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Quantum Poincaré Recurrences for a Hydrogen Atom in a Microwave Field
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We study the time dependence of the ionization probability of Rydberg atoms driven by a microwave
field, both in classical and in quantum mechanics. The quantum survival probability follows the classical
one up to the Heisenberg time and then decays algebraically as P�t� ~ 1�t. This decay law derives from
the exponentially long times required to escape from some region of the phase space, due to tunneling
and localization effects. We also provide parameter values which should allow one to observe such decay
in laboratory experiments.

PACS numbers: 05.45.Mt, 32.80.Rm
During the last two decades the manifestations of the
classical chaos in microwave ionization of Rydberg atoms
have been studied experimentally by different groups and
many interesting results have been obtained [1–4]. In par-
ticular, laboratory experiments showed the quantum sup-
pression of the classically diffusive ionization process, in
agreement with the predictions of dynamical localization
theory [5]. The experimental technique based on accel-
erated proton beams, which is used for production of hy-
drogen atoms, allows one to obtain interaction times with
the microwave field of only a few hundreds of microwave
periods [1,2,4]. On the contrary, the thermal beams used
with alkali Rydberg atoms allow one to vary the interaction
time by orders of magnitude up to 105 microwave periods
[3]. The first experiments of Walther’s group [3] indi-
cated an anomalously slow decay of the 10%-ionization
threshold field as a function of the interaction time. This
result cannot be explained within the picture of diffusive
ionization in the domain of classical chaos. Some sug-
gestions have been put forward to explain this slow decay
which was attributed to some possible effects of noise for
such long interaction times [6,7]. More recently, new ex-
perimental data for the behavior of the survival probability
P�t� with time have been presented [8], showing an alge-
braic law decay P�t� ~ t2a , with a � 0.5. In the same
paper, numerical simulations of quantum dynamics have
been made, giving a value of a consistent with experi-
mental data. The origin of the slow algebraic decay was
attributed to the underlying structure of classical mixed
phase space composed by integrable islands surrounded
by chaotic components. However, the investigations of
classical chaotic systems with mixed phase space showed
that the probability of Poincaré recurrences to the same re-
gion, or the survival probability up to time t, decays alge-
braically with power a � 1.5 3 [9–11]. Moreover, since
the integral

R`
t P�t� dt is proportional to the measure of

the finite chaotic region where the trajectory is trapped, the
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value of a should be greater than 1. According to the cor-
respondence principle, one expects that, in the semiclassi-
cal regime, classical and quantum systems exhibit the same
decay law. Therefore the above exponent a � 0.5 found
in the experiments requires, in this respect, an explanation.
In particular, the question arises of whether this obtained
value is generic or corresponds to some initial transient
time behavior in a regime where quantum effects play an
important role.

Recent studies of quantum Poincaré recurrences for the
Chirikov standard map in the semiclassical regime with
mixed phase space [12] showed that quantum P�t� follows
the classical decay during a relatively large time tH . The
time tH gives the Heisenberg time scale, which is deter-
mined by inverse level spacings. For t . tH , the quantum
survival probability starts to decay inversely proportional
to time (a � 1) and becomes much larger than the clas-
sical one. The power a � 1 is due to exponentially long
times required to escape from some region of phase space
[12]. These exponentially long escape times are origi-
nated by tunneling from classically integrable region or by
the exponential quantum localization. The above quantum
behavior, with exponent a � 1, is different from the ex-
perimental data [8], and this constitutes an additional mo-
tivation for the present paper. Indeed, the highly excited
states of hydrogen atom in a microwave field can be de-
scribed by the Kepler map which is very similar to the
Chirikov standard map [5], and therefore one would ex-
pect the same behavior for the time dependence of survival
probability.

In order to investigate the probability decay for the hy-
drogen atom in a microwave field, we choose the initial
state with principal quantum number n � n0 and numeri-
cally studied the survival probability P�t� in a linearly
polarized monochromatic electric field e�t� � e sin�vt�.
Here e and v are the strength and frequency of the mi-
crowave field, measured in atomic units. The quantum
© 2000 The American Physical Society
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evolution is numerically simulated by the Kepler map [5],
by the one-dimensional (1D) model of a hydrogen atom,
and by the 3D model for atoms initially prepared in states
extended along the field direction and with magnetic quan-
tum number m � 0. The comparison of these three mod-
els shows that the essential physics is captured by the 1D
model. Indeed, due to Coulomb degeneracy, the slow mo-
tion in the orbital momentum l acts as an adiabatic pertur-
bation on the n motion and as a result the excitation in n is
well described by the 1D model [5]. In addition, we show
that also the Kepler map gives an approximate correct de-
scription of the dynamics.

