR/ l 15pr L

1/3..1 parallel
planes~the number of circles of sizel 1 in the ring!, so that
the pair localization lengthl c jumps froml c; l 1 for ke,1 to
l c; l 1exp(pkerL

1/3)@ l 1 above the transitionke.1. The tran-
sition is sharp and similar to a 3D Anderson transition, wh
r s.r L@1. Indeed, according to the standard scal
arguments14 for a quasi-2D Anderson model withM coupled
planes and isotropic hopping, the localization length jum
from l 1;1 to l 1;exp(g) when W crosses the 3D critica
point Wc . Hereg;M (Wc /W)2 is the conductance equal t
the ratio of Thouless energyEc to level spacingD. In a
similar way, for the case of two electrons we can write th
Ec;De /L2, whereL is the system size in which the cent
of mass moves diffusively with the rateDe . Since for each
position of the first electron, or the center of mass, the s
ond electron can occupy approximatelyl 1

2Me f states, then
the level spacing isD;V/(L2l 1

2Me f) and the effective con-
ductance isge f;Ec /D;Del 1

2Me f /V;keMe f . As the result
above the transitionl c / l 1;exp(gef);exp(keMef), in agree-
ment with the estimate given above. If electrons would
able to move inside the ring thenMe f would be even larger
(Me f;r L

2/3).
It is important to stress that the parameterxe , which de-

termines the delocalization border and measures the effe
strength of two-body interaction, decreases with the incre
of r s . This looks to be against the common lore, accord
to which the largerr s is, the stronger thee-e-interaction is.
The reason for this contradiction with Eq.~2! is simply due
to the fact thatr s comparesEee with EF computed in the
absenceof disorder. In the presence of not very weak dis
der (r D5Eee/W!1 andr L@1), one-electron states are lo
calized and form the basis of Coulomb glass.16 In this Cou-
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lomb glass phase thee2e-interaction becomes weaker an
weaker with the growth of the average distance betw
electronsR;ns

21/2}r s , in natural agreement with Eq.~2!.
Transition border~2! was obtained for excited states. How
ever, it is clear that if the interaction is not able to delocal
the excited states then the low-energy states will also rem
localized, since the two-electron densityr2 drops at low en-
ergy. In this sense Eq.~2! determines the upper border fo
r s .

To study delocalization transition~2!, the level spacing
statisticsP(s) is determined numerically for different syste
sizesL. To follow the transition from the localized phas
with the Poisson statisticsPP(s) to the delocalized phas
with the Wigner-Dyson statisticsPWD(s), it is convenient to
use the parameterh5*0

s0@P(s)2PWD(s)#ds/*0
s0@PP(s)

2PWD(s)#ds, wheres050.4729 . . . is theintersection point
of PP(s) and PWD(s). In this wayh51 corresponds to the
Poissonian case, andh50 to PWD(s). The dependence ofh
on the one-electron energye5E/2, counted from the ground
state, is shown in Fig. 1 for different disorderW and inter-
action strengthU. Usually ND54000 realizations of disor-
der are used to computeP(s) for each spacing between lev
els i and i 11, counted from the ground state. Then the
P(s)’s are averaged in a small energy interval that allo
one to increase the total statistics for finalP(s) andh from
NS512 000 for low-energy states up toNS5106 at high
energies with a larger density of levels. In Fig. 1 the size
the energy interval is equal to the distance between symb
The matrix diagonalization is done in the one-electron eig
basis truncated at high energies, that allows one to st

