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Quantum chaos border for quantum computing
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We study a generic model of quantum computer, composed of many qubits coupled by short-range inter-
action. Above a critical interqubit coupling strength, quantum chaos sets in, leading to quantum ergodicity of
the computer eigenstates. In this regime the noninteracting qubit structure disappears, the eigenstates become
complex, and the operability of the computer is destroyed. Despite the fact that the spacing between multiqubit
states drops exponentially with the number of qubitsn, we show that the quantum chaos border decreases only
linearly with n. This opens a broad parameter region where the efficient operation of a quantum computer
remains possible.

PACS number~s!: 05.45.Mt, 03.67.Lx, 24.10.Cn
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Since the pioneering work of Feynman@1# and modern
developments of efficient algorithms@2# and error-correcting
codes@3,4#, the realization of quantum computers becam
challenge of modern physics@5#. Different experimental re-
alizations have been proposed, including ion traps@6#,
nuclear magnetic resonance systems@7#, nuclear spins with
interaction controlled electronically@8,9#, quantum dots@10#,
Cooper pair boxes@11#, and optical lattices@12#. A key com-
mon feature of these experimental settings is the presenc
interacting qubits~two-level systems!. Here we analyze the
effect of qubit interaction on operability of the quantu
computer. The interaction is required since a quantum c
puter needs to perform two-qubit logical operation such
XOR @5#. We note that such a two-qubit gate has been exp
mentally realized@13#.

In an isolated system ofn uncoupled qubits, the dimen
sion of the total Hilbert spaceNH increases exponentiall
with n (NH52n), while all eigenvalues of the Hamiltonia
are included in an energy interval of sizeDE;nD0, where
D0 is the average energy distance between the two state
one qubit. As a result, the average spacingDn between ad-
jacent energy levels of the Hamiltonian decreases expo
tially with the number of qubits (Dn;nD0 /NH!D0). When
a couplingJ between the qubits is added (J,D0), one still
hasDE;nD0 , NH is unchanged, and the above estimate
Dn still holds. This general result forDn is related to the
exponentially large sizeNH of the Hilbert space, which is
one of the main reasons for the striking efficiency of qua
tum computing@1,2#. It implies that dense highly excite
states are needed for the computation. However, when
forming the computation one wants to operate with nonin
acting multiqubit statesuc i&5ua1 , . . . ,an& where ak50,1
marks the polarization of each individual qubit. These qu
tum register states should remain well defined in the p
ence of interqubit coupling even if multiqubit levels are e
ponentially dense. Therefore the mixing of noninteract
multiqubit states induced by the interaction is crucial for t
computer operability. In the field of quantum chaos@14,15# it
is known that noninteracting states will be eventually mix
by the interaction and quantum ergodicity will set in: ea
quantum computer eigenstate will be composed of a la
number of noninteracting multiqubit statesuc i& and the origi-
nal quantum register states will be washed out. At fi
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glance one would expect that such mixing happens when
coupling between qubits becomes comparable to the m
qubit spacingDn . In such a case, the creation of quantu
computers competitive with classical ones would be rat
difficult: since hundreds of qubits are necessary, this wo
lead to absurdly strict restrictions on coupling strength.
deed, forn51000, the minimum number of qubits for whic
Shor’s algorithm becomes useful@5#, the multiqubit spacing
becomesDn;103322103

D0;102298 K, where we used
D0;1 K that corresponds to the typical one-qubit spac
in the experimental proposals@8,9#. It is clear that the re-
sidual interactionJ between qubits in any experimental rea
ization of the quantum computer will be larger than this. F
example, in the proposal@9#, the increase of effective elec
tron mass by a factor of two, induced by the electrostatic g
potential, means that the spin-spin interaction is chan
from J;D0;1 K „corresponding to a distance between d
nors of 200 Å and an effective Bohr radius of 30 Å in E
~2! of @9#… to the residual interactionJ;1025 K@Dn .

However the problem is not so simple, since the inter
tion is always of two-body nature and not all of the multiq
bit states are directly coupled. Actually the number of sta
directly coupled to such a quantum register stateuc i& in-
creases not faster than quadratically withn. A similar prob-
lem appears in other physical many-body interacting syste
such as nuclei, complex atoms, quantum dots, and quan
spin glasses@16–20#. It was realized that sufficiently stron
interaction leads to quantum chaos and internal~dynamical!
thermalization, where the eigenstates properties follow
predictions of random matrix theory~RMT! @14–18#. The
quantum chaos border for this dynamical thermalization
been established only recently and it has been shown tha
relevant coupling strength should be larger than the ene
spacing between directly coupled statesDc @17,20#. SinceDc
drops algebraically withn, it is exponentially larger than
Dn;n22nD0, and therefore a relatively large couplin
strength is required for the emergence of quantum chaos
ergodicity. A similar border for interacting qubit system
would allow a reasonable regime of operability for quantu
computers.