The hydrogen atom in a linearly polarized monochro-
matic electric field is described by the Hamiltonian

H �
p2

2
2

1
r

1 ez sin�vt� , (1)

where in the 1D model the motion is assumed to take place
along the field direction (z axis, with z $ 0). In order to
compare classical and quantum dynamics it is convenient
to use the scaled field strength e0 � en4

0 and frequency
v0 � vn3

0, which completely determine the classical dy-
namics. The classical limit corresponds to h̄eff � h̄�n0 !
0, at constant e0, v0. For v0 . 1 the main change of the
electron energy E occurs when the electron is close to the
nucleus. As a consequence the dynamics is approximately
given by the Kepler map [5].

N � N 1 k sinf, f � f 1 2pv�22vN �23�2,

(2)

where N � E�v, k � 2.6ev25�3, f � vt is the phase
of the microwave field when the electron passes through
the perihelion and the bar marks the new values of vari-
ables. In the quantum case, the change of N gives the
number of absorbed photons while the number of photons
required to ionize the atom is NI � 1��2n2

0v�. In clas-
sical mechanics diffusive ionization takes place for fields
above the chaos border: e0 . ec � 1��49v

1�3
0 � [5]. The

quantum dynamics of the model (2) is described by the
quantum Kepler map for the wave function c�f�:

c � exp�2iH0�N̂��P̂ exp�2ik cosf̂�c , (3)

where H0�N̂� � 2p�
p

22vN̂ , N̂ � 2id�df, f̂ � f

(2` , f , 1`), and the operator P̂ projects proba-
bility over the states with negative energy (N , 0) [5].
We introduce an absorption border for levels with n $

nc, which for the Kepler map corresponds to N $ Nc �
21��2n2

cv� [13]. Such a border occurs in real laboratory
experiments—for example, as a consequence of unavoid-
able static electric field experienced by the Rydberg atoms
during their interaction with the microwave field. The ab-
sorption border nc can be varied in a controlled way via
a static electric field es, the static field ionization border
being esn4

c � 0.13.
The results of quantum simulations for the situation
similar to the experimental one [Fig. 2(b) in Ref. [8] ]
are shown in Fig. 1. The Kepler map description allows
us to study the quantum dynamics up to very long times
(t � 108, here and below time is given in microwave peri-
ods). In the case n0 � 23 the quantum data for the survival
probability P�t� obtained from the quantum Kepler map
and the 1D hydrogen atom model agree with each other
(see the inset of Fig. 1) and with the numerical computa-
tions of [8]. However, all these data are strongly different
from the classical probability decay shown in Fig. 1, which
displays a slope a � 2. The reason for this disagreement
should be attributed to the fact that n0 � 23 is not in the
semiclassical regime. Our data for the Husimi distribution,
obtained from the Wigner function by smoothing over the
size h̄ [14], show that a significant part of the probability
is trapped inside the stable island at n � 20 (vn3 � 1).
For this reason the probability decays slowly during a long
time t � 105 after which it drops faster. If n0 is increased
significantly, the semiclassical regime is reached and the
quantum probability decay becomes close to the classical
one up to the time scale tH � 104. Our data show that
tH is proportional to n0 (at fixed e0, v0), in agreement
with previous estimates of Ref. [12], according to which
tH ~ 1�h̄eff. After this time the quantum 1�t decay is
clearly observed in agreement with the results of [12].

In Fig. 2 we show a more realistic case in which, ini-
tially, classical and quantum probabilities decay in a very
similar way and where only after a time tH � 5 3 102, the
quantum survival probability starts to decay more slowly

FIG. 1. Survival probability P�t� as a function of the inter-
action time t (in units of microwave periods) for e0 � 0.065,
v0 � 1.6, nc � 2n0: quantum Kepler map for n0 � 23 (thin
solid line), n0 � 230 (thin dotted line), n0 � 2300 (thick solid
line), and classical Kepler map (thick dashed line, ensemble of
109 trajectories). The straight lines have slopes 1 and 1.94, the
latter coming from a fit of the classical decay for 2 3 102 ,

t , 3 3 104. Inset: Quantum Kepler map (solid line) versus
1D hydrogen model (dot-dashed line) for n0 � 23.
4089
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FIG. 2. Survival probability for e0 � 0.1, v0 � 2.6, n0 � 60,
nc � 64: quantum Kepler map (dotted line), quantum (solid
line), and classical (dashed line, ensemble of 3 3 106 trajec-
tories) 1D hydrogen model. The straight lines have slopes 1
and 2.15, the latter coming from a fit of the classical decay
for 5 3 102 , t , 2 3 104. Inset: Quantum survival proba-
bility for the 1D model (solid line) and the 3D model (dot-
dashed line).