FIG. 1. Dependence ofh on the rescaled one-electron ener
e/B ~with B54V) for differentW, system sizeL@(a–c)# and inter-
action strengthU(d). For (a!–~c), the sizes areL56 (1),8 ~full
triangle!; 10 ~o!; 12 ~h!; 16 ~full diamond!, 20 ~* !, and 24~3!, so
that 2.39<r s<9.57,U/V52, and W/V515(a),10(b), and 7(c).
For (d), W/V57, L516, and U/V52 ~full diamond!,
1(,),0.4(L), 0.2 ~full circle!, and 0.1~full trangle!.
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4590 PRB 61D. L. SHEPELYANSKY
two-electron low-energy excitations~with energyE) at large
system sizesL<24. The periodic boundary conditions a
used for one-electron states, and the Coulomb interactio
taken between electrons in one cell of sizeL and with a
charge of eight images in eight nearby cells. Coulomb in
action periodic in one cell gave similar results. Only t
triplet case was considered, but the singlet case should
similar results.9,12

The results of Fig. 1~a! show that at fixed interaction an
strong disorderW/V515 theP(s) statistics approaches th
Poisson distribution (h51) at large system sizeL and large
r s5UL/(2A2pV). This means that all states are localize
For smaller disorder the situation becomes different@Figs.
1~b! and 1~c!#. While near the ground stateh→1 still holds
for largeL, the tendency is inverted above some critical e
ergy ec whereh→0. All curves h(e) for different L ’s are
crossed in one point in a way similar to the 3D Anders
transition studied in Ref. 15.

This result can be understood in the following way. At
strong Coulomb interactionU;V the excitation energye is
related to the distance between electronsR:e;U/R ~a simi-
lar relation was used in Ref. 16 for the Coulomb glass!. At
higher e the distanceR becomes smaller, the interaction
stronger, and fore.ec the delocalization borderR;U/e
; l 1r L

1/3 @Eq. ~2!# is crossed and the states become delo
ized. Since the distanceR is related to the two-electron en
ergyE52e;U/R, the spacing statisticsP(s), which is local
in energy and therefore also inR, is not influenced by state
where particles are far from each other. In this sense
situation is different from the case of short-range interacti
According to the above argumentsẽc5ecl 1

4/3/B should re-
main constant whenl 1 changes with disorder. The value o
l 1 can be extracted from the average inverse participa
ratio j151/(ucu4 computed for one-particle states in th
middle of the band (l 1;Aj1). For L524 andW/V510, 7,
and 5, we havej1511.6, 36.7, and 84.2, respectivel
which, with ec /B'0.6, 0.28, and 0.16~the caseW/V55 is
not shown!, gives ẽc53.0860.01, in satisfactory agreemen
with the above expectations. The variation ofh with the
interaction U is shown in Fig. 1~d!. According to thish
increases with the decrease ofU ~states become more loca
ized! in agreement with the general estimate~2!. The analy-
sis above allows to understand the dependence ofh on e and
L. Another reason for the decrease ofh at highere is related
to the fact that the two-electron density of statesr2 grows
with energy, which allows us to mix levels more easily.
more detailed theory should take this fact into account
also analyze the variation of the rateG with e. The results in
this direction will be published elsewhere.17

The P(s) statistics for two electrons in two-dimension
near the critical pointec /B is shown in Fig. 2. Its compari
son with the critical statistics in the 3D Anderson mod
taken from Ref. 18~see also Ref. 19!, demonstrates that bot
statistics are really in very close agreement with the ar
ments given above. At the critical point the value ofhc is
close to its value in the Anderson model (hc50.20). The
small deviations from this value in the case of 2D electro
@hc'0.25(W/V510) and 0.17(W/V57)# can be attributed
is
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to the fact that the parameterl 1
1/3 was not sufficiently large.

The investigation of the case with largerl 1 requires a signifi-
cant increase of the system sizeL.24. Indeed, forL524
and W/V55 the localization length becomes comparab
with L( l 1;Aj1'9), which gives a decrease ofhc'0.13.