To investigate the emergence of quantum chaos in qu
tum computers, we chose a model ofn qubits on a two-
dimensional lattice with nearest-neighbor interqubit co
pling. The Hamiltonian reads
3504 ©2000 The American Physical Society
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H5(
i

G is i
z1(

i , j
Ji j s i

xs j
x , ~1!

where thes i are the Pauli matrices for the qubiti and the
second sum runs over nearest-neighbor qubit pairs with
riodic boundary conditions applied. The energy spacing
tween the two states of a qubit is represented byG i randomly
and uniformly distributed in the interval@D02d/2,D0
1d/2#. The parameterd gives the width of the distribution
near the average valueD0 and varies from 0 toD0. HereG i
can be viewed as the splitting of nuclear spin levels in a lo
magnetic field, as it is discussed in the experimental prop
als @8,9#. The different values ofG i are needed to prepare
specific initial state by electromagnetic pulses in nucl
magnetic resonance. In this case the couplingsJi j will rep-
resent the hyperfine interaction between the spins, whic
needed to build the quantum computer. Different physi
mechanisms can generate these couplings, such as spin
ton exchange@8,9#, dipole-dipole interaction, etc. For gene
ality we choseJi j randomly distributed in the interva
@2J,J#. The Hamiltonian~1! can be considered as a gene
quantum computer model, which catches the main physic
different experimental proposals. For example, a sim
Hamiltonian appears in a quantum computer based on op
lattices @12,21#. We restrict ourselves to the case of sta
couplings that are always present as a residual interac
and are much larger than the multiqubit spacingDn even for
moderate values ofn. In a sense Eq.~1! describes the hard
ware of the computer, while gates operation in time requ
additional studies, which are possible only if the propert
of the hardware are well understood.

As is well known in the field of quantum chaos, the tra
sition to ergodic eigenstates is reflected in the level spac
statistics P(s), which goes from the Poisson distributio
PP(s)5exp(2s) for nonergodic states to the Wigner-Dyso
~WD! distribution PW(s)5(ps/2)exp(2ps2/4), correspond-
ing to RMT, for ergodic states. Heres is the nearest leve
spacing measured in units of average spacing andP(s) is the
probability to find two adjacent levels whose spacing is
@s,s1ds#.

The majority of our data are displayed for the middle
the energy spectrum, where the transition starts, and w
therefore sets the limit of operability of the quantum co
puter. The model~1! has two symmetry classes characteriz
by an odd or even number of qubits up, and the data
given for one symmetry class. In order to reduce statist
fluctuations, we use 5<ND<43104 random realizations o
G i andJi j , as is done usually in RMT@15#. Eigenvalues and
eigenvectors are computed by exact diagonalization of
Hamiltonian matrix~1! for each realization. In this way th
total number of spacings is 104,NS<1.63105 (NS
}NDNH). An example of the transition in the spectral stat
tics is shown in Fig. 1.

To analyze the evolution ofP(s) with the coupling
J, it is convenient to use the parameterh5*0

s0@P(s)

2PW(s)#ds/*0
s0@PP(s)2PW(s)#ds, where s050.4729 . . .

is the intersection point ofPP(s) and PW(s). In this way
PP(s) corresponds toh51, andPW(s) to h50. As is usual
in the field of quantum chaos, the variation ofh character-
izes the evolution ofP(s) @20#. The variation ofh with
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respect toJ/D0 is presented in Fig. 2 ford5D0 showing that
indeed h drops from 1 to 0 with increasing couplin
strength. The transition appears to become sharper for la
system sizes. The typicalJc value near which the transition
takes place corresponds to intermediate values ofh. We
chose the conditionh(Jc)50.3. The dependence ofJc on n
is given in the Fig. 2. In analogy with other many-bod
systems discussed in@17,20#, we expect thatJc'Dc
'CD0 /n, whereC is some numerical constant. Indeed, o
multiqubit state is coupled to 2n other states in an energ
interval of order 6D0. This theoretical estimate is in agree
ment with the data of Fig. 2, withC'3. We stress that this

FIG. 1. Transition from Poisson to WD statistics in the mod
~1! for the states in the middle of the energy band (66.25% around
the center! for n512: J/D050.02,h51.003 ~dashed line histo-
gram!; J/D050.48,h50.049 ~full line histogram!. Full curves
showPP(s) andPW(s); NS.2.53104, ND5100, d5D0.

FIG. 2. Dependence ofh on the rescaled coupling strengthJ/Jc

for the states in the middle of the energy band forn56 (*), 9 (s),
12 ~triangles!, 15 ~squares!; d5D0. The upper inset shows
log10(Jc /D0) ~diamonds! and log10(Jcs/D0) ~triangles! versus
log10(n); the variation of the scaled multiqubit spacingDn /D0 with
log10(n) is shown for comparison (1). Dashed line gives the theo
retical formula Jc5CD0 /n with C53.16; the solid line isJcs