[P�t� ~ 1�t] than the classical one which decays as 1�ta ,
with a � 2.15. This case corresponds to n0 � 60 and can
be observed in experiments similar to those performed in
[8]. Again the quantum Kepler map gives a qualitatively
correct description of the ionization process up to very long
interaction times. The comparison of quantum simulations
for the 1D hydrogen atom model and the 3d dynamics is
shown in the inset of Fig. 2. It demonstrates that both dy-
namics give very close results, confirming that the essential
physics is captured by the 1D model. We put the absorp-
tion border near the initial state (nc � 64) in order to have
rc � �f�DNc � 3.5 . 1, where �f � 3.3e

2
0v

210�3
0 n2

0
is the localization length in number of photons [5] and
DNc � �n0�2v0� �n2

0�n2
c 2 1� is the number of photons

required to reach the absorption border. In this way the
probability can go out very easily and the 1�t probability
decay is observed after a short transient time of the order
of 20 microwave periods. On the contrary, when rc , 1,
as in the case of Fig. 1 for n0 � 23 (rc � 0.3), strong
fluctuations around the 1�t decay take place. This is analo-
gous to the huge (log-normally distributed) conductance
fluctuations in a disorder solid with localization length
smaller than the system size [15].

In order to confirm that the algebraic probability decay is
related to the sticking of classical trajectories and of quan-
tum probability near the integrable islands in the phase
space, we show in Fig. 3 the time evolution of the survival
probability distribution in the phase space of action-angle
variables �n, u� for the 1D model. In the classical case
3 3 106 orbits were initially homogeneously distributed
in the angle u on the line n � n0 � 60, corresponding
4090
FIG. 3 (color). Classical density plot (left) and Husimi func-
tion (right) in action-angle variables (n, u), with 30 # n # 63.5
(vertical axis) and 0 # u , 2p (horizontal axis), for the 1D
model in the case of Fig. 2. Husimi function is averaged in
a finite time interval to decrease fluctuations: 50 # t # 60
(top); 2 3 103 # t # 104 (bottom left); 9.9 3 103 # t # 104

(bottom right). The color is proportional to the density: blue
for zero and red for maximal density.

to the initial quantum state with principal quantum num-
ber n0 � 60. After 50 microwave periods, the classical
distribution of nonionized orbits shows a fractal structure
which surrounds the stability islands (Fig. 3 top left). At
larger times this distribution approaches more and more
closely the boundary critical invariant curves (Fig. 3 bot-
tom left). One of them confines the motion in the region
with n . nb � n0�ec�e0�1�5 � 41 where nb determines
the classical chaos border for given e0. Other invariant
curves mark the critical boundaries around internal sta-
bility islands (for example, at n � 55, corresponding to
vn3 � 2). In the quantum case the value of h̄eff is not
sufficiently small to resolve the fractal structure at small

FIG. 4 (color). Quantum fractal Husimi function for parameter
values and interaction times as in Fig. 3, top left; with n0 � 150
(left) and n0 � 1200 (right).
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scales. However, the Husimi function shows similarities
with classical probability distribution at t � 50 (Fig. 3,
top right). At longer times, the diffusion towards the
boundary at nb is slowed down due to localization effects
and penetration of the quantum probability inside the clas-
sical integrable islands. At t � 104 (Fig. 3 bottom right)
the quantum probability is concentrated in a layer near nb .
Because of localization effects, the Husimi function does
not change significantly for a very long interaction time
(103 , t , 3 3 104). Eventually the probability starts to
penetrate very slowly inside the main island at n � nb .
Therefore tunneling and localization effects are respon-
sible for the slow 1�t decay of the quantum survival
probability seen in Fig. 2.

The fractal structure of the classical distribution is
washed out at scales smaller than the minimal quantum
cell h̄eff. Therefore a better resolution can be obtained
increasing the principal quantum number n0, at fixed
e0, v0, and nc�n0. The Husimi function clearly reflects
the underline fractal structure at very high principal
quantum numbers n0 � 150 (Fig. 4, left) and n0 � 1200
(Fig. 4, right). Similar quantum fractals have been found
in the kicked rotator model with absorbing boundary
conditions [16].

Notice that the probability decay P�t� is related to
correlations decay via C�t� ~ tP�t� [9]. In the case
of a � 1 this implies that correlations do not decay.
The Fourier transform of C�t� gives the spectral density
S�v� of the effective noise produced by the dynamics:
S�v� �

R
C�t� exp�ivt� dt � 1�v. This shows that

the spectral noise associated with the quantum Poincaré
recurrences with a � 1 scales like S�v� ~ 1�v. A
similar behavior of noise has been observed in many
scientific disciplines [17]—for example, in the resistance
fluctuations of different solid state devices [18]. This
phenomenon is known as 1�f noise and usually extends
over several orders of magnitude in frequency, indicating
a broad distribution of time scales in the system. In the
case of quantum Poincaré recurrences this property stems
from the exponentially low escape rate from some regions
of the phase space.

In summary, on the basis of our previous investigations
and of the numerical studies presented in this paper we
conclude that the survival probability for Rydberg atoms
in a microwave field decays, up to the time scale tH ~ n0,
in a way similar to the classical probability. For t . tH the
quantum probability starts to decay slower than the classi-
cal one, with the exponent of the algebraic decay a � 1.
We have given parameter values which should allow one
to observe quantum Poincaré recurrences in microwave ex-
periments with Rydberg atoms.

This research is done in the frame of EC Program
No. RTN1-1999-00400.
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