Of course, one cannot expect that the simple model of
electrons considered above will explain the variety of expe
mental results obtained by different groups.3–8 However, it
shows some tendencies which are in agreement with the
periment. Indeed at larger s ~a density lower than some criti
cal nc), experiments demonstrate the transition from a me
to an insulator. According to Fig. 4 in Ref. 6, the density
the transitionnc}1/Ar s drops exponentially with the in-
crease or decrease of the mobility or disorderm}1/W2 . This
agrees qualitatively with estimate~2! according to which
near the transition lnnc;ln(1/r s);2 ln rL;21/W2 . How-
ever, the conditionr s@r L seems not to be well satisfied, an
apparently multielectron effects should also be taken i
account. Another interesting experimental result~Fig. 2 in
Ref. 8! shows that the conductivitysc near the critical point
grows with an increase of densitync or disorderW. This is in
qualitative agreement with estimate~1! according to which
sc;De /V;1/l 1

2}r L
22}r s

28/3}nc
4/3 since near the critica

point @Eq. ~2!# ke;1 and r s;r L
4/3. It is also interesting to

remark that the scaling indexn'1.5 found in Ref. 3 is close
to the indexn'1.5 near the 3D Anderson transition~the fact
that in three dimensionsn's can be related to the observe
symmetry of theI -V curves!. Finally, let us note that recen
results20 also show a delocalization effect of the interacti
for highly excited states in two dimensions.

I thank Y. Hanein and A. Hamilton for the stimulatin
discussions of experimental results, D. Braun for the po
bility to use the data of Ref. 18, and K. Frahm for a use
suggestion.

FIG. 2. Level statisticsP(s) for two 2D electrons at the critica
point: ~1!—W/V510, L512(0.55<e/B<0.65), and total statis-
tics NS543105 @see Fig. 1~b!#. ~o!—W/V57, L516(0.25<e/B
<0.3), andNS553105 @see Fig. 1~c!#. The full line shows the
critical P(s) in the 3D Anderson model (W/V516.5 andL514,
taken from Ref. 18!; the dashed lines give Poisson statistics and
Wigner surmise.
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Éksp. Teor. Fiz.68, 497 ~1998! @JETP Lett.68, 534 ~1998!#.

9D.L. Shepelyansky, Phys. Rev. Lett.73, 2607~1994!; and inCor-
related Fermions and Transport in Mesoscopic Systems~Ref.
13!, p. 201.

10Y. Imry, Europhys. Lett.30, 405 ~1995!; and inCorrelated Fer-
mions and Transport in Mesoscopic Systems~Ref. 13!, p. 211.

11D. Weinmann, A. Mu¨ller-Groeling, J.-L. Pichard, and K. Frahm
-

-

.

d

.

-

.

Phys. Rev. Lett.75, 1598 ~1995!; and in Correlated Fermions
and Transport in Mesoscopic Systems~Ref. 13!, p. 221.

12F. von Oppen, T. Wettig, and J. Mu¨ller, Phys. Rev. Lett.76, 491
~1996!; and in Correlated Fermions and Transport in Meso
copic Systems~Ref. 13!, p. 235.

13Correlated Fermions and Transport in Mesoscopic Systems, ed-
ited by T. Martin, G. Montambaux, and J. Traˆn Thanh Vân
~Editions Frontieres, Gif-sur-Yvette, France, 1996!.

14P.A. Lee and T.V. Ramakhrishnan, Rev. Mod. Phys.57, 287
~1985!.

15B.I. Shklovskii, B. Shapiro, B.R. Sears, P. Lambrianides, a
H.B. Shore, Phys. Rev. B47, 11 487~1993!.

16B. I. Shklovskii and A. L. Efros,Electronic Properties of Doped
Semiconductors~Springer-Verlag, Berlin, 1984!.

17D. L. Shepelyansky~unpublished!.
18D. Braun, G. Montambaux, and M. Pascaud, Phys. Rev. Lett.81,

1062 ~1998!.
19I.Kh. Zharekeshev and B. Kramer, Phys. Rev. Lett.77, 717

~1997!.
20M. Ortuno and E. Cuevas, Europhys. Lett.46, 224 ~1999!; E.

Cuevas, Phys. Rev. Lett.83, 140 ~1999!; however, for a short
range interaction,h→1, with L→`, since the majority of states
are not interacting~Refs. 9 and 10!.