50.41D0 /n. The lower inset shows log10(Jcs/D0) versus log10(d/D0)
for n56 (*), 9 (s), 12 ~triangles!; straight lines have slope 1
Logarithms are decimal.
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critical coupling is exponentially larger than the multiqub
level spacingDn;n22nD0, as is shown on Fig. 2. For th
cased!D0, the total spectrum atJ50 is composed ofn
bands with interband distance 2D0 and a bandwidth ofAnd.
Within one band, one multi-qubit state is coupled to aboun
states in an energy interval of 2d, so thatJc'Dc;d/n. This
quantum chaos border is still much bigger thanDn

;And/(NH /n);n3/222nd.
The transition in the level statistics reflects the dras

change in the multiqubit structure of the eigenstates of
~1!. Indeed, Fig. 3 shows that forJ,Jc one eigenstate is
formed only by one or few noninteracting statesuc i&, while
for J.Jc a huge number of them are required. In the lat
case, the computer eigenstates become a random mixtu
quantum register statesuc i&, making it rather difficult to per-
form computation.

To study this drastic change in the structure of eig
states, it is convenient to use the quantum eigenstate ent
Sq , defined by:Sq52( iWi log2Wi , whereWi is the quan-
tum probability to find the noninteracting multiqubit sta
uc i& in the eigenstateuf& of Eq. ~1! (Wi5u^c i ufu2&). In this
way Sq50 if uf& is one noninteracting state (J50), Sq51
if uf& is equally composed of twouc i&, and the maximal
value isSq5n if all 2 n states contribute equally touf&. The
variation of the average quantum entropy withJ is shown in
Fig. 4 for d5D0. It shows thatSq grows with J and the
transition to ergodic states with largeSq takes place in the
vicinity of Jc . In addition these data show that the critic
couplingJcs at whichSq51 is Jcs'0.13Jc . The ratioJcs /Jc
stays within 15% of the average value whenn changes from
6 to 15, while the ratioDn /Jc varies from 1 to 331023 ~see
upper inset of Fig. 2!. The dependence ofJcs on d is shown
on the lower insert of Fig. 2; it clearly shows the line
decrease ofJcs with d and can be well described byJcs
50.4d/n. Naturally, the quantum chaos border drops to z
with d due to the quasidegeneracy inside the energy band
J50.

We note that forn51000 andd5D051 K, only two
multiqubit states will be mixed atJcs'0.4D0 /n'0.4 mK.

FIG. 3. Two quantum computer eigenstates of model~1! in the
basis of noninteracting multiqubit states, i.e.,Wi5u^c i uf&u2 as a
function of noninteracting multiqubit energyEi for n512 andd
5D0 with Jc /D050.273 ~see text!: ~a! J/D050.02; ~b! J/D0

50.48.
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This critical coupling is much larger than the multiqubit lev
spacingDn;102298 K. Even if the quantum borderJcs cor-
responds to a relatively low coupling strength it seems r
sonable that the residual interaction between qubits can
below this threshold with current technologies~but not be-
low Dn).

The pictorial image of the quantum computer melting u
der the influence of the interqubit couplingJ is shown on
Fig. 5. The melting starts in the middle of the spectrum~high
energy! and progressively invades low-energy states and
whole computer, destroying its operability. We stress t
this destruction takes place in an isolated system without
external decoherence process. Nevertheless the therma
tion in this closed system, which appears because of the

FIG. 4. Dependence of the quantum eigenstate entropySq on
J/Jc for d5D0 andn56 (*), 9 (s), 12 ~triangles!, 15 ~squares!;
104,NS<1.63105. Inset shows the dependence on larger scale

FIG. 5. The quantum computer melting induced by the coupl
between qubits. Grayness represents the level of quantum eigen
entropySq , from black (Sq50) to white (Sq'11). Horizontal axis
is the energy of the computer eigenstates counted from the gro
state to the maximal energy ('2nD0). Vertical axis is the value of
J/D0, varying from 0 to 0.5. Heren512, d5D0 , Jc /D050.273,
and one random realization of Eq.~1! is chosen. A color figure is
available on http://xyz.lanl.gov/format/quant-ph/9909074
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terqubit coupling, can mimic the effect of a coupling with th
external world and external decoherence. Above the qu
tum chaos border an initial register stateuc i& will spread
quickly with time @22# over an exponential number of eige
states of the system with residual interaction, destroy
gates operability.

Our studies of a realistic isolated quantum computer ha
ware show that the mixing of multiqubit states and onse
quantum chaos induced by interqubit coupling leads to
melting and destruction of its operability; however, the qua
tum chaos border found for this process corresponds
relatively strong interaction, being exponentially larger th
the energy level spacing between multiqubit states. We
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pect that below this border, error-correcting codes@3,4# will
allow us to perform efficient quantum computing with
large number of qubits. Above this border these codes sho
operate much faster compared to the rate with which ch
sets in@22# to allow to suppress it. Due to that, it is muc
more efficient to operate the computer below the quant
chaos border. Finally, we note that quantum chaos set
very easily if the fluctuation amplituded of individual qubit
spacing drops to zero (Jc}d).

We thank O.P. Sushkov and I.D. Vagner for stimulati
discussions, and the IDRIS in Orsay and the CICT in To
louse for access to their supercomputers.
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